模式识别(国家级精品课程)讲解
模式识别课程讲义(李君宝)3. 概率密度函数估计-3学时

这个例子所作的推断就体现了极大拟然法的基本思想。
【2 EM算法的理论依据】
• 极大拟然法的定义 观测变量X,针对n个观测样本为( x1,x2,…,xn),它们之间 满足独立同分布 ,参数变量为模型的一系列参数
x - xi hn
【 Parzen窗法】
• 上述过程是一个内插过程,样本xi距离x越近, 对概率密度估计的贡献越大,越远贡献越小。
• 只要满足如下条件,就可以作为窗函数:
u 0
udu 1
【 Parzen窗法】
窗函数
【 Parzen窗法】 • hn称为窗的宽度
【 Parzen窗法】
中,缺失数据(隐含变量) Y未知,完整log似然函数对Y求 期望。 • 定义
其中
ln
p( xk
|)
1 2
ln(22 )
1 22
( xk
1 )2
ln
p( xk
|)
1
2
( xk
1
N
22 k1
1 )
(xk 1)2 2ˆ22
N
k 1
1
ˆ2
( xk
ˆ1 )
0
N k 1
1
ˆ2
N k 1
(xk ˆ1)2 ˆ22
0
ˆ
1 N
N
xk
k 1
ˆ 2
1 N
N
( xk
在GMM中,若 X i来自第k个成分,则 Yi k • 完整数据:包含观测到的随机变量 X 和未观测到的随机变
模式识别1课件

不变性
• 尽量选择相关性小的特征 • 尽可能不受噪声的干扰
Applied Pattern Recognition CSE616
38
模式识别的基本方法
• 模糊模式识别
• 基于模糊数学和统计分析的识别方法,在不能明确描述模式
特征和结构的复杂模式识别问题中得到了成功应用
模糊模式类
清晰模式类
很像三角 形的图形
远大于2 的整数
三角形
大于2的 整数
• 根据隶属度和模糊文法进行分类
Applied Pattern Recognition CSE616
• 需要考虑的问题: • 特征越多分类性能越好吗? • 什么样的特征才是好的特征? • 特征的相关性与冗余?
Applied Pattern Recognition CSE616
17
如何获取判别边界:判别模型? 什么样的判别边界才是最优的:模型优化?
Applied Pattern Recognition CSE616
用能力和领域,促进人工智能的应用与发展
• 促进人们对人脑识别过程的理解和认识
Applied Pattern Recognition CSE616
31
模式识别存在的问题
• 模式识别是一门快速发展的新兴学科,涉及到多学科、
多领域的复杂问题
• 和生物认知系统相比,现有人工模式识别系统的适应
和识别能力还远远不能令人满意
• 原理:
样本 观测值 特征 概率统计 决策准则
分类
Applied Pattern Recognition CSE616
《模式识别》PPT课件

有两个极端的特征选择算法,一个是单独选择法,另一个是穷举选择法。
1. 单独选择法 就是把n个特征每个特征单独使用时的可分性准则函数值都算出来,按准则
函数值从大到小排序,如 J(x1)>J(x2)>…>J(xm)>…J(xn)
然后,取使J较大的前m个特征作为选择结果。 问题:这样得到的m个特征是否就是一个最优的特征组呢?
1 Pe 1 c
另一个极端情况是,如果能有一组特征使得
此时x划归 P类(,其i /错x误)概率1为, 0。且P( j / x) 0 , j i
可见后验概率越集中,错误概率就越小。后验概率分布越平缓(接近均匀分布)
,则分类错误概率就越i 大。
为了衡量后验概率分布的集中程度,需要规定一个定量准则,我们可以借助于 信息论中关于熵的概念。
,
的函数。可定义如下形式的广义熵:
P(1 / x) P(2 / x)
P(c / x)
,
,…
式中,
是一个实的正参数,
。
J
a C
[
P
(1
/
x),
P ( 2
/
x),,
P ( c
/
x)]
c
(21a 1)1[ P a (i / x) 1] i 1
a
a1
不同的 spital法则有
a
a值可以得到不同的熵分离度量,例如当
8.1.1 基于距离的可分性准则 各类样本之间的距离越大,则类别可分
性越大。因此,可以用各类样本之间的距离的平 均值作为可分性准则
Jd
1 2
c
Pi
i 1
c
《模式识别课件》课件

医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。
模式识别讲义_(80pp)

第一章 绪论1.1模式和模式识别模式识别是一门很受人们重视的学科。
早在30年代就有人试图以当时的技术解决一些识别问题,在近代,随着计算机科学技术的发展和应用,模式识别才真正发展起来。
从60年代至今,在模式识别领域中已取得了不少成果。
它的迅速发展和广泛应用前景引起各方面的关注。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
例如:通过视觉、听觉、触觉等感官接受图象、文字、声音等各种自然信息去认识外界环境的能力;将感性知识加工成理性知识的能力,即经过分析、推理、判断等思维过程而形成概念、建立方法和作出决策的能力;经过教育、训练、学习不断提高认识与改造客观环境的能力‘对外界环境的变化和干扰作出适应性反应的能力等。
模式识别就是要用机器去完成人类智能中通过视觉、听觉、触觉等感官去识别外界环境的自然信息的那些工作。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式的概念:模式这个概念的内涵是很丰富的。
“我们把凡是人类能用其感官直接或间接接受的外界信息都称为模式”。
比如:文字、图片、景物;声音、语言;心电图、脑电图、地震波等;社会经济现象、某个系统的状态等,都是模式。
模式识别:模式识别是一门研究对象描述和分类方法的科学。
如,我们要听某一门课,必须做以下识别:1)看课表—文字识别;2)找教室和座位—景物识别;3)听课—声音识别。
再比如,医生给病人看病:1)首先要了解病情;问2)再做一些必要的检验;查3)根据找到的能够诊断病情的主要特征,如体温、血压、血相等,做出分类决策,即诊断。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
模式识别清华 课件第一章

模式识别※第一章绪论§课前索引§1.1 模式识别和模式的概念§1.2 模式的描述方法§1.3 模式识别系统§1.4 有关模式识别的若干问题§1.5 本书内容及宗旨§本章小节§本章习题※第二章贝叶斯决策理论与统计判别方法§课前索引§2.1 引言§2.2 几种常用的决策规则§2.3 正态分布时的统计决策§本章小节§本章习题※第三章非参数判别分类方法§课前索引§3.1引言§3.2线性分类器§3.3 非线性判别函数§3.4 近邻法§3.5 支持向量机§本章小结§本章习题※第四章描述量选择及特征的组合优化§课前索引§4.1 基本概念§4.2 类别可分离性判据§4.3 按距离度量的特征提取方法§4.4 按概率距离判据的特征提取方法§4.5 基于熵函数的可分性判据§4.6 基于Karhunen-Loeve变换的特征提取§4.7 特征提取方法小结§4.8 特征选择§本章小节§本章习题※第五章非监督学习法§课前索引§5.1 引言§5.2 单峰子类的分离方法§5.3 聚类方法§5.4 非监督学习方法中的一些问题§本章小节§本章习题※第六章人工神经元网络§课前索引§6.1 引言§6.2 Hopfield模型§6.3 Boltzmann机§6.4 前馈网络§6.5 人工神经网络中的非监督学习方法§6.6 小结§本章习题第一章绪论本章要点、难点本章是这门课的绪言,重点是要弄清“模式识别”的名词含义,从而弄清这门课能获得哪方面的知识,学了以后会解决哪些问题。
中国科学院大学模式识别国家重点实验室计算机视觉课件

图像分割的难点
• 图像分割是中层视觉中的最基本问题,也是计算视觉和图像 理解中的最基本问题之一。它还是该领域国际学术界公认的 将会长期存在的最困难的问题之一。
• 图像分割之所以困难的一个重要原因是其并不完全属于图象 特征提取问题,它还涉及到各种图像特征的知觉组织。
阈值法
阈值法基本原理:通过设定不同的特征阈值,把图像像素点分 为若干类.常用的特征包括:灰度、彩色特征、由原始灰度或 彩色值变换得到的特征。
阈值法—Otsu法
最大类间方差法是由日本学者大津于1979年提出的,是一种自 适应的阈值确定的方法,又叫大津法,简称Otsu法。 Otsu法按图像的灰度特性将图像分成背景和目标两部分,背景 和目标之间的类间方差越大,说明构成图像的两部分的差别越 大。当部分目标错分为背景或部分背景错分为目标都会导致两 部分差别变小。 因此,使类间方差最大的分割意味着错分概率最小。
计算机视觉—图像分割
申抒含 中国科学院自动化研究所 模式识别国家重点实验室
计算机视觉课程结构图
图像 2.特征检测 3.特征匹配
4.图像分割 6.运动估计 7.目标跟踪
5.图像配准
8-11.三维重建
12.识别 13.人脑工程
什么是图像分割
图像分割就是指把图像分成互不重叠的区域并提取出感兴趣目 标的技术和过程。
对于直方图中波峰不明显或者波谷平坦宽阔的图像无法使用。
阈值法—迭代法
基本流程: 1. K=0,初始阈值选取为图像的平均灰度TK ; 2. 用TK将图像的象素点分作两部分,计算两部分各自的平均 灰度,小于TK的部分为TA,大于TK的部分为TB; 3. 计算TK+1 =(TA + TB) /2,将TK+1作为新的全局阈值代替TK; 4. K=K+1; 5. 重复过程2-5,如此迭代,直至TK 收敛,即TK+1 =TK。
模式识别培训教程PPT(94张)

线条透视
结构密度
遮盖关系
(二)建构性知觉理论 (Constructive perception)
知觉是一个积极的和建构的过程
知觉并不是由刺激输入直接引起的,而 是所呈现刺激与内部假设、期望、知识以 及动机和情绪因素交互作用的产物
知觉有时可受到不正确的假设和期望影 响,因而也会发生错误
邻近物 体大小 对大小 知觉的 影响
现代观点则认为,知觉是主动 和富有选择性的构造过程。
黄希庭:“知觉是直接作用于感觉器 官的事物的整体在脑中的反映,是人对感 觉信息的组织和解释的过程。”
梁宁建:“知觉是人脑对客观事物的 各种属性、各个部分及其相互关系的综合 的整体的反映,它通过感觉器官,把从环 境中得到的各种信息,如光、声音、味道 等转化为对物体、事件等的经验的过程。”
2. “泛魔堂”模型(“魔城”模型)
通过特征分析识别一个字母R
3.特征分析的生理学依据
1981年诺贝尔医学奖获得者:Hubel & Wiesel
4.特征分析的行为学证据
Neisser(1964)英文字母扫描实验 固定影像与静止影像的实验
5.特征分析说的评论 优点:避开预加工、减轻记忆负担、带有学习
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
1982年他在《科学》杂志上原创性地提出 了“拓扑性质初期知觉”的理论,向半个世纪 以来占统治地位的理论提出了挑战。随后20多 年的时间里,在与国际上持不同学术观点的学 者的争论与交流中,他以令人信服的系列科学 实验不断地完善和论证着这一假说,使之成为 被越来越多的国际同行所接受的学说,进而成 为有国际影响力的理论,他的成果也被《科 学》、《美国科学院院报》等著名学术刊物多 次刊登。2004年,著名知觉杂志《Visual Cognition》以专辑的形式刊载了陈霖教授的 成果并配发了大量国际著名学者的评论性文章。
模式识别讲义

模式识别讲义《模式识别与图像处理》教学讲义上篇模式识别§1. 模式识别序论近年来,科技发展的重要方向之一就是:人类智能的机器化和人造机器的智能化。
前者以计算机、专家系统、神经网络算法等为代表;后者以智能机器人(具有视觉、听觉、触觉、嗅觉等)为典型。
两个方向的努力都归结为一个目标——研究人工智能。
当然,目前科技水平还远没有达到设定目标。
使机器具有人类的智能水平,使机器像人那样进行目标识别尚需艰苦努力。
模式识别是智能的核心功能之一。
换句话说就是模式识别属于人工智能的范畴。
这里所说的智能或人工智能是指用机器完成以往只能由人类方能胜任的智能活动。
包括:①通过视、听、触、嗅觉接受各种自然信息、感知环境;②经推理、分析、判断、综合将感性认识加工成理论知识,进而形成概念、建立方法以及做出决策;③对外界环境的变化和干扰做出适应性反应等等。
模式识别就是要用机器实现上述第一项人类智能活动。
而第二项则已有神经网络、专家系统等仿照人类思维的智能方法。
第三项则是人类早已开始研究的各种自动化技术、自适应控制、自学习控制等。
那么,什么叫做模式识别呢?§1-1 模式识别的基本概念1、模式与模式识别定义一:模式是一些供模仿用的完美无缺的标本;模式识别就是辨别出特定客体所模仿的标本。
定义二:模式是对特定客体的定量的或结构的描述;模式识别是把待识别模式划分到各自的模式类中去。
这里所说的模式类是具有某些共同特性的模式的集合。
两个定义中,模式一词的含义是不同的。
前者指标本,后者指对客体的描述。
本课程中使用定义二,并且作如下狭义约定:模式识别是指利用计算机自动地或有少量人为干预的方法把待识别模式加以分类,即划分到模式类中去。
一般认为,模式是通过对具体的事物进行观测所得到的具有时间与空间分布的信息,模式所属的类别或同一类中的模式的总体称为模式类,其中个别具体的模式往往称为样本。
模式识别就是研究通过计算机自动的(或人为少量干预)将待识别的模式分配到各个模式类中的技术。
《模式识别导论》课件

结构模式识别
01
结构模式识别是通过分析模式的结构特性来进行识别
的方法,主要应用于具有明显结构特征的模式。
02
结构模式识别方法主要包括基于规则和基于图的方法
,如决策树、有限状态机等。
03
结构模式识别方法在语法分析、文本分类、化学分子
结构解析等领域有广泛应用。
模糊模式识别
模糊模式识别是利用模糊逻辑 和模糊集合理论进行模式识别 的方法,能够处理不确定性和
详细描述
人脸识别技术广泛应用于安全、门禁 、考勤、移动支付等领域,通过与数 据库中存储的人脸图像进行比对,实 现快速、准确的身份验证。
手写数字识别
总结词
手写数字识别是指利用计算机技术自动识别手写数字的能力,是模式识别领域的 一个重要分支。
详细描述
手写数字识别技术广泛应用于邮政编码、支票、银行票据等领域的自动化处理, 提高数据录入效率和准确性。
03
大数据与模式识别的结合有助于推动各行业的智能化进程,如智能交通、智能 安防、智能医疗等领域。未来,随着大数据技术的不断发展,模式识别的应用 场景将更加广泛。
隐私与安全问题
随着模式识别技术的广泛应用,隐私和安全问题逐渐凸显出来。在人脸 识别、生物特征识别等领域,个人隐私容易被泄露和滥用。因此,需要 加强隐私保护和安全管理,确保个人信息安全。
大数据与模式识别
01
大数据为模式识别提供了丰富的数据资源,有助于提高识别的准确率和可靠性 。通过对大数据的分析和处理,可以挖掘出更多有价值的信息,推动模式识别 技术的发展。
02
大数据时代对模式识别提出了更高的要求,需要处理海量数据、提高计算效率 、降低存储成本等。因此,需要不断优化算法和计算架构,以满足大数据时代 的需求。
模式识别的分类算法ppt课件

3. 在训练集中选出与新样本最相似的 K 个文 样本,计算公式为:
可编辑课件
7
4.在新样本的K个邻居中,依次计算每类的 权重计算公式如下:
5. 比较类的权重,将文本分到权重最大的那个 类别中。
可编辑课件
8
KNN
可编辑课件
9
LDA
• 线性判别式分析 (Linear Discriminant Analysis, LDA),
模式识别又常称作模式分类
可编辑课件
3
分类
• 有监督的分类(Supervised Classification) • 无监督的分类(Unsupervised Classification)
二者的主要差别在于: 各实验样本所属的类别是否预先已知。
可编辑课件
4
应用领域
• 主要应用领域是图像分析与处理、语音 识别、声音分类、通信、计算机辅助诊 断、数据挖掘等学科。
• CW-SSIM BASED IMAGE CLASSIFICATION IEEE International Conference on Image Processing
可编辑课件
20
Thank you!
可编辑课件
21
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
• 基本思想:将高维的模式样本投影到最 佳鉴别矢量空间,以达到抽取分类信息 和压缩特征空间维数的效果,投影后保 证模式样本在新的子空间有最大的类间 距离和最小的类内距离
即模式在该空间中有最佳的可分离性
可编辑课件
10
LDA
假设对于一个n维空间有m个样本分别为
模式识别国家级精品课程讲义ppt课件

32
1.1 概述-模式识别的基本方法
五、逻辑推理法(人工智能法)
模式描述方法: 字符串表示的事实
模式判定: 是一种布尔运算。从事实出发运用一系列规
17
例:汽车车牌识别
从摄像头获取包含车牌的彩色图象 车牌定位和获取 字符分割和识别
输入图象
特征提取
粗略定位
分割字符
确定类型
精细定位
识别、输出
18
19
20
1.1 概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
21
1.1 概述-模式识别的基本方法
3
第一章 引论
1.1 概述 1.2 特征矢量和特征空间 1.3 随机矢量的描述 1.4 正态分布
4
概念
模式识别(Pattern Recognition):确定一个 样本的类别属性(模式类)的过程,即把某一 样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。 如患者,某人写的一个汉字,一幅图片等。
35
1.1 概述-模式识别的发展简史
80年代 以Hopfield网、BP网为代表的神经 网络模型导致人工神经元网络复活, 并在模式识别得到较广泛的应用。
90年代 小样本学习理论,支持向量机也受 到了很大的重视。
36
1.1 概述-模式识别的应用(举例)
生物学
自动细胞学、染色体特性研究、遗传研究
30
模式识别 张学工

p( x | i ) dx p( x)
Xuegong Zhang, Tsinghua University
17
张学工《模式识别》教学课件
(5)Patrick-Fisher
JP
p( x | 1 ) P1 p( x | 2 ) P2
2
dx
1 2
1 2
IP
p( x | i ) Pi p( x)
7
张学工《模式识别》教学课件
类间平均距离:
c 1 c 1 J D Pi Pj 2 i 1 ni n j j 1
k 1 l 1
ni
nj
(i ) xk , xl( j )
其中,
(i ) xk i , k 1,, ni
xl( j ) j , l 1, , n j
2
张学工《模式识别》教学课件
名词约定: 特征形成(特征获取、提取) 直接观测到的或经过初步运算的特征——原始特征 特征选择 从 m 个特征中选择 m1 个, m1 m (人为选择、算法选择) 特征提取(特征变换,特征压缩) 将 m 个特征变为 m 2 个新特征 --- 二次特征
Xuegong Zhang, Tsinghua University
考查两类分布密度之间的交叠程度
定义:两个密度函数之间的距离:
J p () g p (x | 1 ), p (x | 2 ), P1 , P2 dx
它必须满足三个条件: 1. J p 0 2. 若 p ( x | 1 ) p ( x | 2 ) 0, x ,则 J p J max 完全不重叠 3. 若 p ( x | 1 ) p ( x | 2 ), x ,则 J p 0 完全重叠
模式识别理论 ppt课件

• K均值聚类法—K-means Clustering Method
• 模糊聚类法—Fuzzy clustering method • PCA投影分类法等等
60
主成分分析的数学 与几何意义示意图
61
16个脑组织试样进行分析,在色谱图中
uxy yt x 12
判别阈值可取两个类心在u方向上轴的投影连线的
中点作为阈值,即:
yt
m~1 m~2 2
49
50
(7) 计算m~ i。
m ~iN 1i j y(ji)N 1i j u x(ji)u m i
(8)
计算yt 。 yt
m~1 m~2 2
(9) 对未知模式x判定模式类。
uxy yt x 12
11
模式识别常用术语
• 特征抽提(Feature Extraction) • 训练集(Training Set) • 识别率(Recognition Rate) • 预测能力(Predictive Ability)
12
注意事项
训练集的数据一定要可靠。 训练集的样本数目要足够多,样本数m与模
式空间维数n 的比值至少应满足m/n≥3,最好 m/n≥10。 模式空间特征的选择是成败的关键,要选取与 样本分类有关的特征,如果不能包括与分类有 关的主要特征,模式识别就不会有好的效果。
4
什么是模式识别
• 模式识别包括两个阶段,即学习阶段和实现阶段, 前者是对样本进行特征选择,寻找分类的规律, 后者是根据分类规律对未知样本集进行分类和识 别。
• 广义的模式识别属计算机科学中智能模拟的研究 范畴,内容非常广泛,包括声音和语言识别、文 字识别、指纹识别、声纳信号和地震信号分析、 照片图片分析、化学模式识别等等。计算机模式 识别实现了部分脑力劳动自动化。
模式识别讲义1

Xuegong Zhang Tsinghua University
38
19
概念和名词约定(续)
• 分类器classifier:能够将每个样本都分到某个类别中去 (或者拒绝)的计算机算法 • Decision region: 分类器将特征空间划分为若干区域(决策 域) • Decision boundary: 不同类别区域之间的边界称作分类边 界、决策边界或分类面、决策面
36
18
概念和名词约定
• 样本sapmle:待研究对象的个体,包括性质已知或未知的 个体 (注意:统计学中有不同的约定) • 类别class:将所研究的样本性质离散化为有限的类别,认 为同一类的样本在该性质上是不可区分的
– 习惯上,类别用ω 表示,如ω1、ω2,也用{-1,1}表示
• 已知样本known samples:类别情况已知的样本 • 未知样本unknown samples:类别情况未知的样本 • 样本集sample set:若干样本的集合,分已知样本集和未 知样本集
Xuegong Zhang Tsinghua University 27
常见模式举例(续)
人脸的模式
• 共性:人脸作为一类对象区别于其他 • 个性:每个人作为一类区别于其他人
Xuegong Zhang Tsinghua University
28
14
什么是“模式(Pattern)”?
• 对象的组成成分或影响因素之间所存在 的直接或间接的规律性的关系 or • 存在确定性或随机规律的对象、过程或 事件的集合
Xuegong Zhang Tsinghua University 37
概念和名词约定(续)
• 特征features:样本的任何可区分的(且可观测的)方面 – 包括定量特征和定性特征,但通常最后转化为定量特征 • 特征向量feature vectors:样本的所有特征组成的 n 维向量 是样本在数学上的表达,因此也称作样本 • 特征空间feature space:特征向量所在的 n 维空间,每一个 样本(特征向量)是该空间中的一个点,一个类别是该空间中 的一个区域
模式识别讲义第一章

意义的特征或属性, 根据这些特征和属性对数据进 行分类,把特征和属性相同的数据归成同一类。 • 具体项目的识别:识别字符、图画某些其他、音乐 及周围事物的过程,分为视觉和听觉识别。 • 抽象项目的识别:不靠外界的感官刺激而识别一个 古老的论点或某个问题的解答。
软件教研室
医生诊病过程
c.特征:患者某些具有显著特征的化验数据及表征; 特征选择与提取:能表征(疾病)特异性的化验结果与表 征;
d.判决:医生运用知识、病例经验综合分析给出诊断; 判决准则/规则:医生的知识 判决结果:将患者明确(或以概率)确定为某一种病症(或 多种/并发病症)的患者(及病患严重程度)
模式识别
软件教研室
第一章 引言
• 模式识别基本概念 • 模式识别的发展 • 模式识别的方法 • 模式识别系统的基本原理 • 模式识别的基本问题
软件教研室
例子1:医生诊病过程
1)测量病人的体温和血压,化验血沉,询问临床表现; 2)通过综合分析,抓住主要病症; 3)医生运用自己的知识、经验,根据主要病症、测量化验结
软件教研室
模式识别的发展
• 1929年 G. Tauschek发明阅读机 ,能够阅读0-9的数字。 • 30年代 Fisher提出统计分类理论,奠定了统计模式识别的
基础。因此,在60~70年代,统计模式识别发展很快, 但由于被识别的模式愈来愈复杂,特征也愈多,就出现 “维数灾难”。随着计算机运算速度的迅猛发展,这个 问题得到一定克服。目前,统计模式识别仍是模式识别 的主要理论。 • 50年代 Noam Chemsky 提出形式语言理论,在此基础上, 美籍华人付京荪 提出句法结构模式识别。 • 60年代 L.A.Zadeh提出了模糊集理论,模糊模式识别理 论得到了较广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
第一章 引论
1.1 概述 1.2 特征矢量和特征空间 1.3 随机矢量的描述 1.4 正态分布
10
概念
模式识别(Pattern Recognition):确定一个 样本的类别属性(模式类)的过程,即把某一 样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。 如患者,某人写的一个汉字,一幅图片等。
长度、磁性及位置、反射亮度
分类识别:
确定纸币的面额及真伪
22
1.1 概述-系统实例
训练集:是一个已知样本集,在监督学习方法 中,用它来开发出模式分类器。
测试集:在设计识别和分类系统时没有用过的 独立样本集。
系统评价原则:为了更好地对模式识别系统性 能进行评价,必须使用一组独立于训练集的测 试集对系统进行测试。
3
★ 相关学科
●统计学 ●概率论 ●线性代数(矩阵计算)
●形式语言 ●人工智能 ●图像处理 ●计算机视觉
等等
4
★ 教学方法
●着重讲述模式识别的基本概念,基本 方法和算法原理。
●注重理论与实践紧密结合 实例教学:通过实例讲述如何将所学
知识运用到实际应用之中
●避免引用过多的、繁琐的数学推导
5
★ 教学目标
模式识别
主讲: 蔡宣平 教授 电话: 73441(O),73442(H) E-mail:xpcai@ 单位: 电子科学与工程学院信息工程系
1
关于本课程的有关说明
★ 课程对象 ★ 相关学科 ★ 教学方法 ★ 教学目标 ★ 基本要求 ★ 教材/参考文献
2
★ 课程对象
●信息工程专业本科生的专业课 ●学院硕士研究生的学位课 ●学院博士研究生的必修课之一
磁性 有 有 有 有 有
金属条位置(大约) 54/82 54/87 57/89 60/91 63/93
20
5元
反 射 光 波 形
10元
20元 50元 100元
1 2 3 4 5 6 7 8
1.1 概述-系统实例
数据采集、特征提取:
长度、宽度、磁性、磁性的位置,光反射亮度、光 透射亮度等等
特征选择:
23
例:汽车车牌识别
从摄像头获取包含车牌的彩色图象 车牌定位和获取 字符分割和识别
输入图象
特征提取
粗略定位
分割字符
确定类型
精细定位
识别、输出
7
★教材/参考文献
●孙即祥,现代模式识别,国防科技大学 出版社,2003年。
●吴逸飞译,模式识别-原理、方法及应 用,清华大学出版社,2003年。
●李晶皎等译,模式识别(第三版),电 子工业出版社,2006年。
8
讲授课程内容及安排
第一章 第二章 第三章 第四章 第五章 第六章 第七章
引论 聚类分析 判别域代数界面方程法 统计判决 学习、训练与错误率估计 最近邻方法 特征提取和选择 上机实习
分类 识别结果 识别
数通分预字常类处化在能识理—采描别这—集述是个比信对根环特息象据节流过的事的程元先内中素确容,很定很还多的广要,分泛去为类,除节规与所约则要获资对解取源前决信和面的息提选具 中高取体的处的问噪理特题声速征有,度进关增,行,强有分例有时类如用更(,的为即从信了识图息可别象等行)中工性。将作,汽。在车这满车种足牌使分的信类号息识码 纯别识化正别的确出处率来理要,过求就程的需叫条要做件先信下将息,车的按牌预某从处种图理准像。则中尽找量出选来用,对再 正对确车分牌类进识行别划作分用,较将大每的个特数征字。分使别得划用分较开少。的做特到 征这就一能步完以成后分,类才识能别对任每务个。数字进行识别。以上工 作都应该在预处理阶段完成。
分类识别
17
1.1 概述-系统实例
纸币识别器对纸币按面额进行分类
5元
面额
10元 20元
50元
100元
18
1.1 概述-系统实例
5元 10元 20元 50元 100元
长度(mm) 136 141 146 151 156
宽度(mm) 63 70 70 70 77
19
1.1 概述-系统实例
5元 10元 20元 50元 100元
15
1.二次特征 对象 特征提取 提取与选择
分类 识别结果 识别
训练 数据采集 样本 特征提取 人工 改进采集 干预 提取方法
二次特征提 改进分类 取与选择 识别规则
改进特征提 制定改进分 取与选择 类识别规则
正确率 测试
16
1.1 概述-模式识别系统
模式识别系统的主要环节: 特征提取: 符号表示,如长度、波形、。。。 特征选择: 选择有代表性的特征,能够正确分类 学习和训练:利用已知样本建立分类和识别规则 分类识别: 对所获得样本按建立的分类规则进行
●掌握模式识别的基本概念和方法 ●有效地运用所学知识和方法解决实际问题 ●为研究新的模式识别的理论和方法打下基础
6
★ 基本要求
●基本:完成课程学习,通过考试,获得学分。 ●提高:能够将所学知识和内容用于课题研究,
解决实际问题。 ●飞跃:通过模式识别的学习,改进思维方式,
为将来的工作打好基础,终身受益。
各类空间(Space)的概念
模 对象空间
式
识 模式空间 别
三 大
特征空间
任
务 类型空间
模式采集:从客观世界(对象 空间)到模式空间的过程称为 模式采集。 特征提取和特征选择:由模式 空间到特征空间的变换和选择。
类型判别:特征空间到类型空 间所作的操作。
14
1.1 概述-模式识别系统
待识 数据采集 二次特征 对象 特征提取 提取与选择
模式识别的例子
计算机自动诊断疾病:
1. 获取情况(信息采集) 测量体温、血压、心率、 血液化验、X光透射、B超、心电图、CT等尽可 能多的信息,并将这些信息数字化后输入电脑。 当然在实际应用中要考虑采集的成本,这就是 说特征要进行选择的。
2. 运行在电脑中的专家系统或专用程序可以分析 这些数据并进行分类,得出正常或不正常的判 断,不正常情况还要指出是什么问题。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
概念
特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一
个矢量
x
x
表示,称之为特征矢量,记为
(x1, x2,, xn )
模式类(Class):具有某些共同特性的模式 的集合。