参数的区间估计

合集下载

总体参数的区间估计必须具备的三个要素

总体参数的区间估计必须具备的三个要素

一、概述总体参数的区间估计是统计学中一个重要的概念,在实际应用中具有广泛的应用。

区间估计的目的是利用样本数据对总体参数进行估计,以确定参数的取值范围。

在进行区间估计时,需要考虑三个重要的要素,以确保估计结果的准确性和可靠性。

二、总体参数的定义在统计学中,总体参数指的是对整个总体的某一特征进行描述的指标。

例如总体均值、总体比例等。

总体参数通常是未知的,需要通过样本数据来进行估计。

区间估计就是利用样本数据对总体参数进行估计,给出一个区间,以确定参数的取值范围。

三、区间估计的三个要素1. 置信水平置信水平是区间估计中非常重要的一个要素。

它指的是对总体参数估计的准确程度的度量,通常用1-α来表示,其中α称为显著性水平,通常取0.05或0.01。

置信水平越高,说明对总体参数的估计越可信。

在实际应用中,常用的置信水平为95或99。

2. 样本容量样本容量是另一个影响区间估计结果的重要要素。

样本容量的大小直接影响了估计结果的精确度。

通常来说,样本容量越大,估计结果越精确。

在进行区间估计时,一般需要根据置信水平和总体参数的方差来确定合适的样本容量。

3. 统计分布在进行区间估计时,需要考虑所使用的统计分布。

常用的统计分布包括正态分布、t分布、F分布等。

选择合适的统计分布对区间估计的结果具有重要影响。

通常在实际应用中,根据样本容量和总体参数的分布情况来选择合适的统计分布。

四、区间估计的计算方法区间估计的计算方法通常包括以下几个步骤:1. 确定置信水平,通常取95或99。

2. 根据置信水平和总体参数的分布情况,选择合适的统计分布。

3. 根据样本数据计算得到统计量的值。

比如样本均值、样本比例等。

4. 根据统计量的值,计算得到区间估计的上限和下限。

通常使用公式:点估计值±临界值×标准误差。

五、实际应用区间估计在实际应用中具有广泛的应用,比如医学研究、市场调研、经济预测等领域。

在这些领域中,通常需要对总体参数进行估计,以确定参数的取值范围。

7.8 两个正态总体参数的区间估计

7.8 两个正态总体参数的区间估计


2 1


2 2
)

1
nm
因此,均值差1−2的置信水平1−α的置信区间为
(( X Y ) z 2

2 1
n


2 2
m
,(X
Y
)
z
2

2 1


2 2
)
nm
两个正态总体参数的区间估计
2.均值差1−2的置信区间 (方差12 =22 = 2,但 2 未知情形)
易知 ( X Y ) (1 2 ) ( X Y ) (1 2 ) ~ N (0,1)
枢轴量 T X Y (1 2 ) ~ t(n m 2)
S 1 n 1 m
根据 t分布的性质,取分位数tα/2 (n+m−2) 有
P{|
X Y (1 2 )
S 1 n 1 m
|
t
2(n

m

2)}

1
因此,均值差1−2的置信水平1−α置信区间为
2
(2n)=
2 0.05
(18)=28.869,12
2 (2n)


2 0.95
(18)

9.39
计算得:2nX 1062 1/λ 的置信水平为0.90的置信区间为 ( 1062 , 1062) (36.787,113.099)
28.869 9.39
两个正态总体参数的区间估计
2
,

2 2
m
)
由正态分布的性质可得
X
Y
~
N (1

2
,

2 1

6.5参数的区间估计

6.5参数的区间估计
* n
附表3-2
查 t ( n 1) 分布表可知:
t0.025 (11) 3.201,
于是
s
* n
12.35 t1 /2 (n 1) 3.201 11.41, n 12
得的置信度为95%的置信区间(491.51, 514.33)
附加 4:设有一批胡椒粉,每袋净重 X(单位:克) 服从正态分布.从中任取8袋,测得净重分别为:
试求该批零件长度的置信度为 0.95 置信区间.

0.06
n6
经计算可得
x 14.95
查表得
u1 /2 u0.975 1.96, 故所求置信区间为
14.75, 15.15
从 x u1 /2 14.95 0.06 1.96 14.75 n 6 而
1 于是得 2 的一个置信度为 0.90的置信区间 2
2
0.34 0.34 1 , 2.38] [0.45, 2.79]. [ 0.29 2.59 0.29
又x 32.3, 0.4, n 20, 算得
x u1 /2
x u1 /2


0.4 32.3 1.96 32.12 n 20
32.3 1.96 0.4 32.48 20
n
所以的一个置信度为 %的置信区间为32.12,32.48) 95 (
解 已知 0 7, n 9, 0.05. 由样本值算得 1 x (115 120 110) 115. 9 查正态分布表得临界值 1.96,由此得置信区间:
(1151.96 7 / 9 , 1151.96 7 / 9 ) (110.43 , 119.57)

参数的区间估计

参数的区间估计

参数的区间估计1. 参数的概念参数是指一种描述总体特性的量,通常用符号表示。

以样本均值为例,我们通常用$\bar{x}$表示样本均值,用$\mu$表示总体均值,$\bar{x}$就是关于$\mu$的一个参数。

2. 区间估计的基本思想区间估计是通过样本的统计量来估计总体的参数,因为样本数据毕竟是有限的,所以估计值与真实值之间必然存在误差。

为了消除这种误差,我们采用确定一个区间的方法,即“置信区间”。

置信区间是指用样本数据计算出来的一个范围,其含义是真实的总体参数值有一定的置信水平(置信度)落在这个区间内。

①确定信赖水平(置信度)$1-\alpha$,$\alpha$称为显著性水平。

②根据样本均值选择合适的经验公式或理论公式来计算样本估计量的标准误差。

③根据置信度$1-\alpha$,查找$t$分布表或正态分布表,得到置信水平为$1-\alpha$的$t$值或$z$值。

④根据样本容量和总体方差是否已知,确定区间估计公式。

⑤根据置信度和样本数据计算出置信区间。

下面具体介绍区间估计的步骤:A. 确定总体所服从的概率分布总体可以服从正态分布、泊松分布、二项分布等概率分布,其中正态分布是最为常用的一种分布。

B. 确定样本容量$n$样本容量$n$的大小直接影响到置信区间的精度,当样本容量越大,置信区间的长度就越短。

一般观测数据越多,则样本容量越大。

C. 确定置信度$1-\alpha$置信度是指总体参数落在某一特定区间内的概率,一般取$95\%$或$99\%$。

D. 求出样本均值$\bar{x}$样本均值$\bar{x}$是样本中所有元素值的总和除以样本容量$n$,即$\bar{x}=\frac{\sum_{i=1}^nx_i}{n}$E. 求出样本方差$s^2$若总体标准差未知,用样本标准差$s$代替,$S(\bar{x})=\frac{s}{\sqrt{n}}$G. 选择合适的分布当总体服从正态分布,$\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$服从标准正态分布;当总体未知且样本容量$n$较小($n<30$),$\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$服从$t$分布。

第四章 参数的区间估计(Confidence Interval Estimation)

第四章 参数的区间估计(Confidence Interval Estimation)
总体总值95% 的置信区间为1,000,559.15, 到 1,152,220.85
Chap 4-34
PHStat用于解决此类问题

PHStat | confidence intervals | estimate for the population total Excel spreadsheet for the voucher example
第四章 参数的区间估计 (Confidence Interval Estimation)
阅读教材:第7章
Chap 4-1
本章概要



估计的步骤(Estimation process) 点估计(Point estimates) 区间估计(Interval estimates) 均值的置信区间( 已知) 样本容量的确定(Determining sample size) 均值的置信区间 ( 未知) 比例的置信区间

n
) 1
Chap 4-9
区间估计的要素

置信度

区间内包含未知总体参数的确定程度 与未知参数的接近程度 获得容量为 n 的样本所需付出的代价

精度


成本

Chap 4-10
置信度

以 100 1 %表示,如:90%,95%,99% 相对频率意义上的解释

从长期来看, 所构建的所有置信区间中,100 1 % 的置信区间都将含有未知参数,即未知参数落入区间的 概率;
n
( z 2 ) (1 )
2
E2
其中: E z 2
(1 )
n
2. 3.
E的取值一般小于0.1 (=p) 未知时,可取最大值0.5

参数估计的三种方法

参数估计的三种方法

参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。

常用的参数估计方法包括点估计、区间估计和最大似然估计。

点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。

其中最简单的点估计方法是样本均值估计。

假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。

根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。

因此,我们可以用样本的平均值作为总体均值的点估计。

另一个常用的点估计方法是极大似然估计。

极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。

具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。

极大似然估计即求解使得似然函数取得最大值的θ值。

举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。

那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。

我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。

与点估计相比,区间估计提供了一个更加全面的参数估计结果。

区间估计指的是通过样本数据推断总体参数的一个区间范围。

常用的区间估计方法包括置信区间和预测区间。

置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。

置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。

置信区间的计算方法根据不同的总体分布和参数类型而异。

举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。

预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。

参数的区间估计

参数的区间估计
量, 使得
P{ ( X1, X 2 ,..., X n ) ( X1, X 2 ,..., X n )} 1 则称区间( , )为参数的置信度为1 的置信区 间,和分别称为置信度为1 的置信下限和 置信上限, 称为置信水平.
参数的区间估计的意义可以解释为:随机 区间[( X1, X 2,...,X n ),( X1, X 2,...,X n )]包含参数 的真值的概率为1 ,因此若认为"区间[,]包 含着参数的真值",则犯错误的概率为.
从而
x
s n
t
/
2
(n
1)
12.15
0.04 0.4995 11.90 8
x
s n
t
/
2
(n
1)
12.15
0.04 0.4995 12.40 8
所以μ的置信度为0.99置信区间是 11.90, 12.40
例5.初生婴儿的体重X近似服从正态分布 N( , 2 )
从某地区随机抽取12名新生儿,测得 x 3056.67 克, S 359.36克,求平均体重u的置信度为95%的置信区间.
第三节 参数的区间估计
正态总体均值μ的区间估计 正态总体方差的区间估计 两个正态总体均值差的区间估计 两个正态总体方差之比的区间估计
• 定义 : 设总体X 具有概率函数p(x, ), 为未知
参数, ( X1, X 2 ,..., X n )为取自这个总体X的一个样
本,若对于事先给定的 , 0 1, 存在两个统计
由于这时
2
(n 1)S 2
2
~
2 (n 1)
对于给定的置信度1 ,查 2分布表得两个分位点
2 / 2 (n 1)和12 / 2 (n 1),使得 P{12 / 2 (n 1) 2 2 / 2 (n 1)} 1

第二章 参数估计2-3 区间估计

第二章  参数估计2-3 区间估计

I=0.814
上页 下页 返回
钢厂铁水含碳量X 例3. 钢厂铁水含碳量 ~ N(µ,0.1082), 现在随机测定 该厂9炉铁水得 炉铁水得X=4.484,求在置信度为 求在置信度为0.95 的条件 该厂 炉铁水得 求在置信度为 下铁水平均含碳量的置信区间。 下铁水平均含碳量的置信区间。 解
置信区间为
上页
下页
返回
联合方差
上页
下页
返回
1、 µ1 - µ2的1-α置信区间 、 α (1)、 σ12 、σ22已知 、
由于 X −Y ~ N(µ1 − µ2 ,
选取
2 2 σ1 σ2
n1
+
n2
)
因此置信度为1-α 因此置信度为 α的µ1 - µ2置信区间可为
上页
下页
返回
(2)、σ12 、σ22未知,且n1,n2较大 如大于 、 未知, 较大(如大于 如大于50)
=27.5, ,
=6.26, ,
上页
下页
返回
测量一批铅锭的比重,设铅锭的比重X 例6. 测量一批铅锭的比重,设铅锭的比重 ~ N(µ, 现进行16次检测得铅锭的比重有 σ2),现进行 次检测得铅锭的比重有 现进行 次检测得铅锭的比重有X=2.705, , S2=0.0292,试求总体 的均值µ和方差 σ2置信度为 求总体X的均值 0.95 的置信区间。 的置信区间。 解 (1)求µ的置信区间 σ2未知 n=16,α=0.05. 求 的置信区间, 未知, α 选取 查表得 置信区间为
(二)、总体X数学期望 (二)、总体X数学期望µ未知 数学期望µ 样本X 的无偏估计. 样本 1,X2, • • • , Xn, 且S2是σ2的无偏估计
选取样本函数

参数估计-区间估计

参数估计-区间估计

2 σ 12 σ 2
25 36 + = + = 5.5 ≈ 2.345 m n 10 12
从而由(2-43)式得 µ1 − µ 2 的置信度为 0.90 的置 信区间是
(19.8 − 24.0 ± 1.645 × 2.345) = ( −8.06, − 0.34)
2 (2)σ 12 = σ 2 = σ 2 ,但σ 2 未知,可构造样本函数
解:依题意取样本函数 T =
X −µ S
2
~ t ( n − 1)
对于给定的α =0.05,由
n
0.05 = 0.025 P{T > λ} = α / 2 = 2 又 n = 15 ,经计算 查 t (14) 分布表,求得 λ =2.145。
1 15 X = ∑ xi = 425.047 15 i =1
时);随机抽取 B 型号的灯泡 7 只,测得平均寿 命为 X B = 980(小时) , 标准离差为 S B = 32(小
时)。设两总体都服从正态分布,并且由生产 过程知,它们的方差相等,求两正态总体均值 差 µ A − µ B 的 0.99 的置信区间。
解:取样本函数 X − Y − ( µ1 − µ 2 ) T= ~ t ( m + n − 2) 1 1 + Sw m n 又由 1 − α = 0.99 , 得 α = 0.01, 查 m + n − 2 = 10, 表得 λ = 3.1693 ,经计算 2 2 ( m − 1 ) S + ( n − 1 ) S 2 A B SW = = 928 m+n−2
信区间是 15 .06 + 0.18) = (14 .88, 15 .24 ) ( 15 .06 − 0.18,

应用数理统计第二章参数估计(3)区间估计

应用数理统计第二章参数估计(3)区间估计

例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n

正态总体参数的区间估计

正态总体参数的区间估计

总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。

参数的点估计与区间估计

参数的点估计与区间估计
i1
d
ln d
L
n i1
xi
1

n 0 ,
1 n
n i1
xi
x.
有时用求导方法无法最终确定未知参数的 极大似然估计, 此时用极大似然原则来求 .
例: 设总体 X ~ U [a, b] , ( x1 , x2 ,…, xn ) 为一样本值,
求 a, b 的极大似然估计.
解:
X 的概率密度
1(ba), axb,
P{Xk}CrkCCN SN Skr , 0kmiSn ,r)(
把上式右端看作 N 的函数,记作 L(N; k) .
应取使 L(N; k) 达到最大的N, 作为 N 的极大似然估计.
但用对 N 求导的方法相当困难, 我们考虑比值:
L( N ; k ) (NS)(Nr) L( N 1; k ) N(NrSk)
n
近似为 f (xi;)dxi , 其取值随 而变;
i1
既然在一次抽样中就得到了样本值(x1 , x2 , …, xn) , 因而我们有理由认为: 样本 ( X1 , X2 , …, Xn ) 在 ( x1 , x2 , …, xn ) 旁边取值的概率比较大;
根据“概率最大的事件最可能发生”,我们可取
参数估计又分点估计与区间估计.
§1 参数的点估计
设总体 X 的分布中含未知参数 ,
( X1 , X2 , …, Xn ) 是一样本, 要构造一统计量
(X1,,
Xn)作为
的估计
(
叫做
的点估计量);
对应样本值( x1 , x2 , …, xn ), (x1,, xn) 可作为
的估计值,叫做 的点估计值.
则称( 1 , 2 )是 的置信度(置信水平, 置信概率)为

双正态总体参数的区间估计

双正态总体参数的区间估计

双正态总体参数的区间估计双正态总体是指一个总体服从正态分布,且这两个分布的均值和方差都相等。

在双正态总体中,我们常常需要估计总体参数的区间估计,即估计参数的真实值落在哪个区间内。

对于双正态总体的均值μ,我们可以使用Z分数进行区间估计。

假设我们想要在95%的置信水平下估计μ的区间为(a,b),则有:P(μ-a < X < μ+b) = 0.95其中,X是从双正态总体中抽取的样本,a和b是未知的参数。

为了解决这个问题,我们可以利用双正态总体的对称性质,即在均值μ两侧的概率相等。

因此,我们可以使用Z分数的对称性质,得到:P(μ-a < X < μ+b) = 0.975这意味着,在95%的置信水平下,μ的区间为(a,b)的概率为0.975,也就是说,μ的真实值落在这个区间内的概率为0.975。

对于双正态总体的方差σ^2,同样可以使用Z分数进行区间估计。

假设我们想要在95%的置信水平下估计σ^2的区间为(d,e),则有:P(σ2-d < X2 <σ2+e) = 0.95其中,X2是从双正态总体中抽取的样本的方差,d和e 是未知的参数。

同样,我们可以利用双正态总体的对称性质,得到:P(σ2-d < X2 < σ2+e) = 0.975因此,在95%的置信水平下,σ2的区间为(d,e)的概率为0.975,也就是说,σ2的真实值落在这个区间内的概率为0.975。

需要注意的是,对于双正态总体的均值和方差的区间估计,我们需要先确定置信水平和区间长度。

一般来说,置信水平为95%是比较常见的选择,区间长度一般为2倍标准误差。

具体的参数和区间长度需要根据实际情况进行调整。

参数的区间估计三

参数的区间估计三

缺点
依赖于样本数据
区间估计的结果依赖于样本数据, 因此可能会受到样本波动的影响。
可能存在误导
如果样本量较小或者数据分布不 符合假设条件,那么置信区间可 能会产生误导,使得人们对参数 真值的范围产生错误的判断。
计算相对复杂
相比于点估计,区间估计的计算 相对复杂,需要更多的计算资源 和时间。
与其他方法的比较
选择
在实际应用中,通常会根据问题的具体要求和研究者的经 验来选择合适的置信水平,常用的置信水平有90%、95% 和99%等。
区间宽度
01
定义
区间宽度是指置信区间的上限与下限之差。
02
重要性
区间宽度反映了区间估计的精确程度,宽度越窄,说明估计的精度越高。
03
影响因素
样本量、总体分布、置信水平等因素都会影响区间宽度。在样本量一定
04
区间估计的优缺点
优点
提供了参数估计的范围
区间估计给出了参数的一个置信区间,这个区间包含了参数真值 的一个范围,从而提供了比点估计更多的信息。
置信水平可调整
通过调整置信水平,可以得到不同宽度的置信区间,以适应不同的 需求。
反映了估计的不确定性
置信区间反映了估计的不确定性,即参数真值落在某个范围内的概 率。
的情况下,置信水平越高,区间宽度越宽;总体分布越离散,区间宽度
也越宽。
无偏性
定义
无偏性是指对于总体参数的估计量,其期望值等于总体参数的真值。
重要性
无偏性是评价估计量优良性的一个重要标准,它保证了在多次重复抽样下,估计量的平均 值能够接近总体参数的真值。
检验方法
通常通过计算估计量的偏差(即估计量的期望值与总体参数真值之差)来判断其是否具有 无偏性。如果偏差为零,则该估计量是无偏的。

参数区间估计

参数区间估计
查正态分布表得 u 2 ,
使 P{|Xn|u2}1
从中解得
P { X n u 2 X n u 2 } 1
P{Xnu2Xnu2} 1
于是所求的 置信区间为
[X nu2, X nu2]
也可简记为
X
n u 2
从例1解题的过程,我们归纳出求置 信区间的一般步骤如下:
1. 明确问题, 是求什么参数的置信区间?
类似地,我们可得到若干个不同的置信
区间.
任意两个数a和b,只要它们的纵标包含
f(u)下95%的面积,就确定一个95%的置信
区间.
a a
a
f (u)
0.95
bu
0.95
b
u
0.95
0
b
u
我们总是希望置信区间尽可能短.
在概率密度为单峰且对称的情形,当a =-b时 求得的置信区间的长度为最短.
a a
a
很小的正数.
置信水平的大小是根据实际需要选定的.
例如,通常可取置信水平1 =0.95或0.9等.
根据一个实际样本,由给定的置信水平,我
们求出一个尽可能小的区间 [ˆ1,ˆ2],使
P {ˆ1ˆ2}1
称区间 [ˆ1,ˆ2]为 的 置信水平为1 的
置信区间.
在求置信区间时,要查表求分位数.
教材已经给出了概率分布的上侧分位数(分 位点)的定义,为便于应用,这里我们再简 要介绍一下.
这里,我们主要讨论总体分布为正态 的情形. 若样本容量很大,即使总体分布 未知,应用中心极限定理,可得总体的近 似分布,于是也可以近似求得参数的区间 估计.
教材上讨论了以下几种情形:
单个正态总体均值和方差 2的区间估计.
两个正态总体均值差 1 2和方差比

第4节正态总体参数的区间估计

第4节正态总体参数的区间估计
点估计是用一个点(即一个数)去估计未知参数, 而区间估计,就是用一个区间去估计未知参数.
3
, 给定 ,0 1 , 定义 设是总体的一个未知参数
确定两个统计量
ˆ , ˆ 分别称为置信下限和置信上限. 区间. 1 2
ˆ , ˆ ]为 的 置信水平为 1 的 置信 则称区间 [ 1 2
1.75 1.96 1.96 0.49, n 50
所以 的置信区间为
(4.10 0.49, 4.10 0.49 ) (3.61, 4.59 ) .
10
例3 在上例中 , 为使 的置信水平是 0.95 的置信区间
的长度 L 1.5, 求样本容量 .
, u0.025 1.96, 1.75, 解 0.05
u / 2
x
X | | u / 2 X u / 2 X u / 2 / n n n
于是所求 的置信区间为 ( X u 有时简记为 ( X u / 2
2

n
, X u 2 ), n n
7
).
2 某厂生产滚珠,直径 X 服从正态分布 N ( , ). 例1 为了估计 , 抽检 6 个滚珠, 测得直径为 ( mm) : 14.70, 15.21,14.90,14.91,15.32,15.32,
对给定的置信水平 1 ,
按标准正态分布的 水平双侧分位数的定义,
查正态分布表得 u 2 ,
6
1.
已知时 的置信区间
2
/2
( x)
X U ~ N (0,1) , / n
1
O
/2
X P{ | | u 2 } 1 , n

2参数的区间估计实验报告

2参数的区间估计实验报告

参数的区间估计实验报告姓名: 班级: 学号(后3位):2016年12 月06 日00:00至24:00提交到邮箱:longsheng63@一.实验名称:参数的区间估计 二.实验性质:综合性实验 三.实验目的及要求:1.了解【活动表】的编制方法;2.掌握【单个正态总体均值Z 估计活动表】的使用方法. 3.掌握【单个正态总体均值t 估计活动表】的使用方法. 4.掌握【单个正态总体方差卡方估计活动表】的使用方法. 5.掌握【两个正态总体均值Z 估计活动表】的使用方法. 6.掌握【两个正态总体均值t 估计活动表】的使用方法. 7.掌握【两个正态总体方差卡方估计活动表】的使用方法. 8.掌握单个正态总体和两个正态总体参数的区间估计方法. 四.实验内容、实验操作关键步骤及实验主要结果1.某厂生产的化纤强度2~(,0.85)X N μ,现抽取一个容量为25n =的样本,测定其强度,得样本均值 2.25x =,试求这批化纤平均强度的置信水平为0.95的置信区间. 实验操作关键步骤及实验主要结果由于应选用样本函数 TINV 、SQRT 求μ的置信区间,所以,要选用【 单个正态总体均值t 估计活动表】,得到如下表的实验结果.因此,这批化纤平均强度的置信水平为0.95的置信区间为 (1.899137245,2.600862755) .单个正态总体均值t 估计活动表 置信水平 0.95 样本容量 25 样本均值 2.25 样本标准差 0.85标准误差 0.17t 分位数(单) 1.71088208 t 分位数(双) 2.063898562单侧置信下限 1.959150046 单侧置信上限 2.540849954 区间估计估计下限 1.899137245 估计上限2.6008627552.已知某种材料的抗压强度2~(,)X N μσ,现随机抽取10个试件进行抗压试验,测得数据如下:482,493,457,471,510,446,435,418,394,469.(1)求平均抗压强度μ的置信水平为0.95的置信区间. (2)求2σ的置信水平为0.95的置信区间. 实验操作关键步骤及实验主要结果(1)由于应选用样本函数 TINV 、SQRT 求μ的置信区间,所以,要选用【 单个正态总体均值t 估计活动表】,得到如下表的实验结果.因此,平均抗压强度μ的置信水平为0.95的置信区间为 (432.3068626,482.6931374) .单个正态总体均值t 估计活动表 抗压强度 抗压强度 482 置信水平 0.95 493 平均 457.5 样本容量 10 457 标准差 35.21757768样本均值 457.5 471 方差 1240.27777 样本标准差 35.21757768 510446 标准误差11.13677591435 t 分位数(单) 1.833112933 418 t 分位数(双) 2.262157163 394469 单侧置信下限 437.085032 单侧置信上限 477.914968 区间估计估计下限 432.3068626 估计上限482.6931374(2)由于应选用样本函数 CHIINV 求2σ的置信区间,所以,要选用【 单个正态总体方差卡方 估计活动表】,得到如下表的实验结果.因此,2σ的置信水平为0.95的置信区间为 (586.7969434,4133.663681) .单个正态方差卡方估计活动表 抗压强度 抗压强度 482 置信水平 0.95 493 平均 457.5 样本容量 10 457 标准差 35.21757768 样本均值 457.5 471 方差 1240.27777 样本方差 1240.278 510446 卡方下分位数(单) 3.325112843 435 卡方上分位数(单) 16.9189776 418 卡方下分位数(双) 2.7003895 394 卡方上分位数(双) 19.0227678 469单侧置信下限 659.7622067 单侧置信上限 3357.029529 区间估计估计下限 586.7969434 估计上限 4133.6636813.用一个仪表测量某一物理量9次,得样本均值56.32x =,样本标准差0.22s =. (1)测量标准差σ的大小反映了仪表的精度,试求σ的置信水平为0.95的置信区间. (2)求该物理量真值的置信水平为0.99的置信区间. 实验操作关键步骤及实验主要结果(1)由于应选用样本函数 CHIINV 求σ的置信区间,所以,要选用【 单个正态标准差卡方 估计活动表】,得到如下表的实验结果.因此,σ的置信水平为0.95的置信区间为 (0.100373285,0.807439177) .单个正态标准差卡方估计活动表 置信水平 0.95 样本容量 9 样本均值 56.32 样本标准差0.22卡方下分位数(单) 2.732636793 卡方上分位数(单) 15.50731306 卡方下分位数(双) 2.179730747 卡方上分位数(双) 17.53454614单侧置信下限 0.113494839 单侧置信上限 0.644066568 区间估计估计下限 0.100373285 估计上限0.807439177(2)由于应选用样本函数 TINV 、SQRT 求μ的置信区间,所以,要选用【 单个正态总体均值t 估计活动表】,得到如下表的实验结果.因此,该物理量真值的置信水平为0.99的置信区间为 (56.07393826,56.56606174) .单个正态总体均值t 估计活动表 置信水平 0.99 样本容量 9 样本均值 56.32 样本标准差 0.22标准误差 0.073333333 t 分位数(单) 2.896459448t 分位数(双) 3.355387331单侧置信下限 56.10759297 单侧置信上限 56.53240703 区间估计估计下限 56.07393826 估计上限56.566061744.设从总体211~(,)X N μσ和总体222~(,)Y N μσ中分别抽取容量为110n =,215n =的独立样本,经计算得82x =,256.5x s =,76y =,252.4ys =. (1)若已知2164σ=,2249σ=,求12μμ-的置信水平为0.95的置信区间. (2)若已知2212σσ=,求12μμ-的置信水平为0.95的置信区间.(3)求2122σσ的置信水平为0.95的置信区间.实验操作关键步骤及实验主要结果(1)由于应选用样本函数 NORMSINV 、SQRT 求12μμ-的置信区间,所以,要选用【 两个正态总体均值差Z 估计活动表】,得到如下表的实验结果.因此,12μμ-的置信水平为0.95的置信区间为 (-0.093775671,12.09377567) .两个正态总体均值差Z 估计活动表 置信水平 0.95 样本1容量 10 样本1均值 82 总体1方差 64样本2容量 15 样本2均值 76 总体2方差 49标准误差 3.109126351 Z 分位数(单) 1.644853627Z 分位数(双) 1.959963985单侧置信下限 0.885942245 单侧置信上限 11.11405776 区间估计估计下限 -0.093775671 估计上限12.09377567(2)由于应选用样本函数 TINV 、SQRT 求12μμ-的置信区间,所以,要选用【 两个正态总体均值差t 估计活动表】,得到如下表的实验结果.因此,12μμ-的置信水平为0.95的置信区间为 (-0.206222664,12.20622266) .两个正态总体均值差t估计活动表置信水平0.95样本1容量10样本1均值82样本1方差56.5样本2容量15样本2均值76样本2方差52.4总方差54.00434783t分位数(单) 1.713871528t分位数(双) 2.06865761单侧置信下限0.858178432单侧置信上限11.14182157区间估计估计下限-0.206222664估计上限12.20622266(3)由于应选用样本函数 FINV 求2122σσ的置信区间,所以,要选用【两个正态总体方差比F 估计活动表】,得到如下表的实验结果.因此,2122σσ的置信水平为0.95的置信区间为(0.335974873,4.09512052).两个正态总体均方差比F估计活动表置信区间0.95样本1容量10样本1方差56.5样本2容量15样本2方差52.4F下分位数(单) 2.645790735F上分位数(单)0.33052686F下分位数(双) 3.209300341F 上分位数(双) 0.263299766单侧置信下限 0.407531956 单侧置信上限 3.262198644 区间估计估计下限 0.335974873 估计上限4.095120525.设滚珠直径服从正态分布,现从甲、乙两台机床生产同一型号的滚珠中,分别抽取8个和9个样品,测得其直径(单位:mm )如下:(1)求2122σσ的置信水平为0.95的置信区间.(2)若已知2212σσ=,求12μμ-的置信水平为0.95的置信区间.实验操作关键步骤及实验主要结果(1)由于应选用样本函数 FINV 求2122σσ的置信区间,所以,要选用【 两个正态总体方差比F 估计活动表】,得到如下表的实验结果.因此,2122σσ的置信水平为0.95的置信区间为 (0.807941784,17.925779) .两个正态总体均方差比F 估计活动表 甲台 乙台 15 15.2 置信区间 0.95 14.5 15 样本1容量 815.2 14.8 样本1方差 0.09553571 15.5 15.214.8 15 样本2容量 915.1 15 样本2方差 0.02611111 15.2 14.814.8 15.1 F 下分位数(单) 3.500463855 14.8 F 上分位数(单) 0.268404113 F 下分位数(双) 4.528562147 甲台 乙台 F 上分位数(双) 0.204109098平均 15.0125 平均 14.98888889 单侧置信下限 1.045237069 标准差 0.309088522 标准差 0.161589329 单侧置信上限 13.63173812 方差 0.09553571 方差 0.02611111 区间估计估计下限 0.807941784 估计上限17.925779(2)由于应选用样本函数 TINV 求12μμ-的置信区间,所以,要选用【 两个正态总体均值差t 估计活动表】,得到如下表的实验结果.因此,12μμ-的置信水平为0.95的置信区间为 (-0.226910711,0.274132931) .两个正态总体均值差t 估计活动表 甲台 乙台 15 15.2 置信水平 0.95 14.5 15 样本1容量 8 15.2 14.8 样本1均值 15.0125 15.5 15.2 样本1方差 0.09553571 14.8 1515.1 15 样本2容量 915.2 14.8 样本2均值 14.98888889 14.8 15.1 样本2方差 0.02611111 14.8总方差0.058509257甲台 乙台 t 分位数(单) 1.753050356t 分位数(双) 2.131449546 平均 15.0125平均14.98888889标准差 0.309088522 标准差 0.161589329 单侧置信下限 -0.182435225 方差 0.09553571 方差 0.02611111 单侧置信上限 0.229657445 区间估计估计下限 -0.226910711 估计上限0.274132931。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ ˆ ( X , X ,, X ) 和 ˆ ˆ ( X , X ,, X ) ,使 1 1 1 2 n 2 2 1 2 n ˆ ˆ } 1 P{
1 2
ˆ, ˆ )是 的置信区间, 称 ˆ和 ˆ 分别为置信下限和置信上限, 则称( 1 2 1 2 称 1 为置信度(或置信水平) .
设 X 1 , X 2 , , X n 是来自总体 X ~ N ( , 2 )的样本, X , S 2 分别 是样本均值和样本方差. 则由7.3节的抽样分布知
( 2已知) U估计法
U X

2
/ n
~ N (0,1)

2
故对于给定的置信度1- , 有
P{| U | u / 2 } 1
T U
得 的置信度为 1 的置信区间为
1.96 , S 12.50 t0.025 将 0.05, n=12, x 502.92, t u u0(11) 2.201 / 2/ 2 .025
代入可得的置信度为 0.95的置信区间为 (497.26, 508.58)
S u ,X Su X X t t / /2 2 //22 n n n n
附表 3 附表 4
X X ~ ( n(0,1) 1) ~t N S // n n
(502.92 7.94)
概率统计(ZYH)
例2 从某批灯泡中抽取5只做寿命试验,其寿命 (单位:小 时)为 1050, 1100, 1120, 1250, 1280 . 设寿命服从正态分布,求
概率统计(ZYH)
例1 包糖机某日开工包了12包糖,称得重量 (单位:克) 分 别为 506,500,495,488,504,486,505,513,521,520,512,485 . 假设
重量X 服从正态分布且标准差为 10, 试求糖包的平均重量
的置信度为0.95的置信区间. 解 因为 10已知, 故用U 估计法,由
2 /2
/ n
~ N (0,1)
U u U u
| T | t / 2
T法
( 2未知)
(单侧) T (单侧)
(双侧)
2
X S/ n
~ t ( n 1)
T t T t

2
2 1 / 2
ห้องสมุดไป่ตู้

2
(n 1) S 2 ( n 1) S 2 ( , ) 2 2
U X
/ n
~ N (0,1)
得 的置信度为 1 的置信区间为
X u / 2 , X u / 2 n n
附表3
将 0.05, n=12, x 502.92, u / 2 u0.025 1.96
代入可得的置信度为 0.95的置信区间为 (497.26, 508.58)
其均值 的置信度为0.95的置信下限.
解 因为 未知 , 故用T 估计法,由
T X S/ n ~ t ( n 1)
附表4
得 的置信度为 1 的单侧置信下限为 X
S n
t
将 0.05, n 5, x 1160, S 99.75,t t0.05 (4) 2.132
P{U u } 1
P X u 1 n
即 P X


u / 2 X u / 2 1 n n
这样, 我们就获得了 的一个置信度为 1 的置信区间 X u / 2 , X u / 2 X u , n n n
概率统计(ZYH)
一个正态总体参数的区间估计表(置信度为 1 )
估计法 待估参数
(双侧)
( 2已知)
抽样分布
G ( P (G ) 1 - )
| U | u / 2
置信区间
U 法 (单侧)
(单侧) (双侧)
U
X
(X u / 2 / n ) (X u / n ,+) ( , X u / n ) (X S t / 2 / n ) (X St / n ,+) ( , X St / n )
例1续 包糖机某日开工包了12包糖,称得重量 (单位:克) 分 别为 506,500,495,488,504,486,505,513,521,520,512,485 . 假设
重量X服从正态分布且标准差为 10, 试求糖包的平均重量
的置信度为0.95的置信区间. 10已知 , 故用 U 估计法,由 , 故用 T 解 因为 未已知
8.3 参数的区间估计
一、一个正态总体参数的区间估计 二、非正态总体均值的区间估计 三、两个正态总体参数的区间估计 四、非正态总体均值差的区间估计
概率统计(ZYH)
区间估计的定义
设 X 是以 为未知参数的总体, X1 , X 2 ,, X n 是来自总体的 样本, 如果对于小概率 (一般取 为0.1, 0.05 等), 存在统计量
区间估计的本质含义:
ˆ , ˆ )(随机区间)包含 以置信度 1 保证所求的置信区间( 1 2 真值 (非随机数)这时 , , 置信度 1 反映了区间估计的可靠性, 而 ˆ- ˆ 则反映了区间估计的精度. 置信区间的长度
2 1
概率统计(ZYH)
一、一个正态总体参数的区间估计
2 法 2 (单侧) 2 (n 1) S ~ 2 (n 1) 2

/ 2
1 / 2
0 2 2
2 ( ( n 1) S 2 / , )
2 (单侧)
概率统计(ZYH)
2 12
(0, ( n 1) S 2 / 12 )
相关文档
最新文档