圆周运动综合练习题(有答案)
高中物理生活中的圆周运动专项训练100(附答案)及解析
高中物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos 4α=对小球进行受力分析得cos mgT α=解得:415T =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
第四章 第3讲 圆周运动 高三新高考练习题及答案解析
第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。
2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。
测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。
该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。
该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。
求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。
[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。
(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。
2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。
小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。
当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。
物理圆周运动经典习题(含详细答案)
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
高中物理必修二第六章圆周运动专项训练(带答案)
高中物理必修二第六章圆周运动专项训练单选题1、如图所示,在竖直杆上的A点系一不可伸长的轻质细绳,绳子的长度为l,绳的另一端连接一质量为m的小球,小球可看作质点,现让小球以不同的角速度ω绕竖直轴做匀速圆周运动,小球离A点的竖直高度为ℎ,重力加速度为g,下列说法正确的是()A.小球离A点的竖直高度ℎ与小球运动的角速度ω成正比B.小球离A点的竖直高度ℎ与小球运动的角速度ω成反比C.绳子的拉力与小球运动的角速度ω成正比D.绳子的拉力与小球运动的角速度ω的平方成正比答案:DAB.小球受力如图所示根据牛顿第二定律mg tanθ=mω2l sinθ解得ω=√gl cosθ=√gℎ得到ℎ=g ω2即ℎ与角速度的平方成反比,故AB错误;CD.绳子的拉力为T=mω2l sinθsinθ=mω2l即绳子的拉力与小球运动的角速度ω的平方成正比,故D正确, C错误。
故选D。
2、下列关于向心力的说法正确的是()A.物体由于做圆周运动而产生了向心力B.向心力就是物体受到的合力C.做匀速圆周运动的物体其向心力是不变的D.向心力改变做圆周运动的物体的速度方向答案:DA.物体做圆周运动就需要有向心力,向心力是由外界提供的,不是由物体本身产生的,选项A错误;B.匀速圆周运动中由合力提供向心力,变速圆周运动中合力与向心力是不同的,选项B错误;C.向心力始终指向圆心,方向时刻在改变,即向心力是变化的,选项C错误;D.向心力的方向与速度方向垂直,不改变速度的大小,只改变速度的方向,选项D正确。
故选D。
3、如图所示为时钟面板,当时钟正常工作时,关于时针、分针和秒针的转动,下列判断正确的是()A.时针的角速度最大B.秒针的周期最大C.分针尖端的线速度大于时针尖端的线速度D.时针、分针、秒针的转动周期相等答案:CBD.时针的周期为12h,分针的周期为1h,秒针的周期为160h,故BD错误;A.根据ω=2πT由于时针的周期最大,可知时针的角速度最小,故A错误;C.分针的周期小于时针的周期,则分针的角速度大于时针的角速度,根据v=ωr分针尖端的半径大于时针尖端的半径,故分针尖端的线速度大于时针尖端的线速度,故C正确。
高中物理第六章圆周运动典型例题(带答案)
高中物理第六章圆周运动典型例题单选题1、如图将红、绿两种颜色石子放在水平圆盘上,围绕圆盘中心摆成半径不同的两个同心圆圈。
圆盘在电机带动下由静止开始转动,角速度缓慢增加。
每个石子的质量都相同,(石子与圆盘间的动摩擦因数μ均相同。
则下列判断正确的是()A.红石子先被甩出B.红、绿两种石子同时被甩C.石子被甩出的轨迹一定是沿着切线的直线D.在没有石子被甩出前,红石子所受摩擦力小于绿石子的答案:DABD.由受力分析可知,由静摩擦力提供向心力,由牛顿第二定律可知f=mω2r知当角速度增大时,静摩擦力也增大,由于绿石子的半径大于红石子的半径,绿石子的的静摩擦力大于红石子的静摩擦力,且绿石子的静摩擦力先达到最大值,所以绿石子先被甩出,故AB错误,D正确;C.被甩出时做离心运动,轨迹为曲线,故C错误。
故选D。
2、杂技演员表演“水流星”,在长为0.8m的细绳的一端,系一个与水的总质量为m=0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4m/s,则下列说法正确的是(g=10m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5N答案:DABD.当水对桶底压力为零时有mg=m v2 r解得v=√gr=2√2m/s“水流星”通过最高点的速度为2√2m/s时,知水对桶底压力为零,不会从容器中流出;对水和桶分析,有T+mg=m v2 r解得T=5N知此时绳子的拉力不为零,AB错误,D正确;C.“水流星”通过最高点时,受重力和绳子的拉力,C错误。
故选D。
3、如图,在水平圆盘上沿半径放有质量均为m=3kg的两物块a和b(均可视为质点),两物块与圆盘间的动摩擦因数均为μ=0.9,物块a到圆心的距离为r a=0.5m,物块b到圆心的距离为r b=1m。
(完整版)圆周运动习题及答案
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
高中物理圆周运动练习题
1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。
高中物理必修二第6章_圆周运动练习题含答案
高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
高考物理生活中的圆周运动题20套(带答案)含解析
高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+6.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
2020年高考物理《圆周运动与动能定理的综合考查》专题训练及答案解析
高考物理《圆周运动与动能定理的综合考查》专题训练1.(2015·全国卷Ⅰ,17)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。
一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。
质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。
用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功。
则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离【答案】:C【解析】:根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR 2-mgR ,即克服摩擦力做功W =mgR2。
质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR 2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确。
2.如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。
质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgR B.13mgR C.12mgR D.π4mgR 【答案】 C【解析】 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有FN -mg =m v2R ,FN =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -Wf =12mv2,解得Wf =12mgR ,所以克服摩擦力做功12mgR ,C 正确。
物理生活中的圆周运动练习题20篇含解析
物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。
高中物理生活中圆周运动试题(有答案和解析)
高中物理生活中的圆周运动试题( 有答案和分析 )一、高中物理精讲专题测试生活中的圆周运动1.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小2.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.3.如下图,竖直平面内的圆滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止开释,自由着落至 A 点后进入圆形轨道,并能沿圆形轨道抵达 B 点,且抵达 B 处时小球对圆轨道的压力大小为mg,重力加快度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球经过 B 点后落到斜面上,h 应知足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【分析】【剖析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球走开 B 点做平抛运动,经时间t ,着落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球着落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰巧能经过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2能够证明小球经过 B 点后必定能落到斜面上设小球恰巧落到 D 点,小球经过 B 点时速度为 v2,飞翔时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应知足的条件为 3 R h 3R2【点睛】小球的运动过程能够分为三部分,第一段是自由落体运动,第二段是圆周运动,此机遇械能守恒,第三段是平抛运动,剖析清楚各部分的运动特色,采纳相应的规律求解即可.4.如下图,长为3l 的不行伸长的轻绳,穿过一长为l 的竖直轻质细管,两头分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平川面上。
圆周运动大全(附答案)
圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。
圆周运动高考题(含答案)
匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
新人教版高中物理必修二第六章《圆周运动》测试卷(含答案解析)
一、选择题1.某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方。
若甲、乙做匀速圆周运动的速度大小分别为1v和2v,经时间t乙第一次追上甲,则该圆的直径为()A.()212t v vπ-B.()122t v vπ+C.()21t v vπ-D.()12t v vπ+2.如图所示,竖直转轴OO'垂直于光滑水平桌面,A是距水平桌面高h的轴上的一点,A 点固定有两铰链。
两轻质细杆的一端接到铰链上,并可绕铰链上的光滑轴在竖直面内转动,细杆的另一端分别固定质量均为m的小球B和C,杆长AC>AB>h,重力加速度为g。
当OO'轴转动时,B、C两小球以O为圆心在桌面上做圆周运动。
在OO'轴的角速度ω由零缓慢增大的过程中,下列说法正确的是()A.两小球的线速度大小总相等B.两小球的向心加速度大小总相等C.当ω=gh时,两小球对桌面均无压力D.小球C先离开桌面3.我国将在2022年举办冬季奥运会,届时将成为第一个实现奥运“全满贯”国家。
图示为某种滑雪赛道的一部分,运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道。
若运动员从图中a点滑行到最低点b的过程中,由于摩擦力的存在,运动员的速率保持不变,对于这个过程,下列说法正确的是()A.运动员受到的摩擦力大小不变B .运动员所受合外力始终等于零C .运动员先处于失重状态后处于超重状态D .运动员进入圆弧形滑道后处于超重状态4.和谐号动车以80m/s 的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s 内匀速转过了约10︒。
在此10s 时间内,则火车( ) A .角速度约为1rad/s B .运动路程为800m C .加速度为零D .转弯半径约为80m5.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。
(完整版)匀速圆周运动练习题(附答案)
匀速圆周运动练习题一、选择题1.关于角速度和线速度,下列说法正确的是[]A。
半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比C。
线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比2。
下列关于甲乙两个做圆周运动的物体的有关说法正确的是[]A。
它们线速度相等,角速度一定相等 B.它们角速度相等,线速度一定也相等C。
它们周期相等,角速度一定也相等D。
它们周期相等,线速度一定也相等3.时针、分针和秒针转动时,下列正确说法是 [ ]A.秒针的角速度是分针的60倍B.分针的角速度是时针的60倍C。
秒针的角速度是时针的360倍D。
秒针的角速度是时针的86400倍4。
关于物体做匀速圆周运动的正确说法是 [ ]A.速度大小和方向都改变B.速度的大小和方向都不变C。
速度的大小改变,方向不变D。
速度的大小不变,方向改变5。
物体做匀速圆周运动的条件是[]A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用C。
物体有一定的初速度,且受到一个方向始终指向圆心的力的作用D。
物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用6.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为[]A. 1:4 B。
2:3 C。
4:9 D。
9:167。
如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是 [ ]A.受重力、拉力、向心力B。
受重力、拉力C。
受重力D。
以上说法都不正确8。
冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为[]9。
火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是 [ ]A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动综合练习题
1.汽车在半径为r的水平弯道上转弯,如果汽车与地面的滑动摩擦因数为μ,那么使汽车发生侧滑的最小速率为:( B )
A.rg;B.gr
μ。
μ;C.gμ;D.mg
2.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法中正确的是:( C )①小球线速度大小一定时线越长越容易断;②小球线速度大小一定时,线越短越容易断;
③小球角速度一定时,线越长越容易断;④小球角速度一定时,线越短越容易断。
A.①③;B.①④;C.②③;D.②④。
3.轻杆一端固定在光滑水平轴上,另一端固定一质量为m的小球,如图所示,
给小球一初速度,使其在竖直平面内运动,且刚好能通过最高点,下列说法正
确的是:(BD )
A.小球在最高点时对杆的作用为零;
B.小球在最高点时对杆的作用力大小为mg;
C.若增大小球的初速度,则在最高点时球对杆的力一定增大;
D.若增大小球的初速度,则在最高点时球对杆的力可能增大。
4.当汽车通过拱桥顶点的速度为5m/s时,车对桥顶的压力为车重的8/9,如果要使汽车在粗糙的桥面行使至桥顶时,不受摩擦力作用,则汽车通过桥顶的速度应为:( C )
A.5m/s;B.10m/s;C.15m/s;D.20m/s。
5.长为L的细线,一端系一个质量为m的小球,另一端固定于O 点。
当线拉着球在竖直平面内绕O点作圆周运动时刚好过最高点,则下列说法正确的是:(BC )
A .小球过最高点时速率为零;
B .小球过最低点时速率为gL 5;
C .小球过最高点时线的拉力为零;
D .小球过最低点时线的拉力为5mg 。
6.关于匀速圆周运动,下列说法正确的是:( C )
A .匀速圆周运动就是匀速运动;
B .匀速圆周运动是匀加速运动;
C .匀速圆周运动是一种变加速运动;
D .匀速圆周运动的物体处于平衡状态。
7.在匀速圆周运动中,下列关于向心加速度的说法中,正确的是:( A )
A .向心加速度的方向始终与速度的方向垂直;
B .向心加速度的方向保持不变;
C .在匀速圆周运动中,向心加速度是恒定的;
D .向心加速度的大小不断变化。
8.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须:( D )
A .减为原来的1/2倍;
B .减为原来的1/4倍;
C .增为原来的2倍;
D .增为原来的4倍。
9.质量为m 的飞机,以速率V 在水平面上作半径为R 的匀速圆周运动,空气对飞机的作用力大小等于:( D )
A .mg ;
B .R
V m 2; C .222g )R /v (m -; D .222g )R /v (m +。
10.当圆锥摆的摆长L 一定时,则圆锥摆运动的周期T 与摆线和竖直线之间夹角θ的关系是:( A )
A 、角θ越小,周期T 越长;
B 、角θ越小,周期T 越短;
C 、周期T 的长短与角θ的大小无关;
D 、条件不足,无法确定。
11.如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一
水平面内作匀速圆周运动,则它们的:( AC )
A. 运动周期相同;
B. 运动线速度一样;
C. 运动角速度相同;
D. 向心加速度相同。
12.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员:( BC )
A .受到的拉力为3G ;
B .受到的拉力为2G ;
C .向心加速度为3g ;
D .向心加速度为2g 。
13.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面内做匀速圆周运动,以下说法正确的是:( D )
A.V A >V B ;
B.ωA >ωB ;
C.a A >a B ;
D.压力N A >N B 。
14.长度为0.5m 的轻质细杆OA ,A 端有一质量为 3kg 的木球,以O 点为圆心,在竖直面内作圆周运动,如图所示,小球通过最高点的速度为 2m/s ,取g = 10 m/s 2,则此时球对轻杆的力大小是 6 ,方向向 上 。
15.如图所示,内壁光滑的半球形容器半径为R ,一个小球(视为质点)在容器内沿水平面做匀速圆周运动,小球与容器球心连线与竖直方向成θ
角,则小球做匀速圆周运动的角速度为 cos R g。
16.如右图所示,压路机后轮半径是前轮半径的 2倍,A 、B 分别为前
轮和后轮边缘上的一点,则A 、B 两点的角速度之比为ωA :ω B = 2:1 ,
线速度之比为V A :V B = 1:1 ,向心加速度之比a A :a B = 2:1
B
A
17.用长为L 的细线拴一个小球使其绕细线的加一端在竖直平面内做圆周运动,当球通过圆周的最高点时,细线受到的拉力等于球重的2倍,已知重力加速度为g ,则球此时的速度大小为
gL 3。
18.汽车沿半径为R 的圆形跑道匀速率行驶,设跑道的路面是水平的,使汽车做匀速圆周运动的向心力是路面对汽车的 静摩擦 力提供的,若此力的最大值是车重的0.1倍,跑道半径R=100 m ,g=10 m /s 2,则汽车速率的最大值不能超过 36 km /h .
19.汽车通过拱桥顶点的速度为10m/s 时,车对桥的压力为车重的3/4,如果使汽车行驶至桥顶时桥恰无压力,则汽车速度大小为 20 m/s 。
20.质量为m 的小球,沿着在竖直平面的圆形轨道的内侧运动,它经过最高点而不脱离轨道的最小速度是V ,当小球以2V 的速度经过最高点时,这对轨道的压力是 3mg 。
21.铁路转弯处圆弧半径为R,内外侧高度差为H,两轨间距L >H,列车转弯的最佳速率是
22h L Rh
-
22. 如图,已知绳长a =10
2m ,水平杆长b =0.1m ,小球质量m =0.3kg ,整个装置可绕竖直轴转动。
取2s /m 10g =
(1)要使绳子与竖直方向成450
(2)此时绳子对小球的拉力为多大?
解: (1). s /rad 25=ω;(2). 绳中拉力N 223F =
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,
感谢您的配合和支持)。