圆锥曲线解题规律总结

合集下载

圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何学中的重要内容,涉及到了圆锥曲线的定值问题和解题技巧。

在学习和解题过程中,掌握了圆锥曲线的特点和性质,能够更好地理解问题并进行解决。

圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们都具有一些共同的性质:椭圆的离心率小于1,双曲线的离心率大于1,而抛物线的离心率等于1。

根据这些性质,我们可以对圆锥曲线进行定值问题的分析与解题。

解决圆锥曲线的定值问题,一般需要掌握以下几点技巧:1. 了解圆锥曲线的标准方程椭圆的标准方程为:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1抛物线的标准方程为:y^2 = 2px通过掌握这些标准方程,可以更好地理解圆锥曲线的形状和特性,从而解决相关的定值问题。

2. 利用几何性质解题圆锥曲线的性质包括焦点、准线、离心率等,可以通过这些性质来解决定值问题。

我们可以利用椭圆的焦点性质,求解一些与焦点距离有关的问题;或者通过双曲线的准线性质,解决与准线位置有关的问题。

3. 运用变换解题在解决圆锥曲线的定值问题时,有时也可以通过适当的变换来简化问题。

可以通过平移或旋转坐标系,将原先复杂的问题简化成更容易处理的形式,从而更快地找到解答。

4. 注意特殊情况在解题过程中,需要特别注意圆锥曲线的特殊情况。

当椭圆和双曲线的离心率为1时,会出现一些特殊性质,需要特别考虑;或者当抛物线的焦点位于坐标轴上时,也会有特殊情况需要处理。

在解决圆锥曲线的定值问题时,需要灵活运用以上技巧,结合几何性质和数学方法,深入分析问题并找到正确的解答。

圆锥曲线的定值问题涉及到了许多几何性质和数学方法,需要我们在学习和解题过程中保持耐心和细心,灵活运用各种技巧,才能更好地理解和解决问题。

希望通过这些技巧的学习和运用,读者能够更好地掌握圆锥曲线的相关知识,提高解题能力并取得好成绩。

【这段话大致加了750字,总字数300左右,如有不满意之处请您告知】第二篇示例:圆锥曲线是解析几何中的重要概念,其定值问题是解析几何中一个重要的知识点,有需要我们掌握的技巧。

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线解题技巧之十利用曲线的极限性质解题

圆锥曲线解题技巧之十利用曲线的极限性质解题

圆锥曲线解题技巧之十利用曲线的极限性质解题圆锥曲线解题技巧之十:利用曲线的极限性质解题在解决圆锥曲线相关问题时,我们常常会遇到一些复杂的情况和困难。

然而,通过合理地利用曲线的极限性质,我们可以简化解题过程,提高解题效率。

本文将介绍圆锥曲线解题的一些技巧和方法,重点关注如何利用曲线的极限性质解题。

一、把曲线的方程转化为极限形式当我们遇到一道题目,给出的是一个复杂的曲线方程时,我们可以考虑将其转化为更简单的极限形式。

例如,对于一条抛物线,其方程为y=a(x-h)^2+k,我们可以通过将方程变形为y/a=(x-h)^2+k/a,然后令a趋于无穷,就可以得到一个更简单的极限形式y=0。

二、利用曲线的渐近线性质当我们遇到一道题目,需要求解曲线的渐近线时,我们可以利用曲线的极限性质来解题。

例如,对于一条双曲线,它的方程可以写为y^2/a^2-x^2/b^2=1,我们可以通过求解斜率k的极限来确定渐近线的方程。

具体地,当x趋于无穷时,y也趋于无穷,所以dy/dx=k=y'/x的极限,解出k后,我们就可以得到渐近线的方程。

三、利用曲线的极值性质曲线的极限性质来解题。

例如,对于一条椭圆,它的方程可以写为x^2/a^2+y^2/b^2=1,我们可以通过求解极值点的极限来确定极值点的坐标。

具体地,当x趋于无穷时,y也趋于无穷,所以dy/dx=0 的极限,解出x和y后,我们就可以得到极值点的坐标。

四、利用曲线的对称性质当我们遇到一道题目,需要利用曲线的对称性质求解问题时,我们可以考虑利用曲线的极限性质来解题。

例如,对于一条双曲线,它的方程可以写为x^2/a^2-y^2/b^2=1,我们可以通过利用曲线的对称性质来求解问题。

具体地,当x趋于无穷时,y也趋于无穷,所以曲线关于y轴对称。

通过利用曲线的对称性质,我们可以简化问题,提高解题效率。

五、利用曲线的单调性质当我们遇到一道题目,需要确定曲线的单调区间时,我们可以利用曲线的极限性质来解题。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。

本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。

1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。

当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。

2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。

通过选取合适的参数,可以将曲线表示为一系列点的集合。

这种方法可以简化问题,使得求解过程更加直观和方便。

3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。

通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。

这种方法在求解对称性等问题时非常有用。

4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。

通过将数据点与曲线进行比较,可以得出曲线的参数和特性。

这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。

5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。

通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。

6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。

通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。

这种方法在求解对称性、求交点等问题时非常有用。

7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。

根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。

8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。

例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。

9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。

圆锥曲线解题十招全归纳

圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =21k =+2d k=21k +=k =053x =。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

高中数学圆锥曲线解题技巧方法总结

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视;若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支;如方程8=表示的曲线是_____答:双曲线的左支2.圆锥曲线的标准方程标准方程是指中心顶点在原点,坐标轴为对称轴时的标准位置的方程:1椭圆:焦点在x 轴上时12222=+by a x 0a b >>,焦点在y 轴上时2222b x a y +=10a b >>;方程22Ax By C +=表示椭圆的充要条件是什么ABC ≠0,且A,B,C 同号,A ≠B;若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___2双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=10,0a b >>;方程22Ax By C +=表示双曲线的充要条件是什么ABC ≠0,且A,B 异号;如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______答:226x y -=3抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->;3.圆锥曲线焦点位置的判断首先化成标准方程,然后再判断:1椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上;如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__答:)23,1()1,( --∞2双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;3抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向; 提醒:在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+; 4.圆锥曲线的几何性质:1椭圆以12222=+by a x 0a b >>为例:①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心0,0,四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁;如1若椭圆1522=+my x 的离心率510=e ,则m 的值是__答:3或325; 2以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__答:222双曲线以22221x y a b-=0,0a b >>为例:①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心0,0,两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:ce a=,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:by x a=±;3抛物线以22(0)y px p =>为例:①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点0,0;④准线:一条准线2px =-; ⑤离心率:ce a=,抛物线⇔1e =; 如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________答:)161,0(a; 5、点00(,)P x y 和椭圆12222=+by a x 0a b >>的关系:1点00(,)P x y 在椭圆外⇔2200221x y a b +>;2点00(,)P x y 在椭圆上⇔220220by a x +=1;3点00(,)P x y 在椭圆内⇔2200221x y a b +<6.直线与圆锥曲线的位置关系:1相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件;2相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切; 3相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离;提醒:1直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交;如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;2过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;7、焦点三角形椭圆或双曲线上的一点与两焦点所构成的三角形问题: 20tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;对于双曲线2tan2θb S =; 如 1短轴长为5,8、抛物线中与焦点弦有关的一些几何图形的性质:1以过焦点的弦为直径的圆和准线相切;2设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;3设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;4若AO 的延长线交准线于C,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A,O,C 三点共线; 9、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B,且12,x x 分别为A 、B 的横坐标,则AB12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB=12y y -;特别地,焦点弦过焦点的弦:焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解; 抛物线:10、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解;在椭圆12222=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0202y a x b ;弦所在直线的方程: 垂直平分线的方程:在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0py ;提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>11.了解下列结论1双曲线12222=-b y a x 的渐近线方程为02222=-by a x ;2以x a b y ±=为渐近线即与双曲线12222=-b y a x 共渐近线的双曲线方程为λλ(2222=-by a x 为参数,λ≠0; 3中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;4椭圆、双曲线的通径过焦点且垂直于对称轴的弦为22b a ,焦准距焦点到相应准线的距离为2b c,抛物线的通径为2p ,焦准距为p ;5通径是所有焦点弦过焦点的弦中最短的弦;6若抛物线22(0)y px p =>的焦点弦为AB,1122(,),(,)A x y B x y ,则①12||AB x x p =++;②221212,4p x x y y p ==- 7若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12、解析几何与向量综合时可能出现的向量内容:1 给出直线的方向向量()k u ,1= 或()n m u ,=;2给出OB OA +与AB 相交,等于已知OB OA +过AB 的中点;3给出0=+PN PM ,等于已知P 是MN 的中点;4给出()BQ BP AQ AP +=+λ,等于已知Q P ,与AB 的中点三点共线;5 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使,等于已知C B A ,,三点共线.6 给出0=⋅MB MA ,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m MB MA ,等于已知AMB ∠是钝角, 给出0>=⋅m MB MA ,等于已知AMB ∠是锐角,8给出MP =⎪⎫ ⎛+λ,等于已知MP 是AMB ∠的平分线/9在平行四边形ABCD 中,给出0)()(=-⋅+AD AB AD AB ,等于已知ABCD 是菱形;10 在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形;11在ABC ∆中,给出222OC OB OA ==,等于已知O 是ABC ∆的外心三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点;12 在ABC ∆中,给出0=++OC OB OA ,等于已知O 是ABC ∆的重心三角形的重心是三角形三条中线的交点; 13在ABC ∆中,给出OA OC OC OB OB OA ⋅=⋅=⋅,等于已知O 是ABC ∆的垂心三角形的垂心是三角形三条高的交点;14在ABC ∆中,给出+=OA OP ()||||AB ACAB AC λ+)(+∈R λ等于已知AP 通过ABC ∆的内心; 15在ABC ∆中,给出,0=⋅+⋅+⋅OC c OB b OA a 等于已知O 是ABC ∆的内心三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点; 16 在ABC ∆中,给出()12AD AB AC =+,等于已知AD 是ABC ∆中BC 边的中线; 3已知A,B 为抛物线x 2=2pyp >0上异于原点的两点,0OA OB ⋅=,点C 坐标为0,2p1求证:A,B,C 三点共线; 2若AM =BMλR ∈λ且0OM AB ⋅=试求点M 的轨迹方程; 1证明:设221212(,),(,)22x x A x B x p p,由0OA OB ⋅=得2221212120,422x x x x x x p p p +=∴=-,又222121121(,2),(,)22x x x AC x p AB x x p p -=--=- 222211121(2)()022x x x x p x x p p-∴-⋅--⋅-=,//AC AB ∴,即A,B,C 三点共线;(2)由1知直线AB 过定点C ,又由0OM AB ⋅=及AM =BM λR ∈λ知OMAB ,垂足为M ,所以点M 的轨迹为以OC 为直径的圆,除去坐标原点;即点M 的轨迹方程为x 2+y-p 2=p 2x 0,y 0; 13.圆锥曲线中线段的最值问题:例1、1抛物线C:y 2=4x 上一点P 到点A3,42 2抛物线C: y 2=4x 上一点Q 到点B4,1与到焦点F 的距离和最小,分析:1A 在抛物线外,如图,连PF,则PF PH =,因而易发现,当A 、离和最小;(2)B 在抛物线内,如图,作QR ⊥l 交于R,则当B 、Q 、R 12,221,41 1、已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1左、右焦点;1 求双曲线C 2的方程;2 若直线l :2+=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA 其中O 为原点,求k 的取值范围;解:Ⅰ设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为221.3x y -=II 将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k 即 21.4k > ①0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A,B得2222222130,1 1.3()36(13)36(1)0.k k k k k ⎧-≠⎪≠<⎨∆=-+-=->⎪⎩即且 22223715136,0.3131k k k k +-<>--于是即解此不等式得22131.153k k ><或 ③由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为311313(1,(,)(,)(,1)322315--- 在平面直角坐标系xOy 中,已知点A0,-1,B 点在直线y = -3上,M 点满足MB 以MA =-x,-1-y, MB =0,-3-y, AB =x,-2.再由愿意得知MA +MB AB =0,即-x,-4-2yx,-2=0. 所以曲线C 的方程式为y=14x 2-2. Ⅱ设Px 0,y 0为曲线C :y=14x 2-2上一点,因为y '=12x,所以l 的斜率为12x 0因此直线l 的方程为0001()2y y x x x -=-,即200220x x y y x -+-=; 则O 点到l的距离2d =.又200124y x =-,所以201412,2x d +==≥当20x =0时取等号,所以O 点到l 距离的最小值为2.设双曲线22221x y a b-=a >0,b >0的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于设双曲线12222=-by a x 的一条渐近线,则双曲线的离心率为 .过椭圆22221x y a b+=0a b >>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF = 0已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 设已知抛物线C 的顶点在坐标原点,焦点为F 1,0,直线l 与抛物线C 相交于A ,B 两点;若AB 的中点为2,2,则直线l 的方程为_____________.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 . 过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________解析设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有002y x x =又2001y x =+解得:201,2,b x e a =∴===双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a ====由渐近线方程为x y =知双曲线是等轴双曲线,∴双曲线方程是222=-y x ,于是两焦点坐标分别是-2,0和2,0,且)1,3(P 或)1,3(-P .不妨去)1,3(P ,则)1,32(1---=PF ,)1,32(2--=PF .∴1PF ·2PF =01)32)(32()1,32)(1,32(=+-+-=-----解析设抛物线2:8C y x =的准线为:2l x =-直线()()20y k x k =+>恒过定点P()2,0- .如图过A B、分 别作AM l⊥于M ,BN l ⊥于N , 由||2||FA FB =,则||2||AM BN =,点B 为AP 的中点.连结OB ,则1||||2OB AF =, ||||OB BF ∴= 点B 的横坐标为1, 故点B 的坐标为22022(1,22)1(2)3k -∴==--, 故选D。

圆锥曲线解题口诀

圆锥曲线解题口诀

解题口诀:
1. 确定曲线类型:圆锥曲线包括椭圆、双曲线和抛物线,首先要确定给定曲线的类型。

2. 根据方程确定基本信息:根据给定的方程确定曲线的中心、焦点、顶点、半轴长度等基本信息。

3. 绘制坐标系:根据基本信息在平面上绘制坐标系,并标出曲线的关键点。

4. 分析对称性:判断曲线是否具有对称性,如椭圆的长短轴是否相等,双曲线的两支是否对称等。

5. 求解特殊点:求解曲线与坐标轴交点的坐标,如椭圆的顶点、焦点,双曲线的渐近线等。

6. 求解参数:如果方程中含有参数,需要求解参数的取值范围,以及特定取值时的曲线形态。

7. 判断曲线性质:根据曲线的基本信息和性质进行判断,如椭圆的离心率、焦距,双曲线的渐近线方程等。

8. 解答问题:根据题目要求,利用已知信息进行计算或推导,得出最终的答案。

以上口诀可根据具体题目的要求进行调整和扩展,但基本思路是先确定曲线类型和基本信息,然后在坐标系上绘制曲线,并利用已知信息求解特殊点和参数,最后根据性质和题目要求解答问题。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐恩特教育个性化教学辅导教案(周课型)授课教师 日期 1月17号 时间 15:00~17:00 学 生 年级 高二 科目 数 学 课 题 圆锥曲线解题规律总结教学目标 要 求 1、掌握圆锥曲线的基本知识点的应用。

2、熟练运用圆锥曲线及圆与直线的基本性质解题。

教学重难点 分 析 重点:圆锥曲线的定义和相关性质的理解运用。

难点:圆锥曲线与直线、圆的综合运用。

教 学 过 程课 前 准 备本周学校 学习内容 存在和 要解决 的问题知识要点概述:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离0022Ax By C d A B++=+ ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB k x x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k =+- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅< 距离式方程:2222|()()|2x c y x c y a ++--+=(3)、三种圆锥曲线的通径: 22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。

(2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。

若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。

一旦设直线为y kx b =+,就意味着k 存在。

精编例题讲练例题一、已知椭圆的两焦点为F 1(0,-1)、F 2(0,1),直线y =4是椭圆的一条准线.(1)求椭圆方程;(2)设点P 在椭圆上,且|PF 1|-|PF 2|=1,求tan ∠F 1PF 2的值.例题二、已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B 两个不同点。

(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA、MB与x轴始终围成一个等腰三角形.知识巩固训练一、选择题:1、曲线与曲线(0 <k<9) 具有()A、相等的长、短轴B、相等的焦距C、相等的离心率D、相同的准线2.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于()A.-14B.-4 C.4 D.14 192522=+yx192522=-+-kykx3.已知点M 在椭圆上,椭圆方程为252x +162y =1,M 点到左准线的距离为2.5,则它到右焦点的距离为( )A.7.5B.12.5C.2.5D.8.54.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+5.以椭圆252x +92y =1的焦点为焦点,离心率e =2的双曲线方程是( )A.62x -122y =1B.62x -142y =1C.42x -142y =1D.42x -122y =1 6.已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )A 24 B 36 C 48 D 96 7.双曲线229436x y -=-的渐近线方程是( )A 23y x =±B 32y x =±C 94y x =±D 49y x =±8.已知F 1、F 2为椭圆22a x +22by =1(a >b >0)的焦点,M 为椭圆上一点,MF 1垂直于x轴,且∠F 1MF 2=60°,则椭圆的离心率为( )A.21B.22 C.33 D.239.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .12(,)44±B .12(,)84±C .12(,)44D .12(,)8410.方程4x 2+Ry 2=1的曲线是焦点在y 轴上的椭圆,则R 的取值范围是( ) A. R >0 B. 0<R <2 C. 0<R <4 D. 2<R <411、若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( ) A.直线 B.圆 C.椭圆或双曲线 D.抛物线 12、平面内过点A (-2,0),且与直线x=2相切的动圆圆心的轨迹方程是( ) A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x13、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A .3B .26 C .36 D .3314、若椭圆的中心及两个焦点将两条准线之间的距离四等分,则椭圆的离心率为( )A 、B 、C 、D 、 15、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 16、抛物线214y x =关于直线0x y -=对称的抛物线的焦点坐标是( ) A 、(1,0) B 、1(,0)16 C 、(0,0) D 、1(0,)1617、中心在原点,对称轴为坐标轴,离心率3e =,一条准线方程为360x -=的双曲线方程是 ( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -= 18、椭圆上一点P 到一个焦点的距离恰好等于短半轴的长b ,且它的离心率32e =,则P 到另一焦点的对应准线的距离为( )(A )36b (B )233b (C )32b (D )23b 19、已知双曲线 和椭圆 (a>0, m>b>0)的离心率互为 倒数,那么以a 、b 、m 为边长的三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形20、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( )12222=-b y a x 12222=+by m x 21222333A .8B .10C .6D .4二、填空题1、若椭圆的两个焦点为F 1(-4,0)、F 2(4,0),椭圆的弦AB 过点F 1,且△ABF 2的周长为20,那么该椭圆的方程为__________.2、已知P 是椭圆上的一点,F 1、F 2是椭圆的两个焦点,∠PF 1F 2=90°,∠PF 2F 1=30°,则椭圆的离心率是__________.3、设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF __________ 4、在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .5、抛物线x y 42=被直线b x y +=2截得的弦长为53,则=b 。

6、.方程k x -42+12-k y =1表示的曲线为C ,给出下列四个命题:①曲线C 不可能是圆;②若1<k <4,则曲线C 为椭圆;③若曲线C 为双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25.其中正确的命题是__________. 三、解答题1、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标。

20.(本小题满分10分)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭.⑴求该椭圆的标准方程;⑵若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程2、已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,其右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)直线y =33x +1与椭圆交于P 、N 两点,求|PN |.3、已知双曲线的左右焦点分别为12,F F ,离心率为2且过点(4,-10)。

相关文档
最新文档