高等数学-第七章空间解析几何与向量代数习题课
高等数学-空间解析几何与向量代数习题课ppt课件.ppt

过直线
y x
z1 2z
0
0
与平面的交点,且与已知直
线垂直 .
十二、判断下列两直线
x1 L1 : 1
y 1
z 1, 2
L2
:
x 1
y 1 3
z 2,是否在同一平面上,在同 4
一
平面上求交点,不在同一平面上求两直线间的距
离.
练习题解答 请记录
一、1、D; 2、C; 3、C; 4、A; 5、B;
a {1,3,1} ;b 2,1,3,求其面积 .
五、已 知 a , b , 为 两 非 零 不 共 线 向 量 , 求 证 :
(a b) (a b) 2(a b) .
六、一动点与点 M ( 1 , 0 , 0 )的距离是它到平面x 4 的
距离的一半,试求该动点轨迹曲面与yoz 面的交线
z 10 的交点是( ). 7
(A)( 1 , 2 , 3 ) , ( 2 ,1 ,4 );
(B)( 1 , 2 , 3 ) ;
(C)( 2 , 3 , 4 );
(D)( 2 ,1 ,4 ) .
9、已知球面经过( 0 ,3 , 1 ) 且与xoy 面交成圆周
x2
y2
16,则此球面的方程是(
).
例2
求过直线
:
x x
5 z
y 4
z0 0,
且与平面
x
4
y
8z 12 0 组成 角的平面方程. 4
解 过已知直线的平面束方程为
x 5 )z 4 0,
其法向量
n
{1
,5,1
}.
又已知平面的法向量
n
(C) x 2
y2
高等数学第七章向量代数与空间解析几何习题

解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)第七章空间解析几何与向量代数习题7-1★★1.填空题:(1)要使(2)要使★2.设ua?b?a?b设立,向量a,b应当满足用户a?ba?b?a?b成立,向量a,b应满足a//b,且同向ab2c,va3bc,试用a,b,c则表示向量2u?3v知识点:向量的线性运算求解:2u?3v?2a?2b?4c?3a?9b?3c?5a?11b?7c★3.设p,q两点的向径分别为r1,r2,点r在线段pq上,且prrq?m,证明点r的向径为nr?nr1?mr2m?n知识点:向量的线性运算证明:在?opq中,根据三角形法则oq?op?pq,又pr?mmpq?(r2?r1),m?nm?n∴or?op?pr?r1?nr?mr2m(r2?r1)?1m?nm?n★★4.未知菱形abcd的对角线ac?a,bd?b,试用向量a,b表示ab,bc,cd,da。
知识点:向量的线性运算解:根据三角形法则,ab?bc?ac?a,ad?ab?bd?b,又abcd为菱形,ad?bc(民主自由向量),a?b????????????b?a?cd??dc??ab?∴2ab?ac?bd?a?b?ab?22?a?b??? a?b∴ad?bc?,da??22∴★★5.把?abc的bc边五等分,设分点依次为d1,d2,d3,d4,再把各分点与点a相连接,先行以ab?c,bc?a表示向量d1a,d2a,d3a和d4a。
知识点:向量的线性运算解:见图7-1-5,acbad1d2图7-1-5cd3d411bc?d1a??ad1??(c?a)55234同理:d2a??((c?a),d3a??(c?a),d4a??(c?a)555根据三角形法则,ab?bd1?ad1,bd1?习题7-2★1在空间直角坐标系则中,表示以下各点在哪个卦减半?a(2,?2,3);b(3,3,?5);c(3,?2,?4);d(?4,?3,2)请问:a(2,?2,3)在第四卦减半,b(3,3,?5)在第五卦减半,c(3,?2,?4)在第八卦减半, d(?4,?3,2)在第三卦限★2.在座标面上和坐标轴上的点的座标各存有什么特征?并表示以下各点的边线:a(2,3,0);b(0,3,2);c(2,0,0);d(0,?2,0)知识点:空间直角坐标答:在各坐标面上点的坐标有一个分量为零,坐标轴上点的坐标有两个分量为零,∴点a在xoy坐标面上;b在yoz坐标面上;c在x轴上;d在y轴上。
同济第五版高数下第七章课件

向量代数与空间解析几何
一 基本要求
1.理解空间直角坐标系 理解空间直角坐标系. 理解空间直角坐标系 2.理解向量的概念及其表示 掌握单位向量、 理解向量的概念及其表示; 理解向量的概念及其表示 掌握单位向量、 方向余弦、 方向余弦、向量的坐标表达式以及用坐标表 达式进行向量运算的方法. 达式进行向量运算的方法. 3.掌握向量的运算 线性运算、内积、外积). 掌握向量的运算(线性运算 内积、外积) 掌握向量的运算 线性运算、 4.了解两个向量垂直、平行的条件. 了解两个向量垂直、平行的条件. 了解两个向量垂直
分别求适合下列条件的直线方程: 例5 分别求适合下列条件的直线方程: (1)通过点 )通过点(1,0,-3)且与平面 3 x − 4 y + z − 10 = 0 且与平面 垂直; 垂直; (2)通过点 通过点(1,0, -2)且与平面 3 x + 4 y − z + 6 = 0 通过点 且与平面 平行,又与直线 x − 3 = y + 2 = z 垂直; 垂直; 平行 又与直线
(
)
(
P0
)
l
例2 解
r uuu 已知向量OA
的模为8,且已知它与 轴和 的模为 且已知它与x轴和 且已知它与
π
r uuu ,求 OA 的坐标表达式. 的坐标表达式. 求 3
y轴正向的夹角均为 轴正向的夹角均为
r uuu 设与 OA 同向的单位向量为
1 其中 cos α = cos β = cos = 3 2 又 cos γ = ± 1 − cos α − cos β = ±
• 一般式 • 截距式
Ax + By + Cz + D = 0
(完整版)高等数学第七章向量

第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量b a ,=.则a =b 同向。
( ) 4. 若二向量b a ,+,则b a ,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若ca b a +=+,则c b =( ) 7. 向量ba ,满足=,则ba ,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量a 与b 有共同的始点,则与b a ,共面且平分a 与b 的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB //OA 且21a ,OC =b ,则AB = (A )21b a - (B )b a 21- (C )a b -21 (D )a b 21-3.设有非零向量b a ,,若a ⊥ b ,则必有(A+(B+-(C+<-(D+>-三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
高等数学向量代数与空间解析几何习题课课件

4
将 代入平面束方, 程 得 3 x y z 1 0 .
所求投影直线方程为 3xx2yyzz100.
例 过点 B(1,2,3)作一直线,使和 z 轴相交,且
和直线
xy3z2 4 3 2
垂直,求其方程
[分析]
求直线方程,或者求出直线所在的平面 得交面式方程,或者求出直线上一点及 方向向量得点向式方程,或者求出直线 上的两点得两点式方程
垂直: n1n20
A 1 A 2 B 1 B 2 C 1 C 2 0
平行: n1n20
A1 B1 C1 A2 B2 C2
夹角公式: cosθ n1n2 n1 n2
线与线的关系
直线 L1: xm 1x1y n1y1z p1z1, s1(m 1,n 1,p 1) 直线 L2: xm 2 x2y n2y2z p2 z2, s2 (m 2,n 2,p 2)
解 设 n 0 x i y j z k , 由题设条件得
n0 1 n 0c n 0 a b
x2 y2 z2 1
2
x
2
y
z
0
2
y
z
0
解得 n 0(2i1 j2k ). 333
例
已知
A B a,A C b, AD B
2
证明①
②
当 B a ,b 的 的 AD 面 夹 |a b 2 || b 积 ||a 2 角 B b |的 A 为 D 面 何
解一 用交面式
直线 L 过点 B 且与 L 垂直 故直线L在过 B 且与 L 垂直的平面 1内
z
L
L B
o
y
x
n 1 4 ,3 , 2
1 : 4 ( x 1 ) 3 ( y 2 ) 2 ( z 3 ) 0
7空间解析几何与向量代数习题与答案

空间解析几何与向量代数第七章 A 一、)?6(a?6,7,1、平行于向量的单位向量为______________.)0,,)和2M(3M(4,2,1MM.设已知两点的模,方向余弦和方向角,计算向量2、2121pn?4m?3j?5i??4ka?7nim?3?5j?8k,?2i?4j?k,p轴设3、在,求向量x .上的投影,及在y轴上的分向量二、;?b?b?2b及aab2()(?2a)?3及a k?2k,b??2j?iia?3?j(1)的、(3)ab1、设,求 .夹角的余弦1,2),M(3,3,?1),M(3,1,3),(M1MM,MM同时垂直的单位向量.,求与2、知31232211??b?z轴?与a??),4?(2,1?a?(3,5,2),b满足设.3、_________时,,问三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.222?2x?4y??y2?zz?x0表示______________曲面2、方程.2x?y2 __将xOy坐标面上的轴旋转一周,生成的曲面方程为绕x、31)___________________._____________,曲面名称为22xy2x??生成的曲面方程坐标面上的2)将xOyx轴旋转一周,绕___________________._____________,曲面名称为2236??9y4x轴旋转一周,生成的曲面方轴及yxOy坐标面上的绕x3)将_____________________._____________程为,曲面名称为2xy?在空间解析几何中)在平面解析几何中图形。
表示____________ 42x?y图形.表示______________ )画出下列方程所表示的曲面 5222)(x?y4z? (1)222)??4(xyz (2)四、22?yx1???图形,在空间解1在平面解析几何中表示____________、指出方程组94??3y??图形.析几何中表示______________2229?zx??y1?x?z.面上的投影方程的交线在2、求球面与平面xOy22222?ax(a?0xy?)yxa0?z???的公共部分在、求上半球与圆柱体3xOy面及xOz面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a=(2,1,1)和b=(1,-1,0)的平面方程.33、求平行于xOz面且过点(2,-5,3)的平面方程.4、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.六、1?3zyx???、求过点1(1,2,3)且平行于直线.的直线方程521 2??3zy1?zx?2且与两平面2、求过点(0,2,4)平行的直线方程,.0?7??x?2y4z? .垂直的平面方程(2,0,-3)3、求过点且与直线?0z?5x3?y2?1??x?4y?3z??的平面方程且通过直线. 4、求过点(3,1,-2)152 x?y?3z?0?x?y?z?1?0的夹角5、求直线.与平面?0??zyx??6、求下列直线与直线、直线与平面的位置关系x?2y?z?7?x?1y?3z??;与直线1)直线?7??2xy?z?112??? x?2y?2z?3??和平面2)x+y+z=3.直线43?1x?y?z?1?0?到直线、求点7(3,-1,2)的距离.?04????2xyz?5B c,a,b a?c?c?a?b?c?0b?b?a.1、已知(:为非零矢量),试证)ba,},求?(,a?b?{11,13a?b?, .2、a)tb(a?tb|a?|b?t b.取何值时,向量模和为两非零向量,问已知3、最小?并证明此时n)86,(a?3,xan?n? 4、求单位向量,使轴,其中.且?0?y?5z2x?z的平面方程轴,且与平面.的夹角为5、求过3)5()1,2M?3,,?1,(M40?3y?6x2?z7?.的平面,、求过点6,且垂直于2160?1??2y?zx?zxyl??.:、求过直线,且与直线平行的平面7?202?y?z?2x?21?1? 1?y??1?x?y?z:L.垂直相交的直线方程求在平面、上,:且与直线8?1?z??),2M(1,43M(,1,8)kg100,计算重力所做的功的物体从空间点9、设质量为,移动到点21m(长度单位为.)22?02xy?z??xoy坐标面上的投影曲线的方程,并指出原曲线是什么曲在10、求曲线?3z??线?OA?i?3k,OB?j?3k?OAB的面积,求、已知1170??z2x?4y?1??z4x?y.12、.求直线在平面上的投影直线方程?0??9y?2z3x??C?????????,c?0,??a,b,c?a?b?0,不全为零有相同起点,且,1、设向量,其中cb,a,终点共线证明:.?212y?x?)2,?1M(1,??L.且与直线,求过点角的直线方程:相交成2、0112?3z3y?x?1??0)3x?4y?z??10,(?10,4相交的直线方且平行于平面、过又与直线3211程.2z?yzxy1x?LL????.4、求两直线::与直线的最短距离210?3?160?1xoy}1,1,g?{1,,母线平行于向量5、柱面的准线是面上的圆周(中心在原点,半径为1) .求此柱面方程a?xb?a?lim?)b(?2,a,b.非零,a,b,求6、设向量x30?x x?2y??L:绕y轴旋转一周所围成曲面方程7、求直线. ?1)1y?(?z??2?第七章空间解析几何与向量代数答案习题 A 8?667??,?, 1一、、??111111?????12132?????????,cos,coscos????,,MM ,2、=2,21222334a在x轴上的投影为7j3、,在y轴上的分量为1331)???2)?(?a?b?31?(?1)?2?(二、11)、kijk?7?5i?j3a?b??1?212?1k2j?14(??18a?2b?2a?b)?10i?62(?a)?3b??(a?b),(2)3ba?^??cos(a,b)(3)ba?212}2?,2,{?2,4,?1},MM?{0MM 2、3122kijk44j???MM?24?1?6iMa?M3221220?4??4a6},,???{a172172217即为所求单位向量。
高等数学-第七章空间解析几何与向量代数习题课

A12
B12
C
2 1
A22
B
2 2
C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 s (m, n, p) , 平面 的法向量为
n ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
3 3
则
a 15 , b 5 a 25
17
3
17
于是
p ( 15 17 , 25 17, 0 )
【例8】已知向量 a (4, 3, 2),u 轴与三坐标轴正向构成 相等锐角,求 a 在 u 轴上的投影。
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
解:M1M2 (1, 2,1)
| M1M2 | 2
方向余弦为
cos 1
2
, cos
2 2
, cos
1 2
方向角为 2 , 3 , 1
3
4
3
【例2】确定 , , 的值,使向量i 3 j ( 1)k 与向量
( 3)i ( ) j 3k 相等。并求此时向量的模与方向余弦。
分析: 向量相等的定义是向量坐标对应相等。
解: 由已知条件得
3
3
1 3
易得
1
4
1
即当 1, 4, 1 时两向量相等。 此时向量为
高等数学教学课件:v-7-空间解析几何与向量代数习题

3、向量的表示法 向量的分解式: a
向量的坐标表示式:
a a
xi ay {ax ,
j azk ay , az }
高等数学
向量模长的坐标表示式 | a | ax2 a y2 az2
向量方向余弦的坐标表示式
cos
ax
ax2 ay2 az2
cos
ay
ax2 ay2 az2
两直线的夹角公式
(1) L1 L2 m1m2 n1n2 p1 p2 0
(2)
L1 //
L2
m1 m2
n1 n2
p1 p2
[6] 直线与平面的夹角
高等数学
L : x x0 y y0 z z0 : Ax By Cz D 0
m
n
p
sin
| Am Bn Cp | A2 B2 C 2 m2 n2 p2
R( y, z) 0
x
0
T( x, z) 0
y
0
如图:投影曲线的研究过程.
高等数学
空间曲线
投影柱面
投影曲线
[4] 空间立体或曲面在坐标面上的投影
空 间 立 体
高等数学
曲 面
4、平面
[1] 平面的点法式方程
A( x x0 ) B( y y0 )
C(z z0 ) 0
x
[2] 平面的一般方程
(3)[a混b合c]积
(a
b)
c
ax bx
ay by
az bz
cx cy cz
(二)空间解析几何
1、空间直角坐标系
z 竖轴
高等数学 空间的点
定点 o •
横轴 x
y 纵轴
(x, y,z)
空间解析几何与向量代数习题课12882共40页

( a x b x ) i ( a y b y ) j ( a z b z ) k
a (a x , a y, a z)
(a x ) i (a y ) j (a z ) k
向量模长的坐标表示式 |a |ax2ay2a z2
向量方向余弦的坐标表示式
cos
ax
ax2ay2az2
它们距离为
M 1 M 2 x 2 x 1 2 y 2 y 1 2 z 2 z 1 2
2、曲面
曲面方程的定义:
如 果 曲 面 S与 三 元 方 程 F(x,y,z)0有 下 述 关 系 :
(1) 曲面S上任一点的坐标都满足方程; ( 2 ) 不 在 曲 面 S 上 的 点 的 坐 标 都 不 满 足 方 程 ;
一般方程 参数方程 一般方程
曲线
直线
曲面
平面
旋转曲面 柱面 二次曲面
参数方程 对称式方程 点法式方程 一般方程
1、空间直角坐标系
z竖轴
空间的点
定点 o•
横轴 x
y纵轴
(x,y,z)
有序数组
z
空
间
直
角
o
坐
y
标
x
系
共有一个原点,三个坐标轴,三个坐标面,八个卦限.
两点间距离公式: 设 M 1 (x 1,y 1,z1)、 M 2(x 2,y 2,z2)为 空 间 两 点
a b c a b d
b
a
Hale Waihona Puke a b c a b d (3) 向量与数的乘法:
设 是 一 个 数 , 向 量 a 与 的 乘 积 a 规 定 为
(1)0, a 与 a 同 向 , |a | |a |
高等数学(同济大学第五版)第七章 空间解析几何与向量代数()

习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形. 证明 ; ,→→→OA OB AB −=→→→OD OC DC −=而, ,→→OA OC −=→→OB OD −=所以.→→→→→→AB OA OB OB OA DC −=−=+−=这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A 3、A4.→c =AB →a =BC →A D 1→A D 2→D D →解 →→→a c 5111−−=−=BD BA A D , →→→a c 5222−−=−=BD BA A D , →→→a c 5333−−=−=BD BA A D , →→→a c 5444−−=−=BD BA A D . 4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.→→21M M 212M M −→)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21−−=−−=M M )4 ,4 ,2()2 ,2 ,1(2221−=−−−=−M M 解 , .→ 5. 求平行于向量a =(6, 7, −6)的单位向量.解 11)6(76||222=−++=a ,平行于向量a =(6, 7, −6)的单位向量为6 ,7 ,6(1−=a 111111||a 或)6 ,7 ,6(1−−=−a 111111||a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标. 解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0). 在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,2(a −, )0 ,0 ,2(a , )0 ,2 ,0(a −, )0 ,2 ,0(a , ) ,0 ,22(a a −, ) ,0 ,22(a a , ) ,22 ,0(a a −, ) ,22 ,0(a a . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+−=x d .点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即415422=+=y d .点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=−+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,→2222)2()1(3||−+−+=z y PA ,→2222)2()2(4||++++=z y PB .→222)1()5(||−+−=z y PC 由题意, 有, →→→222||||||PC PB PA ==即 ⎩⎨⎧−+−=++++−+−=−+−+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =−2, 故所求点为(0, 1, −2).14. 试证明以三点A (4, 1, 9)、B (10, −1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为→7)96()11()410(||222=−+−−+−=AB ,→7)93()14()42(||222=−+−+−=AC ,→27)63()14()102(||222=−+++−=BC ,所以, .→→→222||||||AC AB BC +=→→||||AC AB = 因此ΔABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量的模、方向余弦和方向角. →21M M 解 →)1 ,2 ,1()12 ,20 ,43(21−=−−−=M M ;→21)2()1(||22221=++−=M M ;21cos −=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1; (3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60°, 求r 在轴u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, −1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, −4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得,⎪⎩⎪⎨⎧=−−=−−=−774142z y x 解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k ,所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,k j i kj i b a 75121 213++=−−−=×. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18,a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.→21M M →32M M 解 , . →)1 ,4 (2,2)1 ,13 ,13(21−=−+−=M M →)2 ,2 ,0()13 ,31 ,33(32−=−−−=M M →→k j i k j i n 446 220 1423221−−=−−=×=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e −−±=−−±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), . →)6 ,3 ,2()82 ,14 ,31(21−−=−−−==M M S W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ→1OP 1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ→2OP 1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=×+×−×=⋅−++=⋅=⋅=⋅=b a b b b a e a a b b .7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .→→OA OB −=→→||||OA OC = 因为,→→→→→→→→→→→→0||||)()()()(22=−=+⋅−=−⋅−=⋅OA OC OA OC OA OC OB OC OA OC BC AC 所以, ∠C =90°.→→BC AC ⊥ 9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c );(3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k .(2)a +b =3i −4j +4k , b +c =2i −3j +3k ,k j k j i c b b a −−=−−=+×+332443)()(. (3)k j i k j i b a +−−=−−=×58311132, (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.→j i 3+=OA →k j 3+=OB 解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为→→||OB OA ×→OA →OB →→|21OB OA S ×=.因为→→k j i k j i +−−==×33310301OB OA , →→191)3()3(||223=+−+−=×OB OA , 所以三角形ΔOAB 的面积为→→1921|21=×=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅于是 ||332211232221232221b a b a b a b b b a a a ++≥++++, 其中当=1时, 即a 与b 平行是等号成立.) ,cos(^b a习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2,即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=−++=R ,球面方程为(x −1)2+(y −3)2+(z +2)2=14,即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++−z y x ,所以此方程表示以(1, −2, −1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=−+−+−++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(−−−为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+−;(2)19422=+−y x ;(3)14922=+z x ;(4)y 2−z =0;(5)z =2−x 2.9. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:析几何中, x =2表示平行于y 轴的一条直线; 在空间解析几何中, x =2表示一析几何中, y =x +1表示一条斜率是1, 在y 轴上的截距也是1的直线; 在空几何中, x 2+y 2=4表示中心在原点, 半径是4的圆; 在空间解析几何中, 几何中, x 2−y 2=1表示双曲线; 在空间解析几何中, x 2−y 2=1表示母线平行旋转曲面是怎样形成的:(1)x =2;解在平面解张平行于yOz 面的平面.(2)y =x +1;解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面.(3)x 2+y 2=4;解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面.(4)x 2−y 2=1.解 在平面解析于z 轴的双曲面.10. 说明下列 (1)1222=++z y x ; 994 解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的. (2)122=+−z y ; 42x 这是xOy 面上的双曲线1422=−y x 解 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线142=+−z y 绕y 轴旋转一周而形 z 1面上的双曲线x 2−y 2=12成的. (3)x 2−y 2−2=; 解 这是xOy 绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线而形成的.a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线而形成的.( (3x 2−z 2=1绕x 轴旋转一周 (4)(z −a )2=x 2+y 2 .解 这是zOx 面上的曲线(z −(z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面:(1)4x 2+y 2−z 2=4;2)x 2−y 2−4z 2=4; )94322y x z +=.习题7−41. 画出下列曲线在第一卦限内的图形:(1 (2)⎩⎨⎧==21y x ;)⎩⎨⎧=−−−=0422y x y x z ;(3) =+222az x .2. 下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:⎩⎨⎧=+222a yx 指出(1)⎧+=15x y ; ⎩⎨−=32x y 解 在平面解析几何中, 表示直线y =5x +1与y =2x −3的交点⎩⎨⎧−=+=3215x y x y )317 ,34(−−; 在空间解析几何中, 表示平面y =5x +1与y =2x −3的交线, 它表示过点⎩⎨⎧−=+=3215x y x y )0 ,317 ,34(−−, 并且行于z 轴.(2)⎪⎩⎪⎨⎧22y x ==+3194y . 解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 解 把方程组中的x 消去得方程3y 2−z 2=16, 这就是母线平行于x 轴且通过曲线y z x z y 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线y z x z y 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.行于z 轴, 准线为=0z 列曲线的一般方程化为参数方程:(1; ⎩⎨⎧=−+=++0162222222y z x z y x ⎩⎨⎧=−+=++0162222222x ⎩⎨⎧=−+=++0162222222x 解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为⎧=+−82222y x x . ⎩⎨ 5. 将下)⎩⎨⎧==++x y z y x 9222解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x . 令t x cos 23=, 则z =3sin t . 故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t . (2). ⎩⎨⎧==+++−04)1()1(222z z y x 解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3.令t x cos 31+=, 则t y sin 3=,于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为. ⎩⎨⎧==+0222z a y x 由第三个方程得bz =θ代入第一个方程得 b z a x cos =, 即ax b z arccos =, 于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a x b z . 由第三个方程得bz =θ代入第二个方程得 b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==a y b z x arcsin 0. 7. 求上半球2220y x a z −−≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z −−≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax . 为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程222y x a z −−=, 得ax a z −=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z −≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程.解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为k j i k j i n n n 69301332021++−=−=×=, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.4. 指出下列各平面的特殊位置, 并画出各平面:(1)x =0;解 x =0是yOz 平面.(2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2.(4)03=−y x ;解 03=−y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x −2z =0;解 x −2z =0是通过y 轴的平面.(7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦.解 此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+−+=⋅⋅==i n i n i n α; 此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^−=+−+−=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+−+=⋅⋅==k n k n k n γ. 6. 一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i k j i b a n 3011112−+=−=×=, 所求平面的方程为(x −1)+(y −0)−3(z +1)=0, 即x +y −3z −4=0.7. 求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解 解线性方程组⎪⎩⎪⎨⎧=++−=−−=++3220213z y x z y x z y x 得x =1, y =−1, z =3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, −5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5.(2)通过z 轴和点(−3, 1, −2);解 所求平面可设为Ax +By =0.因为点(−3, 1, −2)在此平面上, 所以−3A +B =0,将B =3A 代入所设方程得Ax +3Ay =0,所以所求的平面的方程为x +3y =0,(3)平行于x 轴且经过两点(4, 0, −2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n 1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n 是垂直的, 即b +9c =0, b =−9c ,于是 n =(0, −9c , c )=−c (0, 9, −1).所求平面的方程为9(y −0)−(z +2)=0, 即9y −z −2=0.9. 求点(1, 2, 1)到平面x +2y +2z −10=0的距离.解 点(1, 2, 1)到平面x +2y +2z −10=0的距离为1221|1012221|222=++−×+×+=d .习题7−61. 求过点(4, −1, 3)且平行于直线51123−==−z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124−=+=−z y x . 2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为112243−=+=−−x y x . 3. 用对称式方程及参数方程表示直线. ⎩⎨⎧=++=+−421z y x z y x 解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++−=−=×=. 在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.⎩⎨⎧=++=+−421z y x z y x ⎩⎨⎧=+=+421z x z x 所求直线的对称式方程为32123+==−−z y x ; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程. ⎩⎨⎧=+−+=−+−012530742z y x z y x 解 所求平面的法线向量n 可取为直线的方向向量, 即 ⎩⎨⎧=+−+=−+−012530742z y x z y x k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++−=−−=−×−=. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦. ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y xk j i k j i s −+=−−=431233351, k j i k j i s 105101831222+−=−=. 两直线之间的夹角的余弦为010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+−+−++×−+−×+×=⋅×=s s s s s s . 6. 证明直线与直线平行. ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x k j i k j i s 531121211++=−−=, k j i k j i s 15391123632−−−=−−−=. 因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++−=−=32310201. 所求直线的方程为14322−=−=−z y x . 8. 求过点(3, 1, −2)且通过直线12354z y x =+=−的平面方程. 解 所求平面的法线向量与直线12354z y x =+=−的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, −2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521−−=−=×=. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角. ⎩⎨⎧=−−=++003z y x z y x解 直线的方向向量为 ⎩⎨⎧=−−=++003z y x z y x )2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s −+=−+=−−=−−×=, 平面x −y −z +1=0的法线向量为n =(1, −1, −1).因为s ⋅n =2×1+4×(−1)+(−2)×(−1)=0,所以s ⊥n , 从而直线与平面x −y −z +1=0的夹角为0. ⎩⎨⎧=−−=++003z y x z y x 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =−+=−+和4x −2y −2z =3; 解 所给直线的方向向量为s =(−2, −7, 3), 所给平面的法线向量为n =(4, −2, −2).因为s ⋅n =(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(−3, −4, 0)不满足平面方程4x −2y −2z =3, 所以所给直线不在所给平面上.(2)723z y x =−=和3x −2y +7z =8; 解 所给直线的方向向量为s =(3, −2, 7), 所给平面的法线向量为n =(3, −2, 7). 因为s =n , 所以所给直线与所给平面是垂直的.(3)431232−−=+=−z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, −4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3×1+1×1+(−4)×1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, −2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和 ⎩⎨⎧=−+−=+−+01012z y x z y x ⎩⎨⎧=+−=+−002z y x z y x 平行的平面的方程.解 直线的方向向量为 ⎩⎨⎧=−+−=+−+01012z y x z y x k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1−−=−−=−×−=, 直线的方向向量为 ⎩⎨⎧=+−=+−002z y x z y xk j k j i s −−=−−=−×−=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n −+−=−−−−=×=11032121, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为12211−=−=+z y x . 将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得(−1+t )+2(2+2t )−(−t )+1=0, 解得32−=t . 再将32−=t 代入直线的参数方程, 得35−=x , 32=y , 32=z . 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点32 ,32 ,25(−. 13. 求点P (3, −1, 2)到直线的距离. ⎩⎨⎧=−+−=+−+04201z y x z y x 解 直线的方向向量为 ⎩⎨⎧=−+−=+−+04201z y x z y x k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(−−=−−=−×−=. 过点P 且与已知直线垂直的平面的方程为−3(y +1)−3(z −2)=0, 即y +z −1=0.解线性方程组,⎪⎩⎪⎨⎧=−+=−+−=+−+0104201z y z y x z y x 得x =1, 21−=y , 23=z . 点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点⎩⎨⎧=−+−=+−+04201z y x z y x )23 ,21 ,1(−间的距离, 即 23)32()11()13(22=−++−+−=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ×=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为 →MN =s →M M 0→MN ,→→→||||00s ×=×M M MN M M 又以和为邻边的平行四边形的面积为. 因此→M M 0→MN →||||s ⋅=⋅d MN d , →||||0s s ×=⋅M M d →||||0s s ×=M M d . 15. 求直线在平面4x −y +z =1上的投影直线的方程. ⎩⎨⎧=−−−=+−0923042z y x z y x 解 过直线的平面束方程为 ⎩⎨⎧=−−−=+−0923042z y x z y x (2+3λ)x +(−4−λ)y +(1−2λ)z −9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0. 解之得1113−=λ. 将1113−=λ代入平面束方程中, 得 17x +31y −37z −117=0.故投影直线的方程为. ⎩⎨⎧=−−+=+−011737311714z y x z y x 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;4y z =; (2)x =0, z =0, x =1, y =2, (3)z =0, z =3, x −y =0,03=−y x , x 2+y 2=1(在第一卦限内);2, y 2+z 2=R 2(在第一卦限内).(4)x =0, y =0, z =0, x 2+y 2=R总习题七1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量的坐标为___________.→OM 解 M (x −x 0, y −y 0, z −z 0), .→) , ,(z y x OM = 提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23−. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________.解36.提示: c =−(a +b ),a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b ,|a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(−=+−−+. 所求中线的长度为 30)23()11()14(222=−+−−++=d .4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、→a =BC →b =CA →c =ABb 、c 表示→AD 、、, 并证明→BE →CF.→→→0=++CF BE AD 解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+−=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE −=−=, ,→→→→→AB AC AC BA BC −=+=所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以222222)8()6(4)8()4(2z z −+−+=++−+, 解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a −b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^ b )16cos 3213=−+=π. 设向量a +b 与a −b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅−=−⋅+−=−⋅+−⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 .) ,(^b a 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b ,所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0,即 7|a |2+16a ⋅b −15|b |2 =0, 7|a |2−30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值. ) ,(^b a 解 2^2321||||) ,cos(z z +−=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, 为单调减函数. 求的最小值也就是求) ,cos(^b a ) ,(^b a 22321)(z zz f +−=的最大值.令0)2(431)(2/32=+−−⋅=′z z z f , 得z =−4. 当z =−4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a .以a +2b 和a −3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=×=−×+b a a b a b b a b a . 11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x −3y +z =0, x −2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组,⎪⎩⎪⎨⎧=++=+−=+−4222032032z y x z y x z y x 得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a −−−=−−=×57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7×2+5×1+1×2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为k i k j i b a 36432231−−=−−−=×, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6),即有方程组,⎪⎩⎪⎨⎧=−=−−=+−642123332μλμλμλ解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||−+++−=z y x z ,或 z 2=(x −1)2+(y +1)2+(z −2)2,化简得(x −1)2+(y +1)2=4(z −1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=−−z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=−y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).→)1 ,0 ,3(−=BA 按要求有, →0=⋅BA n 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=−2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±−z y x ,即 3326=++z y x , 或3326=+−z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.⎩⎨⎧==+−001x z y 解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1). ⎩⎨⎧==+−001x z y 设点(1, −1, 1)到直线的垂线交于点(x ⎩⎨⎧==+−001x z y 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+−001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0, 210−=y . 从而)21 ,21 ,1() ,1 ,1(001−−=+−=y y s . 所求平面的法线向量可取为j i k j i k s k n −−=−+−×=×=21)2121(1, 所求平面的方程为0)1()1(21=+−−−y x , 即x +2y +1=017. 求过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0, 又与直线21311z y x =−=+相交的直线的方程.解 过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0的平面的方程为3(x +1)−4(y −0)+(z −4)=0, 即3x −4y +z −1=0.将直线21311z y x =−=+化为参数方程x =−1+t , y =3+t , z =2t , 代入平面方程3x −4y +z −1=0, 得3(−1+t )−4(3+t )+2t −1=0,解得t =16. 于是平面3x −4y +z −1=0与直线21311z y x =−=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为28419161−==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使ΔABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则, .→) ,0 ,1(z AC −=→)1 ,2 ,0(−−=z BC 因为 →→k j i k j i 2)1(212001+−+=−−−=×z z z z BC AC , 所以ΔABC 的面积为→→4)1(421|2122+−+=×=z z BC AC S . 令04)1(4)1(284122=+−+−+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线在三个坐标面上的投影曲线的方程. ⎩⎨⎧−+−=−−=2222)1()1(2y x z y x z 解 在xOy 面上的投影曲线方程为, 即. ⎩⎨⎧=−−=−+−02)1()1(2222z y x y x ⎩⎨⎧=+=+022z y x y x 在zOx 面上的投影曲线方程为⎩⎨⎧=−−−±+−=0)12()1(222y z x x z , 即. ⎩⎨⎧==+−−++002342222y z x z xz x 在yOz 面上的投影曲线方程为⎩⎨⎧=−+−−−±=0)1()12(222x y z y z , 即. ⎩⎨⎧==+−−++002342222x z y z yz y 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即, ⎩⎨⎧=+=0222z y x x ⎩⎨⎧==+−01)1(22z y x 所以, 立体在xOy 面上的投影为. ⎩⎨⎧=≤+−01)1(22z y x 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+−01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+−01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为和⎩⎨⎧==0||y x z ⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:1224===z y x ; (1)抛物柱面2y 2=x , 平面z =0及 0及x +y =1;(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥面22z y x +=2−x −y =及旋转抛物面z 22;(y 2=x , 平面z =0及x =1.4)旋转抛物面x 2+y 2=z , 柱面。
(完整版)空间解析几何与向量代数习题与答案.doc

第七章空间解析几何与向量代数A一、1、平行于向量 a (6,7, 6) 的单位向量为______________.2、设已知两点M 1 (4, 2 ,1)和M 2(3,0,2) ,计算向量M1M2 的模,方向余弦和方向角.3、设m 3i 5j 8k ,n 2i 4j 7k , p 5i j 4k ,求向量 a 4m 3n p 在x 轴上的投影,及在y 轴上的分向量.二、1、设a3i j 2k ,b i 2j k ,求(1) a b及 a b;(2)( 2a) 3b及 a 2b (3) a、b的.夹角的余弦(3,1,3) ,求与 M1M 2,M 2 M 3 同时垂直的单位向量.2、知M 1(1, 1,2), M 2 (3,3,1), M3.3、设a (3,5, 2), b ( 2,1,4) ,问与满足 _________时, a b z轴三、1、以点(1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.2、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.3、1) 将xOy 坐标面上的y2 2x 绕x 轴旋转一周,生成的曲面方程为_______________ ,曲面名称为___________________.2) 将xOy 坐标面上的x2 y 2 2x 绕x 轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3) 将xOy 坐标面上的4x2 9 y 2 36 绕x 轴及y 轴旋转一周,生成的曲面方程为 _____________,曲面名称为_____________________.4)在平面解析几何中y x2 表示 ____________ 图形。
在空间解析几何中y x 2表示______________图形.5)画出下列方程所表示的曲面(1) z2 4( x2 y 2 )(2) z 4( x2 y 2 )四、x 2 y 21在平面解析几何中表示1、指出方程组4 9 ____________图形,在空间解y 3析几何中表示 ______________图形 .2、求球面 x 2y 2z 29 与平面x 的交线在 xOy 面上的投影方程 .z 13、求上半球 0za 2x 2 y 2 与圆柱体 x 2 y 2 ax (a 0) 的公共部分在xOy 面及 xOz 面上的投影 . 五、1、求过点 (3,0,-1) 且与平面 3x-7y+5z-12=0 平行的平面方程 .2、求过点 (1,1,-1),且平行于向量 a=(2,1,1)和 b=(1,-1,0) 的平面方程 .3、求平行于 xOz 面且过点 (2,-5,3) 的平面方程 .4、求平行于 x 轴且过两点 (4,0,-2) 和(5,1,7) 的平面方程 .六、1、求过点 (1,2,3)且平行于直线xy 3 z 1的直线方程 .21 52、求过点 (0,2,4)且与两平面 x2z 1 , y 3z 2 平行的直线方程 .3、求过点 (2,0,-3) 且与直线4、求过点 (3,1,-2)且通过直线x2 y 4z 7 03x 5 y 2z 1 垂直的平面方程 .x 4 y 3 z的平面方程 .521x y 3z 0 y z 1 0 的夹角 .5、求直线y z与平面 xx 06、求下列直线与直线、直线与平面的位置关系1) 直线2) 直线x 2y y z 7 与直线 x 1y 3 z ;2x z 7 2 1 1x2 y 2 z 3和平面 x+y+z=3.3 14 7、求点 (3,-1,2)x y z 1 0 的距离 .到直线2x y z 4B1、已知 a b c 0 ( a, b, c 为非零矢量),试证 : a b b c c a .2、 a b3, a b {1,1,1}, 求 (a, b) .3、已知和为两非零向量,问取何值时,向量模| a tb |最小?并证明此时 b (a tb) .4、求单位向量,使n a 且 n x 轴,其中 a (3,6,8) .5、求过轴,且与平面 2xy5z 0 的夹角为的平面方程 .36、求过点 M 1 (4,1,2) , M 2 (3,5, 1) ,且垂直于 6x 2y 3z 7 0的平面 .7、求过直线x 2y z 1 0x y z平行的平面 .2x y z 2 ,且与直线:1 128、求在平面 : xy z 1上,且与直线 y 1L :垂直相交的直线方程 .z19、设质量为 100kg 的物体从空间点 M 1 (3,1,8) ,移动到点 M 2 (1,4,2) ,计算重力所做的功(长度单位为) .10、求曲线y 2 z 2 2x在 xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲z 3 线?11、已知 OA i 3k , OB j 3k ,求 OAB 的面积12、 . 求直线2x 4 y z 0y z 1上的投影直线方程 .3x y 2z 9在平面 4xC1、设向量 a, b, c 有相同起点 , 且 a bc 0 ,其中0 , , ,不全为零 ,证明 : a, b,c 终点共线 .2、求过点 M 0 (1,2, 1) ,且与直线:x2 y 12相交成 角的直线方程 .2 1 1 33、过 ( 1,0,4) 且平行于平面 3x 4 yz 10 0 又与直线x 1y 3z相交的直线方112程 .4、求两直线:x1 y z与直线:xyz 2的最短距离 .0 1163 05、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量 g {1,1,1} ,求此柱面方程 .6、设向量 a,b 非零, b2, (a,b),求 lima xbax.3xx 2 y 7、求直线 L :z1( y 1) 绕 y 轴旋转一周所围成曲面方程 .2第七章 空间解析几何与向量代数习题答案A一、 1、6,7,611 11 112、M 1M 2=2, cos1, cos2,cos1 ,2 ,3 ,3222343、在 x 轴上的投影为 13,在 y 轴上的分量为 7j 二、 1、 1) a b 3 1 ( 1) 2 ( 2) ( 1) 3ij k a b 3125ij 7k1 21( 2) ( 2a) 3b6(a b) 18 , a 2b2( ab) 10i2 j 14k^ a b 3( 3) cos(a, b)a b2 212、 M 1M 2{ 2,4, 1}, M 2M 3{ 0, 2,2}i j ka M 1M 2M 2M 3 2 41 6i 4 j 4k0 2 2a 6, 4, 4a{17 17 }2 2 2 17即为所求单位向量。
习题解答

高等数学课件与自学复习讲义第七章 空间解析几何 向量代数§1 空间直角坐标系一、 空间直角坐标系问在yz 平面上的点有什么特点? 答:x 坐标为0 二、 两点间的距离公式1. 求P 1(1, -1, 0), P 2(-1, 2, 3)之间的距离 解:22)03())1(2()11(P P 22221=-+--+--=2. 在xy 上找一点,使它的x 坐标为1,且与点(1, -2, 2)和点(2, -1, -4)等距解:由题意设此点的坐标为(1, y, 0)得方程z ,5y 18y 2y 8y 4y )z 4()y 1()12()z 2()y 2()11(22222222==++=++--+--+-=-+--+-所以此点坐标为(1, 5, 0)§2 曲面曲线的方程一、坐标面的方程,与坐标面平行的平面方程 1. 下面方程各代表什么曲面?(1)x=b: 过点(b, 0, 0)且平行于yz 平面的方程 (2)y=0: xz 平面(3)y=c: 过点(0, c, 0)且平行于xz 平面的方程 二、球心在点P 0(x 0, y 0, z 0),半径为R 的圆 1. 方程x 2+y 2+z 2-2x+2y-z+3=0是否表示球面? 解:方程配方得43)21z ()1y ()1x (222-=-+++-无实数解,因而不表示球面。
2. 若方程x 2+y 2+z 2-4x+y=0是球面,求球心与半径 解:方程配方得2222)217(417z )21y ()2x (==+++-,所以方程球心为(2, 21, 0), 半径为2173. 求出下列方程所表示的球面的球心坐标与半径,x 2+y 2+z 2+4x-2y+z+45=0解:配方得222224)21z ()1y ()2x (==++-++,所以方程球心为(-2, 1, -21),半径为2三、 柱面方程 1. 做方程y=x 2的图形 解:此题为抛物柱面,缺z2. 方程14z y 22=+表示什么曲面?(测验题)解:平行于x 轴椭圆柱面3. 下列方程表示什么曲面,并作图. x 2+y 2=2x 解:配方得 (x-1)2+y 2=1即圆心在(1, 0, 0)点上的圆柱面4. y 2=1解:y=±1,相互平行的平面5. x 2+y 2+z 2=0 解:原点O 四、空间曲线的方程1. 问⎩⎨⎧==+az R y x 222表示什么曲线?解:x 2+y 2=R 2表示圆柱面,它的母线平行于z 轴,而z=a 表示平行于xy 坐标面的平面,因而它们的交线是圆。
高数第七章-习题课

A( t1 , 2t1 , t1 1) , B( t2 , 3t2 4, 2t2 1).
M 0 (1,1,1) 与 A, B 三点共线, 故 M0 A // M0 B
A(0,0, 1), B( 2, 2, 3) 取 s M0 A ( 1, 1, 2), 故 L 的方程为
设所求直线 L 与 L1 , L2 的交点分别为
A( t1 , 2t1 , t1 1) , B( t2 , 3t2 4, 2t2 1).
y 2x , 例2 求过点 M 0 (1,1,1) 且与两直线 L1 : z x 1 y 3x 4 L2 : 都相交的直线 L. z 2 x 1
10、下列方程中所示曲面是双叶旋转双曲面的是 ( ). (A) x 2 y 2 z 2 1 ; (B)x 2 y 2 4 z ; y2 x2 y2 z2 2 2 z 1 ; (D) 1 . (C) x 4 9 16
二、已知向量a , b 的夹角等于 ,且 a 2 , b 5 ,求 3
(D)cos(a , b ) .
a b 2、向量 a b 与二向量 及 的位置关系是( (A) 共面; (B)共线; (C) 垂直; (D)斜交 .
).
3、设向量Q 与三轴正向夹角依次为 , , ,当 cos 0 时,有( )
( A) Q‖ xoy面; (C ) Q‖ xoz面;
2
9、已知球面经过( 0 ,3 , 1 ) 且与xoy 面交成圆周 x 2 y 2 16 ,则此球面的方程是( ). z 0 (A) x 2 y 2 z 2 6 z 16 0 ; (B) x 2 y 2 z 2 16z 0 ; 2 2 2 (C) x y z 6 z 16 0 ; 2 2 2 (D) x y z 6 z 16 0 .
高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选):已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。
.{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321同时垂直的单位向量求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ..,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36(C)4X2-9(y2+z2)=36; (D) 4x2-9y2=36.答:()2. 方程y2+z2-4x+8=0表示:(A)单叶双曲面;(B)双叶双曲面;(C)锥面;(D)旋转抛物面。
高等数学第七章空间解析几何与向量代数试题[1]
![高等数学第七章空间解析几何与向量代数试题[1]](https://img.taocdn.com/s3/m/51951a814693daef5ef73db7.png)
(一)选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( )A )B )C ) 6D )9532. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ;A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( )A )B )C )D )2π4π3ππ5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( )A )5焦耳B )10焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( )A )B )C )D )2π4π3ππ7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( )A ) B C ) D )13811815818. 设求是:(),23,a i k b i j k =-=++r r r r r r r a b ⨯r r A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k9. 设⊿的顶点为,求三角形的面积是:( ABC (3,0,2),(5,3,1),(0,1,3)A B C -)A )B )C )D )33623643210. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( )A )2x+3y=5=0B )x-y+1=0C )x+y+1=0D )01=-+y x .填空题(1) a ∙b = (公式)(2) a ·b = (计算)(3).=⨯b a r r (4)][c b a r r r =(5) 平面的点法式方程是(6) 三维向量 21M M 的模为| 21M M |=(7) 坐标面的曲线绕轴旋转生成的旋转曲面的方程是:yoz 0),(=z y f z (8) 已知两点与,与向量方向一致的单位向量= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vv v
ar
uuuuuur uuuuuuur M1M2 M2M3
i 2
j 4
k rrr
1 6i 4 j 4k
0 2 2
uuuuuur uuuuuur
与 M1M2 ,
M2 M3
同时垂直的单位向量为:
r
a
1
av
(3, 2, 2) 17
平行四边形面积
uuuuuur uuuuuur S M1M2 M2M3
|
(ax ,ay ,az )
a
2 x
a
2 y
az2
5.向量的投影:Pr
r ja b
|
r b
|
cos(av,bv)
二、向量的运算
1.线性运算
(1)
ar
r b
(ax
bx
,
ay
by
,
az
bz
)
(2)ar (ax , ay , az )
2.数量积
(1)定义:av
v b
av
v b
cos(av, bv)
(2)坐标表示:ar
uuuuuur uuuuuur
uMuu1uMuur2, uMuu2uMuur3 同时垂直的单位向量,并且求以 M1M2, M2M3 为两邻边的平行四边形面积。 分析:应用向量积构造与两个向量都垂直的向量;
利用向量积模的几何意义得平行四边形的面积。
uuuuuur
uuuuuur
解:M1M2 (2,4, 1), M2M3 (0, 2, 2)
av 2
ar ar
,并利用条件
r p
r q
r p
r q
0,便可求出
p q r ;或可不妨置
r S
pr qr
rr
于坐标系中
计算向量的模。
解法1: pv qv rv 2 ( pr qr rr)( pr qr rr)
r p
r p
r p
r q
r p
r r
r q
r p
r q
r q
r q
解:
0
(ar
r b
cr)
(ar
r b
cr)
r a
r a
r b
r b
r c
r c
r 2(a
r b
r b
r c
r c
r a)
3
2(ar
r b
r b
cr
cr
ar
)
于是
ar
r b
r b
cr
cr
ar
3
2
【例4】已知向量 pr, qr, rr 两两互相垂直,且 p 1, q 2, r 3,
求 p q r。
rrr 分析:由于向量 p, q, r 没给出坐标,只给出了模,注意
L2
r s1
r s2
m1m2
n1n2
p1 p2
0
☆ L sr // nr A B C
mn p
二、空间曲面
1.一般方程: F( x, y, z) 0
2.旋转面:曲线
f ( y, z) 0
x
0
绕z
轴旋转所得旋转曲面
方程为 f ( x2 y2 , z) 0 ;绕 y轴旋转所成的旋转曲面
解:依题意有
r x
r
3,
r x
r
5,
r x
r
4
即
x x
1 2
x2 x3
3 5
x1 x3 4
解得 则
x1 1, x2 2, x3 3 ,
xr (1,2,3)
x 14
与 xr 同向的单位向量为
r x0
xr xv
(
1, 14
2, 14
3) 14
【例6】已知 M1 (1,1,2), M 2 (3,3,1) 和 M 3 (3,1,3) 。求与
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
由已知条件 及 cos 2 cos 2 cos 2 1
得 3 cos2 1
所以 cos cos cos 1
3
即
u
轴上的正向单位向量为
r u0
(
1 , 1 , 1 ),
r n2
( A2 ,
B2 , C2
),
☆
1 // 2
rr n1 // n2
A1 A2
B1 B2
C1 C2
☆
rr L1 // L2 s1 // s2
m1 m2
n1 n2
p1 p2
☆ L // sr nr Am Bn Cp 0
☆
1
2
r n1
r n2
A1 A2
B1 B2
C1C2
0
☆
L1
n
2 2
p
2 2
(2)两平面相交(夹角)
设 1 与 2 平面的法向量分别为nr1 ( A1, B1,C1 )与nr2 ( A2 , B2 ,C2 )
则
cos
A1 A2 B1 B2 C1C 2
A12
B12
C
2 1
A22
B22
C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 sr (m, n, p) , 平面 的法向量为
第七章 空间解析几何与 向量代数习题课
Ⅰ 向量代数
一、向量的基本概念
r 1.向量的坐标: a (ax , ay , az )
设起点 M1 ( x1 , y1 , z1 ) 和终点 M2( x2 , y2 , z2 ) ,则
uuuuuur M1M2 ( x2 x1, y2 y1, z2 z1)
(1)
F ( x, G( x,
y, y,
z) z)
0 0
在
xoy
面上的投影曲线:zH(
x, 0
y)
0
(2)
F ( x, G( x,
y, z) y, z)
0 0
在
yoz
面上的投影曲线:
R( y, z) x0
0
(3)
F ( x, G( x,
y, z) y, z)
0 0
在 xoz 面上的投影曲线:Ty(x0, z) 0
nr ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
设直线
L1与L2
的方向向量分别为
r s1
(m1 , n1 ,
p1 ),sr2
(m2 , n2 ,
p2 )
平面
1与
2
的法向量分别为
r n1
(
A1 ,
B1 , C1 ),
r r
r r
r p
r r
r q
r r
r r
pv 2 qv 2 rv 2 0 12 22 32 14
所以 p q r 14
解法2:因三向量两两垂直,故可在直角坐标系中设
pr
r i,
qr
r 2j,
rr
r 3k
则
r S
pr qr rr
rrr i 2 j 3k
于是
pv
qv
rv
r S
12 22 32
14
【例5】已知向量 xr ( x1, x2 , x3 )与三向量r (1,1, 0),
r
(0,1,1),
r
(1,
0,1)
的数量积分别为3,5,4,
试求向量 xr 及与其同向的单位向量。
分析:利用 xr 与每个 r, r,r 的数量积,可得出关于
x1 , x2 , x3的联立方程组,解之便得结果。
【例1】求平行于 x 轴且经过两点 (4,0,2),(5,1,7) 的平面方程。
ar
r i
3
r j
r 3k
模为 a 19,
方向余弦为 1 , 3 , 3 。 19 19 19
【例3】已知
ar,
r b,
cr
都是单位向量,且满足 ar
r b
cr
r 0
,
求
ar
r b
r b
cr
cr
ar
.
分析:向量
ar,
r b,
cr
的坐标没给出,也没给出之间的夹角,
无法利用数量积定义,只能考虑数量积运算规律。
其中 nr ( A, B,C) 为平面的法向量,M0( x0 , y0 , z0 ) 为平面的 一定点。 (2)一般方程:Ax By Cz D 0
(3)截距式方程:x y z 1 ,其中 a, b, c 分别为平面在
a bc
三坐标轴 x, y, z 上的截距。
2.点到平面的距离: d Ax0 By0 Cz0 D
62 (4)2 (4)2 2 17
【例7】 在 xOy 坐标平面上求向量 pr ,它垂直于向量 qr (5, 3, 4), 并与向量 qr 有相等的模。
分析: 先设出向量 pr ,再用两个条件确定其系数。
解:由已知条件,可设 pr (a, b, 0), q 52 (3)2 42 5 2
r b
axbx
ayby
azbz
(3)运算律:①
交换律:
ar
r b
r b
ar
②
分配律:(ar
r b)
cr
ar
cr
r b
cr
③
结合律:(
ar)