数学九年级上册 圆 几何综合专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学九年级上册圆几何综合专题练习(解析版)
一、初三数学圆易错题压轴题(难)
1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D ,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.
(1)如图1,当点D是弧AB的中点时,求CD的长;
(2)如图2,设AC=x,ACO
OBD
S
S=y,求y关于x的函数解析式并写出定义域;
(3)若四边形AOBD是梯形,求AD的长.
【答案】(1)2;(2)
2825
x x x
-+
(0<x<8);(3)AD=
14
5
或6.
【解析】
【分析】
(1)根据垂径定理和勾股定理可求出OC的长.
(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.
(3)分OB∥AD和OA∥BD两种情况讨论.
【详解】
解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,
∴OD⊥AB,AC=
1
2
AB=4,
在Rt△AOC中,∵∠ACO=90°,AO=5,
∴22
AO AC
-,
∴OD=5,
∴CD=OD﹣OC=2;
(2)如图2,过点O作OH⊥AB,垂足为点H,
则由(1)可得AH=4,OH=3,
∵AC=x,
∴CH=|x﹣4|,
在Rt△HOC中,∵∠CHO=90°,AO=5,
∴22
HO HC
+22
3|x4|
+-2825
x x
-+
∴CD=OD ﹣OC=5
过点DG ⊥AB 于G ,
∵OH ⊥AB ,
∴DG ∥OH ,
∴△OCH ∽△DCG , ∴OH OC DG CD
=, ∴DG=OH CD OC ⋅
35, ∴S △ACO =12AC ×OH=12x ×3=32
x , S △BOD =12BC (OH +DG )=12(8﹣
x )×(3
35)=32(8﹣
x ) ∴y=ACO OBD S S
=()323582x x -
(0<x <8) (3)①当OB ∥AD 时,如图3,
过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,
则OF=AE ,
∴S=
12AB•OH=12OB•AE , AE=AB OH OB ⋅=245
=OF , 在Rt △AOF 中,∠AFO=90°,
AO=5,
∴75
∵OF 过圆心,OF ⊥AD ,
∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,
则由①的方法可得DG=BM=245
, 在Rt △GOD 中,∠DGO=90°,DO=5,
∴GO=22DO DG -=
75,AG=AO ﹣GO=185
, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6
综上得AD=
145或6.
故答案为(1)2;(2)y=()
2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】
本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.
2.在直角坐标系中,A (0,4),B (4,0).点C 从点B 出发沿BA 方向以每秒2个单位的速度向点A 匀速运动,同时点D 从点A 出发沿AO 方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C 、D 运动的时间是t 秒(t>0).过点C 作CE ⊥BO 于点E ,连结CD 、DE .
⑴ 当t 为何值时,线段CD 的长为4;
⑵ 当线段DE 与以点O 为圆心,半径为的⊙O 有两个公共交点时,求t 的取值范围; ⑶ 当t 为何值时,以C 为圆心、CB 为半径的⊙C 与⑵中的⊙O 相切?
【答案】(1)
; (2) 4-<t≤; (3)或.
【解析】 试题分析:(1)过点C 作CF ⊥AD 于点F ,则CF ,DF 即可利用t 表示出来,在Rt △CFD 中利用勾股定理即可得到一个关于t 的方程,从而求得t 的值;
(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切
时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当
OG<时,直线与圆相交,据此即可求得t的范围;
(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.
(1)过点C作CF⊥AD于点F,
在Rt△AOB中,OA=4,OB=4,
∴∠ABO=30°,
由题意得:BC=2t,AD=t,
∵CE⊥BO,
∴在Rt△CEB中,CE=t,EB=t,
∵CF⊥AD,AO⊥BO,
∴四边形CFOE是矩形,
∴OF=CE=t,OE=CF=4-t,
在Rt△CFD中,DF2+CF2=CD2,
∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,
解得:t=,t=4,
∵0<t<4,
∴当t=时,线段CD的长是4;
(2)过点O作OG⊥DE于点G(如图2),
∵AD∥CE,AD=CE=t