总线的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总线的概念
所谓总线,就是单片机连接扩展器件的一组公共信号线,按其功能通常把这些总线分为三组,即地址总线、数据总线和控制总线。每组总线由若干条导线组成,具体数目根据功能决定,一般地址总线的数量最多,数据总线固定为8根。
1 . 地址总线(Address Bus,简称AB)
地址总线用于传送单片机发出的地址信号,以便对号入座地对ROM、RAM 及I/O口进行选择,以选中相应的单元(字节),然后才能对它进行操作。地址总线的传输是单向的,即只能由单片机向外发出地址信号。地址总线数目决定着可以直接访问的存储单元的数目,例如10条地址线组成的地址总线,可以访问1K的外部ROM和RAM存储单元,每增加一条线,可访问空间翻一番。MCS-51系列单片机最多可以构造16条地址线,也就访问64K的存储空间,对于单片机来说,64K将是一个很大的数目了。
2 . 数据总线(Data Bus,简称DB)
数据总线是用于单片机与外部存储器之间或单片机与外部I/O口之间进行数据传送的一组信号线,单片机系统数据总线的数目,与单片机字长是一致的,都是8位,所以数据总线也就是8条。数据总线是双向的,既可以由单片机向外部输出数据,也可以由外部向单片机输入数据。
3 . 控制总线(Control Bus,简称CB)
控制总线是单片机发出的一组控制命令信号线,是单片机决定对外部器件作什么操作的命令线。一般说来,控制总线是单向的,是单片机向外部发出的。
总线结构是计算机的主要结构之一,采用了总线结构的形式,大为降低了计算机的复杂程度,提高了计算机的可靠性,增加了系统的灵活性,使的系统规范化,方便了系统其他部件的接入,使扩展变得更加容易。
总线的概念
总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。
总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。
工作原理
当总线空闲(其他器件都以高阻态形式连接在总线上)且一个器件要与目的器件通信时,发起通信的器件驱动总线,发出地址和数据。其他以高阻态形式连接在总线上的器件如果收到(或能够收到)与自己相符的地址信息后,即接收总线上的数据。发送器件完成通信,将总线让出(输出变为高阻态)。
总线的分类
总线按功能和规范可分为三大类型:[1]
(1) 片总线(Chip Bus, C-Bus) 又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。
(2) 内总线(Internal Bus, I-Bus)
又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。例如CPU 模块和存储器模块或I/O接口模块之间的传输通路。
(3) 外总线(External Bus, E-Bus)
又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIA RS-232C、IEEE-488等。
其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB(Control Bus)。
有的系统中,数据总线和地址总线是复用的,即总线在某些时刻出现的信号表示数据而另一些时刻表示地址;而有的系统是分开的。51系列单片机的地址总线和数据总线是复用的,而一般PC中的总线则是分开的。
“数据总线DB”用于传送数据信息。数据总线是双向三态形式的总线,即他既可以把C PU的数据传送到存储器或I/O接口等其它部件,也可以将其它部件的数据传送到CPU。数据总线的位数是微型计算机的一个重要指标,通常与微处理的字长相一致。例如Intel 8086
微处理器字长16位,其数据总线宽度也是16位。需要指出的是,数据的含义是广义的,它可以是真正的数据,也可以是指令代码或状态信息,有时甚至是一个控制信息,因此,在实际工作中,数据总线上传送的并不一定仅仅是真正意义上的数据。
“地址总线AB”是专门用来传送地址的,由于地址只能从CPU传向外部存储器或I/O 端口,所以地址总线总是单向三态的,这与数据总线不同。地址总线的位数决定了CPU可直接寻址的内存空间大小,比如8位微机的地址总线为16位,则其最大可寻址空间为2^16=6 4KB,16位微型机(个人觉得很有必要解释下x位处理器的意思:一个时钟周期内微处理器能处理的位数(1 、0)多少,即字长大小)的地址总线为20位,其可寻址空间为2^20=1MB。一般来说,若地址总线为n位,则可寻址空间为2^n字节。
“控制总线CB”用来传送控制信号和时序信号。控制信号中,有的是微处理器送往存储器和I/O接口电路的,如读/写信号,片选信号、中断响应信号等;也有是其它部件反馈给CPU的,比如:中断申请信号、复位信号、总线请求信号、设备就绪信号等。因此,控制总线的传送方向由具体控制信号而定,一般是双向的,控制总线的位数要根据系统的实际控制需要而定。实际上控制总线的具体情况主要取决于CPU。
按照传输数据的方式划分,可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SP I、I2C、USB及RS232等。
按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。
计算机中的总线
a.主板的总线
在计算机科学技术中,人们常常以MHz表示的速度来描述总线频率。计算机总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。
b.硬盘的总线
一般有SCSI、ATA、SATA等几种。SATA是串行ATA的缩写,为什么要使用串行ATA就要从PATA——并行ATA的缺点说起。我们知道ATA或者说普通IDE硬盘的数据线最初就是4 0根的排线,这40根线里面有数据线、时钟线、控制线、地线,其中32根数据线是并行传输的(一个时钟周期可以同时传输4个字节的数据),因此对同步性的要求很高。这就是为什么从PATA-66(就是常说的DMA66)接口开始必须使用80根的硬盘数据线,其实增加的这40根全是屏蔽用的地线,而且只在主板一边接地(千万不要接反了,反了的话屏蔽作用大大降低),有了良好的屏蔽硬盘的传输速度才能达到66MB/s、100MB/s和最高的133MB/s。但是在PATA-133之后,并行传输速度已经到了极限,而且PATA的三大缺点暴露无遗:信号线长度无法延长、信号同步性难以保持、5V信号线耗电较大。那为什么SCSI-320接口的数据线能达到320MB/s的高速、而且线缆可以很长呢?你有没有注意到SCSI的高速数据线是“花线”?