数学建模案例分析3-随机性人口模型--概率统计方法建模
数学建模 人口模型

中国人口增长预测模型的建立与分析摘要针对我国人口发展过程中出现的老龄化进程加快,出生人口性别比持续升高,乡村人口城镇化的新特点,我们基于LESLIE 矩阵,着重考虑城镇与乡村间的人口迁移及女性人口比例变化对我国人口增长的影响,经过两次改进建立了便于计算机求解的差分方程模型,对我国2005年以后45年的人口增长进行了预测。
随后利用时间段参数设置法,对差分方程模型又进行了一次改进。
然后运用等维灰色系统预测法对该差分方程模型的中短期预测进行了检验,同时根据2001年人口基本数据运用此模型对2001年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2020年、2021~2035年、2036~2050年三个区间,以量化短期、中期与长期。
通过调整模型中相关参数及输入条件,定量地分析了男女性别比例、老龄化和乡村人口城镇化对我国人口增长的影响。
预测结果表明,从短期来看,我国的出生性别比变化不明显,将在短期内维持基本不变,老龄化进程在15年内在上升了8个百分点,人口扶养比持续升高,这将加重我国的人口压力,乡村人口城镇化水平进展缓慢;从中期来看,总人口性别比将保持在1与1.1之间,老龄化进程将呈线性增加趋势,乡村人口城镇化水平将持续发展;从长期来看,老龄化进程将在2035到2045年经历老龄人口高峰平台,老龄人口比重在0.3以上,育龄妇女人数持续下降,总人口数将在2023年达到峰值14.05亿。
关键词:LESLIE矩阵,人口预测,性别比例,城镇化,老龄化,灰色系统预测一、问题的重述人口问题是中国社会发展的重要问题,对中国人口的中长期预测有助于政府制定相应的政策保持中国的长治久安。
现需要解决的问题如下:1.主要根据2001~2005年的人口统计数据,对中国人口增长的中短期和长期趋势作出预测,特别要关注老龄化,出生人口性别比及乡村人口城镇化等因素。
2.指出所建模型的优点和不足之处。
数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
数学建模中的概率统计方法选讲

数学建模中的概率统计方法选讲案例一:常用分布及中心极限定理与“DVD 在线租赁”问题(2005B )“DVD 在线租赁”为2005年全国大学生建模竞赛的B 题,原题参见附件中的文件“2005B ”。
现考虑问题(1):网站正准备购买一些新的DVD ,通过问卷调查1000个会员,得到了愿意观看这些DVD 的人数(表1给出了其中5种DVD 的数据)。
此外,历史数据显示,60%的会员每月租赁DVD 两次,而另外的40%只租一次。
假设网站现有10万个会员,对表1中的每种DVD 来说,应该至少准备多少张,才能保证希望看到该DVD 的会员中至少50%在一个月内能够看到该DVD ?如果要求保证在三个月内至少95%的会员能够看到该DVD 呢?问题(1)的分析与求解:可以通过“点估计”的方法,得到抽样的1000名会员租赁上述5种DVD 的概率为● 通过1000个样本来推断10万个会员的“总体”: 假设随机变量,否则种个会员租第第⎩⎨⎧=,0,1DVDj i ij ξ 其中10000,...,2,1=i . 显然,ij ξ服从两点分布,即j ij p P ==)1(ξ,而上表就给出了这些概率的估计值。
进一步,设∑==Ni ij j 1ξη,10000=N ,即表示10000人中愿意租赁第j 张DVD 的人数,显然,随机变量),10000(~j j p B η。
● 由De Moivre —Laplace 中心极限定理,如果准备了)5.0(j E η张DVD ,则满足至少jη5.0人看到该DVD 的概率(可靠性)为5.0)0(}0)5.0()5.0(5.0{)}5.0(5.0{=Φ≈≤-=≤j j j j j D E P E P ηηηηη显然,为了增加右边的可靠性,比如,增加到0.99,则由等式99.0)33.2(})5.0()5.0()5.0()5.0(5.0{}5.0{=Φ≈-≤-=≤j j j j j j D E X D E P X P ηηηηηη,可知)1(100002133.25000)5.0(33.2)5.0(j j j j j p p p D E X -⨯⨯+=+=ηη如何考虑“60%的会员每个月会租赁DVD 两次,40%的会员每个月会租赁DVD 一次”的问题?方法一:10万人的60%为6万人,每个月租赁两次,即12万次;40%为4万人,每月租赁一次,即4万次,合计每月有16万人次的租赁,对于第j 张DVD ,能否类似地假设为∑==Mi ij j 1ξη,16000=M ,而且随机变量),16000(~j j p B η,然后再求?答案是否定的,因为),16000(~j j p B η不再成立。
数学建模之随机性模型与模拟方法

使用前者的好处在于能精确地叙述变量的概率,在 处理问题时可以充分发挥数理统计的作用。但这一 好处把所求模式制约在了处理简单情形。随着复杂 性的增加,数学就变的太难。使用后者的好处在于 模型时基于观测到的数据而不是基于假设之上。增 加复杂性并不成为一大障碍,但我们不再能利用数 理统计而得求助于模拟以及模型的统计结果。 在建立随机性模型时,首先要注意,将要处理的是 离散还是连续的随机变量。 1、离散随机变量 离散随机变量的理论模型是由概率函数 p x P X x 来刻画的。这个式子说明随机变量 X 取值 x 时的概 率。对于离散型的随机变量有下面三种重要的分布
2 1
(1)均匀分布
设连续型随机变量 X 具有概率密度
a xb 其他
1 , f ( x) b a 0,
则称 X 在区间(a,b)上服从均匀分布。 在区间(a,b)上服从均匀分布的随机变量 X ,具 有下述意义的等可能性,即它落在区间(a,b)中任 意等长度的子区间内的可能性是相同的,或者说它落 在子区间内的概率只依赖于子区间的长度而与子区间 的位置无关。 (2)正态分布 设连续型随机变量 X 的概率密度为 x 2 1 2 2 f ( x) e , x 2 其中 , 0 为常数,则称X 服从参数为 , 的
设一共投掷 n 次( n 是一个事先选好的相当大 的自然数),观察到针和直线相交的次数为 m 。
从上式我们看到,当比值 l / a不变时, p 值始终 不变。取 m /nn为 p 的近似值,我们可以算出 的 m 近似值。可以想象当投掷次数越来越多时计算的结 果就越来越准确。下表时这些实验的有关资料 (此 处把 a 折算为1):
数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。
然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。
数学建模方法之概率统计分析法

Obs
Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 1 -0.38118 -0.32367 -0.04450 0.30363 0.00430 0.06437 2 0.57795 -0.35416 0.49279 0.55119 -0.18726 0.17414 3 0.69219 -0.21588 0.40557 0.40041 -0.10461 0.05393 4 0.22635 -0.39419 0.27521 0.63296 0.13851 -0.06481 5 -0.82981 -0.40293 0.47330 -0.42964 -0.55401 -0.35020 6 -1.19410 -0.40627 -0.36848 0.14000 0.02221 0.01063 7 -1.63568 -0.26394 -0.67179 -0.15189 0.01702 -0.03769 8 0.95195 -0.46156 1.61851 -0.92520 0.08394 0.25530 9 0.46501 -0.14888 0.19070 0.16273 -0.30327 0.20883 10 -1.45693 -0.18670 -0.55658 -0.17088 -0.10267 -0.00922 11 -0.29401 3.71727 -0.02727 -0.02382 -0.06419 0.03517 12 0.08041 0.22542 1.71694 0.12718 0.45539 -0.26668 13 -2.11628 -0.16312 -0.90179 -0.16784 0.14422 -0.03334 14 -0.94513 -0.31477 -0.39513 0.09760 0.11375 -0.03132 15 6.74015 -0.06989 -1.12895 -0.16618 0.04080 -0.11394 16 -0.88090 -0.23673 -1.07853 -0.38025 0.29589 0.10482
数学建模概率模型案例

数学建模概率模型案例概率模型是数学建模的重要工具之一,广泛应用于各个领域。
以下是一个基于概率模型的数学建模案例。
问题描述:医院的急诊科接诊员需要根据患者的症状来判断是否需要进行心电图检查。
根据以往的医疗记录,我们知道有一种患者患有心脏病的概率是0.1,有心脏病的患者在进行心电图检查时有90%的准确率,没有心脏病的患者在进行心电图检查时有95%的准确率。
急诊科接诊员在给患者进行评估时会根据患者的症状判断是否需要进行心电图检查,但出于经济和时间的考虑,每天只能对20%的患者进行心电图检查。
问题分析:在这个问题中,我们需要建立一个概率模型来评估患者是否需要进行心电图检查。
我们需要考虑两个因素:患者是否有心脏病以及是否进行了心电图检查。
建立概率模型:1.定义事件:-A:患者有心脏病-B:患者进行了心电图检查-C:急诊科接诊员推荐患者进行心电图检查2.计算概率:-P(A)=0.1,患者有心脏病的概率-P(A')=0.9,患者没有心脏病的概率-P(B,A)=0.9,有心脏病的患者进行心电图检查的准确率-P(B,A')=0.95,没有心脏病的患者进行心电图检查的准确率3.根据贝叶斯定理计算后验概率:-P(A,B)=P(B,A)*P(A)/P(B)-P(A',B)=P(B,A')*P(A')/P(B)4.根据给定条件计算先验概率:-P(B)=P(B,A)*P(A)+P(B,A')*P(A')5.根据条件概率计算P(C,B):-P(C,B)=P(C,B)/P(B)进一步分析:根据模型,我们可以进行一些进一步的分析。
1.如果患者没有进行心电图检查,根据模型我们可以计算出他是否有心脏病的概率。
2.如果患者进行了心电图检查,根据模型我们可以计算出他有心脏病的概率。
3.根据模型的输出,急诊科接诊员可以根据患者的症状和推荐指标来判断是否进行心电图检查。
总结:这个案例展示了如何建立一个基于概率模型的数学建模问题。
数学建模人口模型

摘要以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。
13亿是一个忧虑的数字。
13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。
平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。
当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。
(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。
(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。
人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。
在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。
对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。
政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。
我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。
随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。
我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划的重要依据。
数学建模 概率统计模型

日常生活中经常遇到的一类问题。它是现代
企业管理的核心问题,贯穿于整个企业管理
的始终。本节将首先简要说明决策的概念和
分类,然后介绍风险型和不确定型决策模型
及其应用。
数
学
4.1.1 决策的概念和类型
建
模
所谓决策,就是从多个备选方案中,选择一个
最优的或满意的方案付诸实施。
例4.1.1(展销会选址问题) 某公司为扩大市场,要举办一个产品展销
会,会址打算选择甲、乙、丙三地,获利情 况除了与会址有关外,还与天气有关,天气 分为晴、阴、多雨三种,据天气预报,估计 三种天气情况可能发生概率为0.2,0.5,0.3 其收益情况见表4.4.1,现要通过分析,确定 会址,使收益最大。
数 学
建 决策问题通常包含以下要素:
模
1.决策者 2.决策的备选方案或策略A1 , A2,…,Am 3.决策准则,即衡量所选方案正确性的标准。对
数学建模
(Mathematical Modeling)
数 学 建 模
概率统计模型
数
学
建
概率统计模型
模
决策模型
报纸零售商最优购报问题
经济轧钢模型
线性回归模型
排队论模型 建模举例
重点:概率统计模型的建立和求解 难点:概率统计模型的基本原理及数值计算
数
学 建
4.1 决策模型
模
决策问题是人们在政治、经济、技术和
其最大值50对应的行动方案为A1 ,因此用乐观 法的决策结果是执行策略A1 。
数 学
建 解 悲观法:因为每个行动方案在各种状态下的
模 最大效益值为
minj{a1j } min{50,10,5} 5
minj{a2j } min{30,25,0} 0
人口模型数学建模

人口模型数学建模随着人口快速增长和城市化进程的加速,人口问题越来越受到大众的关注,国家也在不断地为解决人口问题做出努力。
而在这个过程中,数学建模作为一种有效的工具正逐渐地被应用于人口模拟的研究中,而人口模型也成为了当前人口研究中最常见的方法之一。
本文将从什么是人口模型以及它的意义入手,再从人口增长模型、人口结构模型和人口流动模型三个方面介绍人口模型数学建模的相关内容,并探讨该领域的未来发展方向。
一、什么是人口模型以及它的意义人口模型是一种模拟人口数量和结构变化的方法,通过对人口数量、人口结构、人口增长和流动等关键因素进行分析和预测,来探究人口变化对社会、经济和环境等方面的影响。
而人口模型对解决实际问题具有十分重要的意义。
首先,它可以为政府制定人口政策、规划新城市、解决社会问题提供科学依据。
以我国为例,随着我国人口老龄化和人口流动的不断加剧,建立人口模型对于科学合理地规划人口方向和政策具有十分重要的意义。
其次,人口模型也可以为社会科学领域的研究提供参考,如人口迁移模型可以应用于研究人口迁移与城市结构的关系,对我国城市规划和发展的促进有重要意义。
二、人口增长模型人口增长模型是指通过对人口出生率、死亡率和人口迁移情况等因素进行计算,预测未来人口数量的变化和趋势。
在国家战略制定和人口规划中,人口增长模型是一个很重要的组成部分。
目前,应用最为广泛的人口增长模型包括基本增长模型、Malthus人口增长模型、Logistic人口增长模型和竞争性Lotka-Volterra模型等。
其中,基本增长模型是简单的指数函数,反映了人口随时间的指数增长趋势。
而Logistic人口增长模型则认为人口增长具有一定的饱和性,人均出生率一定的情况下,人口数量将趋于稳定。
三、人口结构模型人口结构模型是指通过对人口各年龄段、性别、职业、教育程度和收入等方面的分布进行计算,来了解人口的组成和各组成部分的数量变化趋势。
其中,最为经典的人口结构模型就是李约瑟模型。
数学建模中的随机模型

数学建模中的随机模型在数学建模中,随机模型是一种重要的方法,用于描述及预测现实世界中的不确定性和随机性。
本文将介绍随机模型的基本概念、应用范围以及常见的建模方法。
一、随机模型的基本概念随机模型是一种基于概率论和统计学的模型,用于描述具有不确定性和随机性的系统。
它通常涉及随机变量、概率分布以及随机过程等概念。
随机变量代表系统中的不确定性因素,概率分布则描述了随机变量的可能取值及其出现的概率。
随机过程则是描述随机现象随时间的变化。
二、随机模型的应用范围随机模型在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 金融领域:在金融数据分析中,随机模型能够用于预测股市的波动、计算期权的价格、评估风险等。
2. 生物医学:在生物医学领域,随机模型可用于建立生物系统的动力学模型,研究细胞生长、传染病传播等问题。
3. 交通运输:随机模型可以用于优化交通信号配时、研究交通拥堵的产生与演化规律,提高交通运输效率。
4. 气象科学:利用随机模型,可以预测气象变化趋势、研究气候变化等问题,为气象灾害预警提供科学依据。
5. 环境保护:在环境保护领域,随机模型可以用于模拟污染物的扩散传播、评估环境风险等。
三、常见的随机模型建模方法在数学建模中,常用的随机模型建模方法包括概率统计方法、随机过程建模方法以及蒙特卡洛模拟等。
1. 概率统计方法:这是最基本的建模方法,通过对系统中的观测数据进行统计分析,建立概率分布模型。
常用的分布包括正态分布、泊松分布、指数分布等。
2. 随机过程建模方法:随机过程是描述随机现象随时间的演化规律的数学模型。
常用的随机过程包括马尔可夫链、布朗运动、扩散过程等。
通过建立随机过程模型可以更好地描述系统的动态行为。
3. 蒙特卡洛模拟:这是一种基于概率统计的数值模拟方法,通过随机抽样和统计分析来模拟系统的行为。
蒙特卡洛模拟可用于求解复杂的数学问题,比如计算π的值、模拟金融市场波动等。
四、随机模型的局限性及发展方向随机模型在实际应用中存在一定的局限性,例如对于复杂系统的建模需要大量的计算资源和数据支持。
人口模型数学建模

计划生育政策调整对人口影响的研究摘要本文讨论了计划生育政策调整对人口的影响,通过建立人口数量和结构模型,进一步分析新政策对教育、劳动力供给与就业、养老等的影响。
针对问题一,分析计划生育政策未调整对人口的影响。
首先对出生率和死亡率进行曲线拟合,描述人口自然增长率根据时间变化的关系,再运用递推法,建立全国计划生育人口数量模型,并预测计划生育下的2015-2025年的人口数量。
然后根据灰色模型思想,分别建立全国计划生育人口性别比例与年龄结构模型,同时运用MATLAB编程预测未来十年的人口性别比例与年龄结构趋势。
针对问题二,研究计划生育政策调整对人口的影响。
将父母双方是否为独生子女视为性状,运用孟德尔遗传定律,分析子代的出生率,再运用递推法,建立开放单独二孩政策下的人口数量模型,同时预测新政策下的2015-2025年的人口数量,并对比问题一中的人口数量。
数据表明:新政策实施后出生人数和人口总量有一定程度的增加,但都在可控可承受范围内,不会对经济社会发展和公共服务产生大的震荡和冲击。
依据灰色模型思想,分别建立新政策的人口性别比例与年龄结构模型,同时运用MATLAB编程预测未来十年的人口性别比例与年龄结构趋势,进一步对比问题一中的趋势表明,单独二孩政策会缓慢降低人口性别比例,并提高年轻人的人口比重。
针对问题三,通过问题一、二中模型的数据,分析收集报告的假设与结论并发表自己的见解。
开放单独二孩政策后,一是可在一定程度上有效缓解老龄化程度和推迟老龄化进程;二是改善劳动力老化的结构,对经济发展和人民生活的改善做出积极贡献。
针对问题四,讨论上海市计划生育政策对人口的影响。
首先讨论上海市计划生育政策的人口模型,在问题一人口数量模型的基础上,引入迁移率常数,建立上海市的计划生育人口模型并预测未来十年人口趋势。
然后研究上海市开放单独二孩政策下的人口模型,按照问题二的模型分析方法,引入迁移率常数,建立上海市新的人口数量模型,进一步对比上海市计划生育人口模型,探究未来人口数量、结构及其对劳动力供给与就业、养老等方面的影响。
数学建模概率模型

9.1 传送系统的效率
背
传送带
景 挂钩
产品
工作台
工人将生产出的产品挂在经过他上方的空钩上运走,若 工作台数固定,挂钩数量越多,传送带运走的产品越多。
在生产进入稳态后,给出衡量传送带效 率的指标,研究提高传送带效率的途径
模型分析
• 进入稳态后为保证生产系统的周期性运转,应 假定工人们的生产周期相同,即每人作完一件产 品后,要么恰有空钩经过他的工作台,使他可将 产品挂上运走,要么没有空钩经过,迫使他放下 这件产品并立即投入下件产品的生产。 • 工人们生产周期虽然相同,但稳态下每人生产 完一件产品的时刻不会一致,可以认为是随机的, 并且在一个周期内任一时刻的可能性相同。
如对均值为mu、标准差为sigma的正态分布,举例如下:
1.密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)
例 1 画出正态分布 N(0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
易知B1,B2,B3是样本空间的一个划分。
3
(1)由全概率公式: p(A) P(Bi)P(A| Bi) i1
=0.15×0.02+0.80×0.01+0.05×0.03=0.01 (2)由贝叶斯公式: 25P (B 1|A )P (A P B (1A )P )(B 1)0.0 0.0 20 1 .12 50 5 .24
提高效率 的途径:
• 增加m
9.2 报童的诀窍
报童售报: a (零售价) > b(购进价) > c(退回价)
数学建模实例人口预报问题

数学建模实例:人口预报问题1.问题人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口.表1 美国人口统计数据2.指数增长模型(马尔萨斯人口模型)此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r 是常数(或单位时间内人口的增长量与当时的人口成正比).[2] 建立模型: 记时刻t=0时人口数为x 0, 时刻t 的人口为()t x ,由于量大,()t x 可视为连续、可微函数.t 到t t ∆+时间内人口的增量为:()()()t rx tt x t t x =∆-∆+于是()t x 满足微分方程:()⎪⎩⎪⎨⎧==00x x rx dt dx(1)[3] 模型求解: 解微分方程(1)得()rt e x t x 0= (2)表明:∞→t 时,()∞→t x (r>0).[4] 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章.通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验:将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2.表2 美国实际人口与按指数增长模型计算的人口比较年以后的误差越来越大.分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个.3. 阻滞增长模型(Logistic 模型)[1]假设:(a )人口增长率r 为人口()t x 的函数()x r (减函数),最简单假定()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率.(b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当mx x =时,增长率应为0,即()m x r =0,于是m x rs =,代入()sxr x r -=得:()⎪⎪⎭⎫⎝⎛-=m x x r x r 1 (3)将(3)式代入(1)得:模型为: ()⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=001xx x x x r dt dx m (4)[3] 模型的求解: 解方程组(4)得()rt m me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110 (5)根据方程(4)作出x dtdx~ 曲线图,见图1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出x~t 曲线,见图1-2,由该图可看出人口数随时间的变化规律.[4] 模型的参数估计:利用表1中1790-1980的数据对r 和x m 拟合得:r=0.2072, x m =464. [5] 模型检验:将r=0.2072, x m =464代入公式(5),求出用指数增长模型预测的1800-1990的人口数,见表3第3、4列.也可将方程(4)离散化,得)())(1()()()1(t x x t x r t x x t x t x m-+=∆+=+ t=0,1,2,… (6) 用公式(6)预测1800-1990的人口数,结果见表3第5、6列.表3 美国实际人口与按阻滞增长模型计算的人口比较图1-2 x~t 曲线现应用该模型预测人口.用表1中1790-1990年的全部数据重新估计参数,可得r=0.2083, x m=457.6. 用公式(6)作预测得:x(2000)=275; x(2010)=297.9.也可用公式(5)进行预测.。
数学建模简明教程课件:概率模型

31
图 7-4
32
5.决策树的优缺点
•决策树方法的优点:可以生成可以理解的规则;计 算量相对来说不是很大;可以处理连续和种类字段;决策 树可以清晰地显示哪些字段比较重要.
•决策树方法的缺点:对连续性的字段比较难预测; 对有时间顺序的数据,需要很多预处理的工作;当类别太 多时,错误可能就会增加得比较快;一般算法分类的时候 ,只是根据一个字段来分类.
(a b)np(r) d r
0
n
计算
(7.2.2)
d G (a b)np(n)
n
(b c) p(r) d r (a b)np(n)
(a b) p(r) d r
dn
0
n
n
(b c)0 p(r) d r (a b)n p(r) d r
18
令 d G 0 ,得到 dn
n
0
p(r)d r p(r)d r
14
2.问题的分析及假设
众所周知,应该根据需求量确定购进量.需求量是随机 的,假定报童已经通过自己的经验或其它的渠道掌握了需 求量的随机规律,即在他的销售范围内每天报纸的需求量 为r份的概率是f(r)(r=0,1,2,…).有了f(r)和a,b,c,就 可以建立关于购进量的优化模型了.
假设每天的购进量为n份,因为需求量r是随机的,故r 可以小于n、等于n或大于n,致使报童每天的收入也是随 机的.所以作为优化模型的目标函数,不能是报童每天的收 入,而应该是他长期(几个月或一年)卖报的日平均收入.
26
(4)设定变量: A——试销成功,——试销失败 B——大量销售成功,——大量销售失败
27
3.建立模型 先来计算两个概率,注意到P(A|B)=0.84,P(B)=0.6 ,P(A|)=0.36,代入贝叶斯概率公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 随机性人口模型
如果研究对象是一个自然村落或一个家族人口,数量不大,需作为离散变量看待时,就利用随机性人口模型来描述其变化过程。
记 ()t Z —时刻t 的人口数(只取整数值)
()()()n t Z p t p n ==—人口为n 的概率
模型假设 1、在[]t t t ∆+, 出生一人的概率与t ∆ 成正比,记作t b n ∆,出生二人及二人以上的概
率为()t o ∆;
2、在[]t t t ∆+, 死亡一人的概率与t ∆ 成正比,记作t d n ∆,死亡二人及二人以上的概率为()t o ∆;
3、出生与死亡是相互独立的随机事件;
4、进一步设n b 和n d 均为与n 成正比,记,
,n d n b n n μλ==λ和μ分别是单位时间内
1=n 时一个人出生和死亡的概率。
模型建立
由假设3~1,可知()n t t Z =∆+可分解为三个互不相容的事件之和:()1-=n t Z 且t ∆内出生一人;()1+=n t Z 且t ∆ 内死亡一人;()n t Z =且t ∆内无人出生或死亡。
按全概率公式 ()()()()t d t b t p t d t p t b t p t t p n n n n n n n n ∆-∆-+∆+∆=∆+++--1)(1111
即 ()()
()()())(1111t p d b t p d t p b t
t p t t p n n n n n n n n n +-+=∆-∆+++--
令0→∆t ,得关于()t p n 的微分方程
()()()()t p d b t p d t p b dt
dp n n n n n n n n
+-+=++--1111
又由假设4,方程为
()()()()()()t np t p n t p n dt
dp n n n n
μλμλ+-++-=+-1111 (1)
若初始时刻)0(=t 人口为确定数量0n ,则()t p n 的初始条件为
()⎩
⎨
⎧≠==00
,0,10n n n n p n (2)
(1)在(2) 条件下的求解非常复杂,且没有简单的结果,不过人们感兴趣的是()()t Z E 和
()()t Z D (以下简记成)(t E 和)(t D )。
按定义()()∑∞
==1
n n t np t E (3)
对(3)求导并将(1)代入得
()()()()()()∑∑∑∞=∞
=+∞=-+-++-=11
211111n n n n n n t p n t p n n t p n n dt dE
μλμλ (4)
注意到
()()()()()()()()∑∑∑∑∞
=∞
=+∞
=∞
=--=++=-1
1
1
1
1
1
11,11k k
n n n k k
n t p k k t p n n t p k k t p n n 代入(4) 并
利用(3),则有
()()()t E t np dt dE
n n μλμλ-=-=∑∞
=1)( (5)
由(2)得()t E 的初始条件()00n E =,求解微分方程(5)在此初始条件下的解为
()μλ-==r e n t E rt
,0 (6)
可以看出这个结果与指数模型()rt
e x t x 0=形式上完全一致。
随机性模型(6)中出生率λ与死亡
率μ之差r 即净增长率,人口期望值呈指数增长,()t E 是在人口数量很多的情况下确定性模型的特例。
对于方差()t D ,按照定义()()()∑∞
=-=
1
22
n n t E t p n
t D ,用类似求()t E 的方法可推出
()()[]1)(0
--+=--t
t e e n t D μλμλμ
λμλ (7)
()t D 的大小表示人口()t Z 在平均值()t E 附近的波动范围。
(7)式说明这个范围不仅随着时间的
延续和净增长率μλ-=r 的增加而变大,而且即使当r 不变时,它也随着λ 和μ 的上升而增长,这就是说,当出生和死亡频繁出现时,人口的波动范围变大。