初中数学函数知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学函数板块的知识点总结与归类学习方法
初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。 初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数
1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线
()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限
200k y x k y x ><⎧⎨⎪⎩⎪
()若直线::3111
222l y k x b l y k x b =+=+
当时,;当时,与交于,点。k k l l b b b l l b 121212120===//()
(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。 (5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:
应注意的问题:中()是不为的常数;()的指数一定为“”y k
x
k x =-1021 2. 图象及其性质: (1)形状:双曲线
()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x
==-⎧⎨⎪
⎩⎪
()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大
300k y x k y x ><⎧⎨⎪
⎩⎪
(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
3. 应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P F
S u S t
==
⎧
⎨⎪⎪⎪
⎩
⎪
⎪⎪
二、二次函数
1. 定义:应注意的问题
(1)在表达式y =ax 2+bx +c 中(a 、b 、c 为常数且a ≠0) (2)二次项指数一定为2 2. 图象:抛物线
3. 图象的性质:分五种情况可用表格来说明
4. 应用:
(1)最大面积;(2)最大利润;(3)其它
平面直角坐标系、函数及其图像
【知识梳理】
一、平面直角坐标系
1. 坐标平面上的点与有序实数对构成一一对应;
2. 各象限点的坐标的符号;
3. 坐标轴上的点的坐标特征.
4. 点P (a ,b )关于⎪⎩
⎪
⎨⎧原点
轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),()
,(b a b a b a
5.两点之间的距离
6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2
,2
210210y y y x x x +=+=
二、函数的概念
1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.
2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义
3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法 【思想方法】 数形结合
2121221
1P P )0()0()1(x x x P x P -=, , ,, 2
1
2
12
2
1
1
P P )0()0()2(y
y y P y P -=, ,,,
一次函数图象和性质
【知识梳理】
1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(k
b
-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质
【思想方法】 数形结合
反比例函数图象和性质
【知识梳理】
1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质
3.k 的几何含义:反比例函数y =k
x
(k≠0)中比例系数k 的几何意义,即过双曲线y =
k
x
(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB
k 、b 的符号
k >0,b >0
k >0,b <0
k <0,b >0
k <0,b <0
图像的大致位置
经过象限 第 象限 第 象限 第 象限 第 象限
性质
y 随x 的增大 而 y 随x 的增大而而 y 随x 的增大 而 y 随x 的增大
而
k 的符号
k >0 k <0 图像的大致位置
经过象限 第 象限 第 象限 性质
在每一象限内,y 随x 的增大而
在每一象限内,y 随x 的增大而
o
y x
y x
o