初中数学知识点精讲精析 全等三角形知识讲解
全等三角形(知识点讲解)
全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮
专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
初中数学知识归纳全等三角形
初中数学知识归纳全等三角形全等三角形是初中数学中的重要概念,它在几何学和实际问题中都有广泛的应用。
本文将对初中数学中与全等三角形相关的知识进行归纳总结,帮助读者更好地理解和应用全等三角形。
一、全等三角形的定义全等三角形是指具有相同形状和大小的三角形。
两个三角形全等的条件是:两边对应相等且夹角对应相等,或三边对应相等。
二、全等三角形的性质1. 全等三角形的对应边和对应角都相等。
2. 全等三角形的各边对应的中点连线互相平行,且长度相等。
3. 全等三角形的高、中线、角平分线等都互相平行,且长度相等。
4. 全等三角形的高度、中线、角平分线等的交点都在各个对应边上。
三、全等三角形的判定方法1. SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
2. SAS判定法:如果两个三角形的两边分别相等且夹角相等,则这两个三角形全等。
3. ASA判定法:如果两个三角形的两角分别相等且夹边相等,则这两个三角形全等。
4. AAS判定法:如果两个三角形的两个角分别相等且夹边的对应边相等,则这两个三角形全等。
5. RHS判定法:如果两个直角三角形的斜边和一个锐角分别相等,则这两个三角形全等。
四、全等三角形的应用1. 利用全等三角形的性质可以求解各种几何问题,如求线段长度、角度大小等。
2. 利用全等三角形的判定法可以帮助我们判断是否存在全等三角形,解决相应的几何问题。
3. 全等三角形在建筑、工程测量等实际问题中具有广泛的应用,如通过测量已知边长的三角形来计算未知边长的三角形。
五、常见的全等三角形1. 等腰三角形:如果一个三角形两边相等,则它是等腰三角形,等腰三角形的底角及顶角相等。
2. 等边三角形:如果一个三角形的三条边相等,则它是等边三角形,等边三角形的三个内角均为60°。
3. 直角三角形:如果一个三角形有一个角为90°,则它是直角三角形,直角三角形是全等三角形中常见的一种形式。
通过对初中数学中与全等三角形相关的知识进行归纳,我们可以更好地理解和应用全等三角形。
全等三角形知识点归纳
全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
初中数学知识点精讲精析 直角三角形全等的判定 (2)
2.8 直角三角形全等的判定学习目标1.探索两个直角三角形全等的条件。
2.掌握两个直角三角形全等的条件(HL )。
知识详解1.直角三角形全等的判定定理(Ⅰ)文字语言:斜边和一条直角边对应相等的两个直角三角形全等。
(角写为“HL ”) (Ⅱ)数学语言:在Rt △ABC 和Rt △A'B'C'''''AB AC AB C A ⎧=⎪⎨=⎪⎩∴Rt △ABC ≌Rt △A'B'C'(HL )说明:证明两个直角三角形全等时,一定要分清用判定定理“HL ”,还是用一般三角形全等的判定定理。
书写证明的格式也要注意区分,不要混淆。
2.定理的运用:“HL ”是直角三角形独有的判定定理,对于一般三角形不成立,“HL ”定理是直角三角形全等判定的补充。
3.角平分线的性质定理(Ⅰ)文字语言:角平分线上的点到这个角的两边的距离相等。
(Ⅱ)数学语言:∵OP 是∠AOB 的平分线PE ⊥OA 于E ,PD ⊥OB 于D∴PD =PE (角平分线性质)(Ⅲ)定理的作用:证明线段相等4.角平分线的判定定理(性质定理的逆命题)(Ⅰ)文字语言:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
(Ⅱ)数学语言:∵点P 在∠AOB 的内部PD ⊥OA 于DPE ⊥OB 于E∴点P 在∠AOB 的平分线上(角平分线的判定定理)(Ⅲ)定理的作用:证明角相等【典型例题】例1:1.已知:如图,A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE =BF ,AC =BD 求证:CF =DE 。
【答案】证明:因为AC ⊥CE ,BD ⊥DF所以∠ACE =∠BDF =90°在Rt △ACE 和Rt △BDF 中AE =BF (已知)AC =BD (已知)∴Rt △ACE ≌Rt △BDF (HL )∴∠A =∠B∵AE =BF∴AE+EF =BF+EF即AF =BE在△ACF 和△BDE 中AF BE A B AC BD =∠=∠=⎧⎨⎪⎩⎪()()()已证已证已知∴△ACF ≌△BDE (SAS )∴CF =DE【解析】证线段相等,通常利用三角形全等的性质证明,但往往证一次全等不能解决问题,本题利用两次全等实现了最终目的,第一次全等为第二次全等创造条件。
八年级上册数学《全等三角形》三角形全等 知识点整理
12.1全等三角形一、本节学习指导这一节我们来认识全等三角形,这一节我们要重点掌握三角形全等的表示方法,以及全等三角形的性质。
本节有配套学习视频。
二、知识要点1、全等形的概念:能够完全重合的两个图形叫做全等形。
注:完全能重合的图形那么固然:形状完全相同,大小固然相等,对应角也相等。
2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
用符号“≌”表示,读作:全等。
3、全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.注意:在写三角形全等的时候一定要把相对应角的顶点对应写,比如上图中写成△ABC ≌△A'B'C',而不能写成△ACB≌△A'B'C',因为C对应的是C’所以这种写法是错误的。
4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.6、全等三角形常见类型翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素三、经验之谈:本节开始我们学习全等三角形,全等三角形在初中几何中应用非常广泛,同学们要认真学习。
八年级数学上册《全等三角形》知识点梳理
千里之行,始于足下。
八年级数学上册《全等三角形》知识点梳理
1. 什么是全等三角形?
- 全等三角形指的是两个三角形的对应边长相等,对应角度也相等的三角形。
2. 全等三角形的性质和判定方法有哪些?
- 全等三角形的性质包括:对应边长相等,对应角度相等,对应线段相等,对应角平分线相等。
- 判定两个三角形全等的方法有:SSS 判定法(边边边)、SAS 判定法
(边角边)、ASA 判定法(角边角)和 HL 判定法(斜边直角边)。
3. 全等三角形的基本性质有哪些?
- 对应的边相等:若两个三角形全等,则它们的对应边长相等。
- 对应的角度相等:若两个三角形全等,则它们的对应角度相等。
- 对应的线段相等:若两个三角形的对应边相等,它们的对应线段(如中线、高线、角平分线等)也相等。
4. 如何应用全等三角形解题?
- 利用全等三角形的性质可以在图形中推导出其他线段和角度的长度或关系,从而解决各种三角形的问题。
第1页/共2页
锲而不舍,金石可镂。
- 典型的应用包括求角度的大小、线段长度的关系、面积的比较等。
5. 如何证明两个三角形全等?
- 根据要证明的条件选择合适的判定方法(SSS、SAS、ASA 或 HL)。
- 使用已知条件和全等三角形的性质,逐步推导出两个三角形的对应边长和对应角度相等。
- 利用已知条件的等式和全等三角形的性质,一步一步证明两个三角形全等。
注意:以上为八年级数学上册《全等三角形》的知识点梳理,具体内容可能与教材有所差异,建议参考教材进行学习。
全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册
专题12.7全等三角形的判定(HL)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】直角三角形全等的判定方法——斜边、直角边(HL)(1)判定方法:斜边和一条直角边分别对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).(2)书写格式:如图,在Rt△ABC 和△Rt DEF 中,AB DE AC DF=⎧⎨=⎩ABC DEF ∴∆≅∆(HL)【知识点二】判定两个直角三角形全等的方法判定一般三角形全等的方法对判定两个直角三角形全等全部适用,因此我们可以根据“HL”“SSS”“SAS”“ASA”“AAS”这五种方法来判定两个直角三角形全等.【知识点三】判定两个直角三角形全等的思路(1)已知一条直角边对应相等,可用判定方法“SAS”“HL”“ASA”或“AAS”;(2)已知斜边对应相等,可用判定方法“HL”“AAS”;(3)已知一锐角对应相等,可用判定方法“ASA”或“AAS”.第二部分【题型展示与方法点拨】【题型1】用“HL”证明直角三角形全等【例1】(23-24八年级上·广西南宁·期中)已知,如图,点A 、E 、F 、B 在同一条直线上,CA AB ⊥,DB AB ⊥,AE FB =,CF DE=(1)求证:CAF DBE ≌ ;(2)若25AFC ∠=︒,求D ∠的度数【变式1】如图,已知AB BD ⊥,CD BD ⊥,若用HL 判定Rt △ABD 和Rt BCD 全等,则需要添加的条件是()A .AD CB =B .AC ∠=∠C .BD DB =D .AB CD=【变式2】(23-24八年级上·北京朝阳·阶段练习)如图,BD CF =,FD BC ⊥于点D ,DE AB ⊥于点E ,BE CD =,若145AFD ∠=°,则EDF ∠=.【题型2】全等的性质与“HL”综合【例2】(23-24八年级下·山东青岛·期中)已知:如图AD 为ABC 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =,ED CD =.(1)问BF 与AC 的数量和位置关系分别是什么?并说明理由.(2)直接写出ABC ∠的度数.【变式1】(23-24八年级上·山东菏泽·期末)如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,EF AB ⊥于点F ,交AC 于点E ,BC BF =,连接BE 交CD 于点G .下列结论:①CE EF =;②CG EF =;③BGC AEB ∠=∠.其中正确的有()A .0个B .1个C .2个D .3个【变式2】(23-24八年级上·吉林·期末)如图,在ABC 中,M 为边BC 的中点,ME AB ⊥于点E ,MF AC ⊥于点F ,且BE CF =.若25BME ∠=︒,则A ∠=°.【题型3】全等三角形的综合问题【例3】(23-24七年级下·广东佛山·阶段练习)如图,ABC 中,AC AB >,D 是BA 延长线上一点,点E 是CAD ∠的平分线上一点,过点E 作EF AC ⊥于F ,EG AD ⊥于G .(1)求证:EGA EFA ≌△△;(2)若2BEC GEA ∠=∠,3AB =,5AC =,求AF 的长.【变式1】(23-24八年级上·河北保定·期末)如图,EB 交AC 于点M ,交FC 于点D ,90E F ∠=∠=︒,B C ∠=∠,AE AF =,给出下列结论:12∠=∠①;②BE CF =;③ACN ABM ≌;CD DN =④,其中正确的有()A .①②③B .①②④C .①③④D .②③④【变式2】(23-24八年级上·江苏南京·阶段练习)如图,ABC 中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,EF BC ∥,以下四个结论:①AH EF ⊥,②ABF EFB ∠=∠,③AF BE =,④E ABE ∠=∠.正确的是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·陕西·中考真题)如图,在ABC 中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.【例2】(2023·山东·中考真题)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于()A .180α︒-B .1802α︒-C .90α︒+D .902α︒+2、拓展延伸【例1】(23-24八年级上·广东汕头·期中)如图,从点O 引射线OM ,ON ,点A ,B 分别在射线OM ,ON 上,点C 为平面内一点,连接AC ,BC ,有ACB O ∠=∠.(1)如图1,若AO BC ∥,则AC 和ON 的位置关系是______;(2)如图2,若ABC ABO ∠=∠,AC OM ⊥,请求出CBD ∠和O ∠的度数的等量关系式;(3)在(2)的条件下,过点C 作CD OM ∥交射线ON 于点D ,当8CDN CBD ∠=∠时,求ABC ∠的度数.【例2】(22-23九年级下·山东滨州·期中)(1)如图1,在四边形ABCD 中,120AB AD BAD =∠=︒,,90ABC ADC ∠=∠=︒,且60EAF ∠=︒,求证:EF BE FD =+.(2)如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E F 、分别是BC CD 、上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.。
全等三角形知识点
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
全等三角形常见模型知识点总结和重难点精析
全等三角形常见模型知识点总结和重难点精析一、概述全等三角形是八年级数学中的重要内容,它涉及到三角形的边、角以及它们的性质和定理。
全等三角形的定义、性质和应用场景对于学生来说是非常重要的基础知识。
在实际问题中,全等三角形常常被用来解决几何问题,例如测量、建筑设计等。
二、基础知识点1、全等三角形的定义:能够完全重合的两个三角形称为全等三角形。
2、全等三角形的性质:a) 全等三角形的对应边相等;b) 全等三角形的对应角相等;c) 全等三角形的周长和面积都相等。
3、全等三角形的判定方法:a) 边边边(SSS):三边对应相等的两个三角形全等;b) 边角边(SAS):两边及其夹角对应相等的两个三角形全等;c) 角边角(ASA):两角及其夹边对应相等的两个三角形全等;d) 角角边(AAS):两角及其一角的对边对应相等的两个三角形全等。
三、重难点精析1、易错点:在实际应用中,学生常常会忽视全等三角形的对应关系,导致解题错误。
因此,在应用全等三角形时,一定要明确对应关系。
2、难点解析:对于一些较为复杂的几何问题,如何准确找到全等三角形并选择合适的判定方法进行证明,是学生的难点。
这种情况下,需要学生通过多练习、多思考来提高解题能力。
四、例题精选例1:已知△ABC≌△DEF,其中AB=DE,∠A=∠D,∠B=∠E,则第三组对应边为____,对应角为____。
解析:根据全等三角形的性质,可知第三组对应边为AC=DF,对应角为∠ACB=∠F。
例2:在△ABC中,AB=AC,点D在BC上,且AD=BD,AC=CD,求△ABC各角的度数。
解析:设∠BAC=x,∵AB=AC,∴∠B=∠C=90°-x/2.又∵AD=BD,∴∠BAD=∠BDA=90°-x/4.∵AC=CD,∴∠CAD=∠CDA=90°-x/2.∵∠BAC+∠B+∠C=180°,∴x+3×(90°-x/2)=180°,解得x=45°。
初中数学全等三角形精讲共9页
七年级数学三角形精讲[知识点归纳总结]1. 三角形的三边之间的关系三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。
2. 三角形的内角和三角形三个内角的和等于180°。
3. 三角形全等的条件(1)三边对应相等的两个三角形相等,简写为“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”。
4. 全等三角形的性质全等三角形的对应角相等,对应边相等。
5. 三角形的外角性质三角形的一个外角等于和它不相邻的两个内角的和。
专题总复习(一)全等三角形、轴对称一、复习目标:1、理解全等三角形概念及全等多边形的概念.2、掌握并会运用三角形全等的判定和性质,能应用三角形的全等解决一些实际问题.3、通过复习,能够应用所学知识解决一些实际问题,提高学生对空间构造的思考能力.二、重难点分析:1、全等三角形的性质与判定;2、全等三角形的性质、判定与解决实际生活问题.三、知识点梳理:知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.知识点九:全等三角形中几个重要的结论.(1)全等三角形对应角的平分线相等;(2)全等三角形对应边上的中线相等;(3)全等三角形对应边上的高相等.知识点十:三角形中常见辅助线的作法.(重难点)(1)延长中线构造全等三角形(倍长线段法);(2)引平行线构造全等三角形;(3)作垂直线段(或高);(4)取长补短法(截取法).【典型例题】例1. 已知:如图,△ABC中,AB=AC,D、E、F分别在AB、BC、CA上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形知识点总结
全等三角形知识点总结一、全等三角形的概念1. 定义- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
- 例如,△ABC与△DEF全等,记作△ABC≌△DEF,其中A与D、B与E、C与F 是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C 与∠F是对应角。
2. 全等三角形的性质- 对应边相等:若△ABC≌△DEF,则AB = DE,BC = EF,AC = DF。
- 对应角相等:∠A=∠D,∠B = ∠E,∠C=∠F。
- 全等三角形的周长相等,面积相等。
因为全等三角形的对应边相等,所以它们的周长(三边之和)相等;又因为对应边和对应角都相等,根据三角形面积公式(如S=(1)/(2)ahsin B等多种公式都可推出),其面积也相等。
二、全等三角形的判定1. SSS(边边边)判定定理- 内容:三边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 作用:可以用来证明两个三角形全等,当已知两个三角形的三边长度分别相等时,就可以直接判定它们全等。
2. SAS(边角边)判定定理- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
这里要注意必须是两边及其夹角,不能是两边及其中一边的对角。
- 作用:在已知三角形两边长度和它们夹角大小的情况下,用于判定三角形全等。
3. ASA(角边角)判定定理- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果∠A = ∠D,AB = DE,∠B = ∠E,那么△ABC≌△DEF。
- 作用:当知道两个三角形两角及其夹边相等时,可判定全等。
4. AAS(角角边)判定定理- 内容:两角和其中一角的对边对应相等的两个三角形全等。
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
初中数学知识点精讲精析 全等三角形的判定定理
第4节全等三角形的判定定理要点精讲1.三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
典型例题【例1】已知:如图所示,△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE.CD.(1)求证:△AGE≌△DAC;(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.【答案】△AEF是等边三角形【解析】(1)∵△ABC是等边三角形∴AB=AC,∠BAC=∠ABC=∠ACB=60°∵EG∥BG,∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°∴△ADG是等边三角形,∴AD=DG=AG∵DE=DB,∴EG=AB,∴GE=AC在△AGE和△DAC中∵EG=AB=CA∠AGE=∠DAC=60° AG=DA∴△AGE≌△DAC(2)如图,连结AF,则△AEF是等边三角形.∵EG∥BC,EF∥DC∴四边形EFCD是平行四边形∴EF=DC,∠DEF=∠DCF∵△AGE≌△DAC ∴AE=CD∠AED=∠ACD∵EF=CD=AE ,∠AED+∠DEF=∠ACD=∠DCB=60°∴△AEF 是等边三角形【例2】已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D【答案】∵∠EAB =∠CAD (已知)∴∠EAB +∠BAD =∠CAD +∠BAD即∠EAD =∠BAC在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴∠B =∠D (全等三角形的对应角相等)【解析】先证三角形全等,然后利用全等三角形的对应角相等A B A D E A D B A C A C A E ⎧⎪∠∠⎨⎪⎩===(已知)(已证)(已知)。
全等三角形知识点总结
全等三角形知识点总结和重难点精析
引言
全等三角形是八年级数学中的重要内容,它不仅在中考中占有重要地位,而且在日常生活中的应用也十分广泛。
本篇文章将带领大家梳理全等三角形的知识点,剖析其中的重点和难点,并通过实例来加深大家对全等三角形的理解。
概述
全等三角形是指能够完全重合的两个三角形,它们的三条边长和三个角都相等。
判断两个三角形是否全等的方法是通过比较边长和角度的大小。
全等三角形有以下性质:
1、全等三角形的对应边相等。
2、全等三角形的对应角相等。
3、全等三角形的周长和面积相等。
重难点精析
1、相似比较:相似三角形是全等三角形的一种特殊情况,它们的三条边长成比例,但角度相等。
在判定两个三角形是否相似时,需要注意对应角度相等这一条件。
2、周长定理:全等三角形的周长相等。
这个定理很容易被忽视,但实际上在解决一些几何问题时很有用。
3、面积计算:全等三角形的面积相等。
这个性质在解决实际问题时也非常重要,例如在计算不规则图形的面积时,我们可以将其分
割成多个全等三角形,然后计算每个三角形的面积并相加。
解决方法
为了更好地掌握全等三角形这部分内容,建议大家做到以下几点:
1、熟练掌握全等三角形的定义和性质,尤其是对应边和对应角的关系。
2、学会运用全等三角形的性质解决实际问题,例如在计算周长和面积时。
3、对于一些难以理解的概念和定理,可以通过画图、实际操作等方式加深理解。
八年级数学上册“第十二章全等三角形”必背知识点
八年级数学上册“第十二章全等三角形”必背知识点一、全等三角形的基本概念1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2. 对应边和对应角:全等三角形中互相重合的边和角分别称为对应边和对应角。
3. 对应顶点:全等三角形中互相重合的顶点称为对应顶点。
二、全等三角形的性质1. 对应边相等:全等三角形的对应边相等。
2. 对应角相等:全等三角形的对应角相等。
3. 其他性质:全等三角形的周长和面积也相等;对应边上的高、中线、角平分线分别相等;对应角的三角函数值相等。
三、全等三角形的判定定理全等三角形的判定定理是本章的核心内容,主要包括以下几种:1. SSS(边边边):三边分别相等的两个三角形全等。
2. SAS(边角边):两边和它们的夹角分别相等的两个三角形全等。
3. ASA(角边角):两角和它们的夹边分别相等的两个三角形全等。
4. AAS(角角边):两个角和其中一个角的对边分别相等的两个三角形全等。
5. HL(直角三角形的斜边、直角边):在直角三角形中,斜边和一条直角边分别相等的两个直角三角形全等。
四、找全等三角形的方法1. 从结论出发:看要证明相等的两条线段 (或角)分别在哪两个可能全等的三角形中。
2. 从已知条件出发:看已知条件可以确定哪两个三角形相等。
3. 综合考虑:从条件和结论综合考虑,看它们能一同确定哪两个三角形全等。
4. 添加辅助线:若上述方法均不行,可考虑添加辅助线,构造全等三角形。
五、角平分线的性质1. 性质定理:角平分线上的点到角的两边的距离相等。
2. 逆定理:角的内部到角的两边距离相等的点在角的平分线上。
六、注意事项1. 在应用判定定理时,必须注意对应边和对应角的对应关系,不能随意搭配。
2. 证明两个三角形全等时,必须明确写出判定定理的依据,并写出完整的证明过程。
3. 注意区分全等三角形和相似三角形的判定条件,不要混淆。
通过掌握以上知识点,可以更好地理解和应用全等三角形的相关概念和性质,解决与全等三角形相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.11·1 全等三角形
要点精讲
1. 全等形和全等三角形
能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形;两个三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.“全等”用符号“”来表示,读作“全等于”.
注:
(1)全等三角形①形状、大小相同;②能够完全重合.
(2)记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上.
2. 全等三角形的性质:
(1)全等三角形的对应边相等;
(2)全等三角形的对应角相等.
注:寻找对应边、对应角的方法、规律
(1)有公共边的,公共边一定是对应边;
(2)有公共角的,公共角一定是对应角;
(3)有对顶角的,对顶角一定是对应角;
(4)两个全等三角形中一对最长的边(或最大的角)是对应边(角),一对最短的边(或最小的角)是对应边(或角),等.
3.全等变形
只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.全等变换包括以下三种:
(1)平移变换: 把图形沿某条直线平行移动;
(2)对称变换:将图形沿某直线翻折;
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置.
注:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变化,即平移、翻折、旋转前后的图形全等. 在全等三角形中,我们把互相重合的边或角,叫做对应边或对应角. 重合的顶点叫做对应点. 全等用符号“≌”表示,“∽”表示形状相同,“=”表示大小相等,合起来就是全等.
典型例题
例1. 如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,指出其他的对应边和对应角.
180
分析:先将△ABE 和△ACD 从复杂的图形中分离出来,找对应边(角)只能从这两个三角形中找,因为∠B =∠C ,∠1=∠2,所以另外一个角是对应角,它们所夹的边是对应边,对应角对的边是对应边.
解析:对应角有:∠BAE 和∠CAD ;对应边有:AB 和AC ,AE 和AD ,BE 和CD. 评析:做题时,按对应顶点的顺序写出“△ABE ≌△ACD ”,按字母的对应位置写出对应边:AB 与AC ,AE 与AD ,BE 与CD ;类似的,可写出它们的对应角,能有效地防止出错.
例2.如图所示,已知AB =CD ,BE =DF ,△ABE ≌△CDF ,求证:AB ∥CD ,AE ∥CF.
分析:要证明两直线平行,常用方法是用平行线的判定定理,要使AB ∥CD ,只要∠ABE =∠CDF ,而这两个角是△ABE 和△CDF 的一对对应角,至于AE 与CF 的平行,只需∠AED =∠CFB ,这两个角不在△ABE 和△CDF 中,但却是∠AEB 与∠CFD 的邻补角. 证明:△ABE ≌△CDF ,AB =CD ,BE =DF
∴∠ABE =∠CDF
∠AEB =∠CFD (全等三角形的对应角相等)
∴AB ∥CD (内错角相等,两直线平行)
而∠AED =180°-∠AEB
∠CFB =180°-∠CFD
∴∠AED =∠CFB (等角的补角相等)
则AE ∥CF
评析:全等三角形对应边相等,可应用于边的相互转化. 对应角相等可以用于角度转化.
A
B C
D E 1
2。