排列组合的意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、排列组合定义
1、什么是C
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
例如:编号1~3的盒子,我们找出2个来使用,这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。即C(3,2)=3
2、什么是P或A
公式P是指排列,从N个元素取R个进行排列(即排序)。
例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P(2,2),就构成了C(3,2)×P(2,2)=A(3,2)
3、A和C的关系
事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。
4、计算方式以及技巧要求
组合:C(M,N)=M!÷(N!×(M-N)!)条件:N<=M
排列:A(M,N)=M!÷(M-N)!条件:N<=M
为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘,当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。如果不大。我们可以求C(M,[M-N]),因为C(M,N)=C(M,[M-N])
二、排列组合常见的恒等公式
1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n
2、C(m,n)+C(m,n+1)=C(m+1,n+1)
针对这2组公式我来举例运用
(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法?
解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512
(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法之和为70,求,甲挑选了多少副参加展览?
C(8,n)=70 n=4 即得到甲选出了4副。
三、排列组合的基本理论精要部分(分类和分步)
(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。排列组合当中,当我们要求某一个事件发成的可能性种类,我们可以将这个事件分成若干个小事件来看待。化整为零,
例如:7个人排座位,其中甲乙都只能坐在边上。问有几种方法。根据分类的方法。我们可以看,
第一类情况:甲坐在左边,乙坐在右边,其他人随便坐,A(5,5)
第二类情况:甲坐在右边,乙坐在左边,其他人随便坐,A(5,5)
我们分别计算出2种情况进而求和即得到答案。这就是分类原则。这样就是A(5,5)+A(5,5)=240
(2)、乘法原理(实质上就是一种分步原则):做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
例如:7个人排座位,其中甲乙都只能坐在边上。问有几种方法,按照分步原则,
第一步:我们先对甲乙之外的5个人先排序座位,把两端的座位空下来,A(5,5)
第二步:我们再排甲乙,A(2,2)
这样就是A(5,5)×A(2,2)=240
如何区分两个原理:
我们知道分类原则也就是加法原则,每一个分类之间没有联系,都是可以单独运算,单独成题的,也就是说,这一类情况的方法是独立的,所以我们采用了加法原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;
我们知道分步原则也就是乘法原则。做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.说明其每一个步骤之间都是有必然联系的。是相互依靠的关系。所以采用了乘法原则。
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来
(3)特殊优先,一般次要的原则
例题:
(1)从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有___个。
第一步构建排列组合的定义模式,如果把数学逻辑转换的问题。
(2)在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。
第一类:A在第一垄,B有3种选择;
第二类:A在第二垄,B有2种选择;
第三类:A在第三垄,B有一种选择,
同理A、B位置互换,共12种。
(3)从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。
(A)240 (B)180 (C)120 (D)60
分析:显然本题应分步解决。
(一)从6双中选出一双同色的手套,有C(6,1)种方法;
(二)从剩下的5双手套中任选2双,有C(5,2)种方法。
(三)这2双可以任意取出其中每双中的1只,保证各不成双;
即C(6,1)*C(5,2)*2^2=240
(4)身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。
分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)×C(4,2)×C(2,2)=90种。
四、解决排列组合问题的策略
1、逆向思维法:我们知道排列组合都是对一个元素集合进行筛选排序。我们可以把这个集合看成数学上的单位1,那么1=a+b 就是我们构建逆向思维的数学模型了,当a不利于我们运算求解的时候,我们不妨从b的角度出发思考,这样同样可以求出a=1-b。
例题:7个人排座,甲坐在乙的左边(不一定相邻)的情况有多少种?
例题:一个正方体有8个顶点我们任意选出4个,有多少种情况是这4个点可以构成四面体的。
例题:用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有()A.24个B.30个C.40个D.60个
2、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略:
(1)无关型:两个特殊位置上分别可取的元素所组成的集合的交是空集