信度和效度评价
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调查问卷信度和效度评价
一、信度分析
信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数来表示:大致可分为三类:稳定系数(跨时间的一致性)、等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
若以信度系数来表示信度的大小。
信度系数越大,表示测量的可信程度越大。
究竟信度系数要多少才算有高的信度。
学者DeVellis(1991)认为,0.60~0.65(最好不要);0.65~0.70(最小可接受值);0.70~0.80(相当好);0.80~0.90(非常好)。
由此,一份信度系数好的量表或问卷,最好在0.80以上,0.70至0.80之间还算是可以接受的范围;分量表最好在0.70以上,0.60至0.70之间可以接受。
若分量表的内部一致性系数在0.60以下或者总量表的信度系数在
0.80以下,应考虑重新修订量表或增删题项。
二、信度分析的方法主要有以下四种
1、重测信度法
这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。
显然,重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。
如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。
由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
2、复本信度法
复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。
复本信度属于等值系数。
复本信度法要求两个复本除表述模式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3、折半信度法
折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。
折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。
这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表。
进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以确保各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式︰ru=2rhh/(1+rhh)求出整个量表的信度系数(ru)。
4、α信度系数法
Cronbachα信度系数是目前最常用的信度系数,其公式为︰
α=(n/n-1)*(1-(∑S
i 2)/S
T
2)其中,n为量表中题项的总数,S
i
2为第i题得分的
题内方差,S
T
2为全部题项总得分的方差。
从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。
这种方法适用于态度、意见式问卷(量表)的信度分析。
5、信度检验步骤
检验信度步骤:Analyze→scale→reliability→data reduction→factor 然后看Cronbach's α系数。
一般来说Cronbach’ alpha系数在0.65以上是可接受的最小信度值。
三、效度分析
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。
效度分为三种类型︰内容效度(Face Validity)、准则效度(Criterion Validity)和架构效度Construct Validity)。
效度分析有多种方法,其测量结果反映效度的不同方面。
常用于调查问卷效度分析的方法主要有以下几种。
1、单项与总和相关效度分析
这种方法用于测量量表的内容效度。
内容效度又称表面效度或逻辑效度,它
是指所设计的题项能否代表所要测量的内容或主题。
对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。
逻辑分析一般由研究者或专家评判所选题项是否“看上去”符合测量的目的和要求。
统计分析主要采用单项与总和相关分析法获得评价结果,即计算每个题项得分与题项总分的相关系数,根据相关是否显著判断是否有效。
若量表中有反意题项,应将其逆向处理后再计算总分。
2、准则效度分析
准则效度又称为效标效度或预测效度。
准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。
评价准则效度的方法是相关分析或差异显著性检验。
在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。
3、结构效度分析
结构效度是指测量结果体现出来的某种结构与测值之间的对应程度。
架构效度分析所采用的方法是因子分析。
有的学者认为,效度分析最理想的方法是利用因子分析测量量表或整个问卷的架构效度。
因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本架构。
透过因子分析可以考察问卷是否能够测量出研究者设计问卷时假设的某种架构。
在因子分析的结果中,用于评价架构效度的主要指标有累积贡献率、共同度和因子负荷。
累积贡献率反映公因子对量表或问卷的累积有效程度,共同度反映由公因子解释原变量的有效程度,因子负荷反映原变量与某个公因子的相关程度。
为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。
4、因子分析的SPSS过程
第一步:准备数据文件,打开对话框,加载观测变量。
数据文件主要是由较多的(一般在10个以上)可观测变量组成,个案数应比较大。
然后点击“Analyze” ,
选择“Data Reduction” 中的“Factor”打开因子分析对话框,将参与分析的所有观测变量加载到“Variables”下边的方框中。
第二步:点击“Descriptives…”设置描述性统计要求。
这里关键的是要求输出因子分析适合度的检验,一般要求输出:计算相关系数矩阵(选中Coefficients)、相关系数显著性水平矩阵(选中Significance levels)、反像相关矩阵检验 ( 选中Anti-image ) 、KMO 和巴特利特球形检验(选中KMO and Bartlett’s test of sphericity)。
第三步: 点击“Extraction”打开对话框设置因子提取方式。
在界定因子提取方法中需要设置以下几个方面的参数:
(1) 因子构造方法:大多数情况下认为因子是变量的线性组合,所以使用最多的是主成分分析法(Principal components);
(2) 提取因子数(选中 Number of factors 后输入一个因子数),如果还无法确定可以不设定因子数,先以默认状态进行尝试性分析;
(3) 在“Display”下选中“Unrotated factor solution”和“Scree plot”以输出未经旋转的因子载荷矩阵、碎石图。
执行之后根据输出信息确定提取因子数,比如根据碎石图来确定;
第四步:点击“Rotation”按钮打开选择因子载荷矩阵的旋转方法。
一般使用最多的是正交旋转(选中Varimax)或斜交旋转方法(选中Promax),其中斜交旋转速度快,所以大样本时多选此方法。
同时可选中“Rotated solution”和“Loading plot(s)”,以输出旋转后因子旋转矩阵、载荷散点图。
第五步:点击“Scores”设置因子得分计算方法。
一般最多的是选择回归方法,由此可以计算每个因子分数并记录到数据文件中。
为此 , 可在对话框中选中“Save as variables”,然后在计算方法中选择“Regression” 或其他方法。
还要选中“ Display factor score coefficient matrix”。
第六步:点击“Options”设置因子载荷系数的显示格式:
(1) 选中“Sorted by size”,则因子载荷系数按照大小顺序排列,并构成矩阵,使得在同一因子上具有较高载荷的变量排在一起,便于得到结论;
(2) 选中“Suppress absolute values less than:”并在其后的方格中输入一个0~1间的一个数,则因子载荷矩阵中就不再显示那些小于这个数值的载荷系
数了,而只显示那些比此数值大的载荷值,从而使因子所解释的主要变量一目了然。
KMO统计量是取值在0和1之间。
当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。
Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。