数学九年级上册 圆 几何综合专题练习(解析版)
决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)
决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)1.如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,与⊙M相切于点H的直线EF交x轴于点E(﹣5,0),交y轴于点F(0,).(1)求⊙M的半径r;(2)如图2所示,连接CH,弦HQ交x轴于点P,若cos∠QHC=,求的值;(3)如图3所示,点P为⊙M上的一个动点,连接PE,PF,求PF+PE的最小值.2.如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为.①求的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.3.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH,若∠OHC=∠HCA=90°时,求证:CH=DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.4.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.5.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan∠AFC的值;(3)若△DEF与△AEB相似,求EF的值.6.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=12,AM=MC,求PB和DM的值.7.如图1,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D,E是BA延长线上一点,连接CE,∠ACE=∠ACD,K是线段AO上一点,连接CK并延长交⊙O于点F.(1)求证:CE是⊙O的切线;(2)若AD=DK,求证:AK•AO=KB•AE;(3)如图2,若AE=AK,=,点G是BC的中点,AG与CF交于点P,连接BP.请猜想P A,PB,PF的数量关系,并证明.8.对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1r2;(2)连接OB,点F是线段OB上的点,直线l:y=x+b;若存在正方形OABC的F点控制圆与直线l有两个交点,求b的取值范围.9.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.10.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.参考答案1.解:(1)如图1,连接MH,∵E(﹣5,0),F(0,﹣),M(﹣1,0),∴OE=5,OF=,EM=4,∴在Rt△OEF中,tan∠OEF==,∴∠OEF=30°,∵EF是⊙M的切线,∴∠EHM=90°,∴sin∠MEH=sin30°=,∴MH=ME=2,即r=2;(2)如图2,连接DQ、CQ,MH.∵∠QHC=∠QDC,∠CPH=∠QPD,∴△PCH∽△PQD,∴,由(1)可知,∠HEM=30°,∴∠EMH=60°,∵MC=MH=2,∴△CMH为等边三角形,∴CH=2,∵CD是⊙M的直径,∴∠CQD=90°,CD=4,∴在Rt△CDQ中,cos∠QHC=cos∠QDC=,∴QD=CD=3,∴;(3)连MP,取CM的点G,连接PG,则MP=2,G(﹣2,0),∴MG=CM=1,∴,又∵∠PMG=∠EMP,∴△MPG∽△MEP,∴,∴PG=PE,∴PF+PE=PF+PG,当F,P,G三点共线时,PF+PG最小,连接FG,即PF+PE有最小值=FG,在Rt△OGF中,OG=2,OF=,∴FG===.∴PF+PE的最小值为.2.解:(1)∵BC=CD,AB是直径,∴△BCD是等腰直角三角形,∴∠DBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半径为,∴CE的弧长=×2×π×=;②∵D为EB中点,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=;(3)∵AF:FD=7:3,∴AF=AD,过点E作EG⊥AD,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,FC=r,∴EF=r,在Rr△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=.3.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∴∠D+∠ABD=90°,∵FB是⊙O的切线,∴∠FBD=90°,∴∠FBA+∠ABD=90°,∴∠FBA=∠D,∵AB=AC,∴∠C=∠ABC,∵∠C=∠D,∴∠ABF=∠ABC;(2)如图2,连接OC,∵∠OHC=∠HCA=90°,∴AC∥OH,∴∠ACO=∠COH,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC+∠CBO=∠ACB+∠OCB,即∠ABD=∠ACO,∴∠ABD=∠COH,∵∠H=∠BAD=90°,∴△ABD∽△HOC,∴==2,∴CH=DA;(3)由(2)知,△ABD∽△HOC,∴=2,∵OH=6,⊙O的半径为10,∴AB=2OH=12,BD=20,∴AD==16,在△ABF与△ABE中,,∴△ABF≌△ABE,∴BF=BE,AF=AE,∵∠FBD=∠BAD=90°,∴AB2=AF•AD,∴AF==9,∴AE=AF=9,∴DE=7,BE==15,∵AD,BC交于E,∴AE•DE=BE•CE,∴CE===.4.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.5.解:(1)∵点A(0,4),∴AO=4,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得:42+x2=(x+2)2,解得:x=3,∴OB=BE=3,AB=5,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC∴==,设EF=x,则AF=4+x,BF=(4+x),∵在Rt△BEF中,BE2+EF2=BF2,∴32+x2=[(4+x)]2,解得:x=,即EF=,∴tan∠AFC===;(3)①当△DEF∽△AEB时,∠BAE=∠FDE,∴∠ADE=∠FDE,∴BD垂直平分AF,∴EF=AE=4;②当△DEF∽△BEA时,∠ABE=∠FDE,∴AB∥DF,∴∠ADF=∠CAB=90°,∴DF相切⊙Q,∴∠DAE=∠FDE,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,如图所示:则∠FDH=∠DAG,四边形OGHF是矩形,∴OG=FH,∵△ABE≌△ABO,∴∠OAB=∠EAB,∵AB⊥AD,∴∠DAE=∠CAO,∵∠CAO=∠DAE,∴∠DAE=∠DAE,∴∠DAE=∠DAG=∠FDE=∠FDH,∴AG=AE=4,∴EF=FH=OG=AO+AG=4+4=8,综上所述,若△DEF与△AEB相似,EF的值为4或8.6.(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴,∠A=∠A,∴△ADM∽△APO.(2)证明:∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠DOP=∠MDO,∠POC=∠DMO,∵OD=OM,∴∠DMO=∠MDO,∴∠DOP=∠POC,∵OP=OP,OD=OC,∴△ODP≌△OCP(SAS),∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(3)解:连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵,∴,∴AP=18,∴DP=AP﹣AD=18﹣12=6,∵O是MC的中点,∴,∴点P是BC的中点,∴PB=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM===6,∵△BCM∽△CDM,∴,即,∴DM=2.7.解:(1)证明:连接OC,如图所示:∵CD⊥AB,∴∠CAD+∠ACD=90°,∵OA=OC,∴∠CAD=∠ACO,又∵∠ACE=∠ACD,∴∠ACE+∠ACO=90°,即∠ECO=90°,∴CE是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠B=90°,又∵∠CAD+∠ACD=90°,∠ACD=∠B,∴∠ACE=∠B,∵AD=DK,CD⊥AB,∴CA=CK,∠CAD=∠CKD,∴∠CAE=∠BKC,∴△CAE∽△BKC,∴=,∴AC•KC=AE•KB,又∵∠CAD=∠CKD,∠CAD=∠OCA,∴△OCA∽△CAK,∴=,∴AC•KC=AK•AO,∴AK•AO=KB•AE;(3)P A2+PF2=PB2.理由如下:如图,连接AF、BF,∵=,∴∠ACF=∠BCF=∠ACB=45°,AF=BF,∴∠ECK=∠ACK+∠ACE=45°+∠ACE,∠EKC=∠BCK+∠KBC=45°+∠ABC,∴∠ECK=∠EKC,∴EC=EK=AE+EK=2AE,∵∠ACE=∠CBE,∠E=∠E,∴△EAC∽△ECB,∴==,∴BC=2AC,∵点G是BC的中点,∴BC=2CG=2GB,∴AC=CG,∠ACF=∠BCF,∴CP⊥AG,AP=PG,设AC=CG=GB=x,则AG==x,∴==,又∠PGB=∠BGA,∴△PGB∽△BGA,∴∠GBP=∠GAB,∴∠GBP+∠BCF=∠GAB+∠GAC,即∠BPF=∠BAC=∠BFP,∴BP=BF=AF,∵在Rt△APF中,P A2+PF2=AF2,∴P A2+PF2=PB2.8.解:(1)由题意得:r1=BD=CD==,r2=AC==2,∴r1<r2,故答案为:<.(2)如图所示:⊙O和⊙B的半径均等于OB,当直线l:y=x+b与⊙O相切于点M时,连接OM,则OM⊥l,则直线OM的解析式为:y=﹣x,设M(x,﹣x),∵OM=OB,∴OM==,∴x2+=8,解得:x=﹣或x=(舍),∴﹣x=,∴M(﹣,),将M(﹣,)代入y=x+b得:=×(﹣)+b,解得:b=4.当直线l:y=x+b与⊙B相切于点N时,连接BN,则BN⊥l,同理,设直线BN的解析式为:y=﹣x+n,将B(2,2)代入得:2=﹣×2+n,∴n=2+,∴直线BN的解析式为:y=﹣x+2+,设N(m,﹣m+2+),∵BN=OB,∴=,∴4﹣4m+m2+﹣+=8∴m2﹣4m+2=0,∴m=2﹣(舍)或m=2+,∴﹣m+2+=﹣(2+)+2+=2﹣,∴N(2+,2﹣),∴将N(2+,2﹣)代入y=x+b得:2﹣=(2+)+b,解得:b=,∴存在正方形OABC的F点控制圆与直线l有两个交点,此时b的取值范围为:<b<.9.(1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.10.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,则GE=CE﹣CG=﹣=﹣()=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.。
人教版数学九年级上册 圆 几何综合易错题(Word版 含答案)
人教版数学九年级上册圆几何综合易错题(Word版含答案)一、初三数学圆易错题压轴题(难)1.在圆O中,C是弦AB上的一点,联结OC 并延长,交劣弧AB于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,AC=12AB=4,在Rt△AOC中,∵∠ACO=90°,AO=5,∴22AO AC-,∴OD=5,∴CD=OD﹣OC=2;(2)如图2,过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3,∵AC=x,∴CH=|x﹣4|,在Rt△HOC中,∵∠CHO=90°,AO=5,∴22HO HC+223|x4|+-2825x x-+∴CD=OD ﹣OC=5过点DG ⊥AB 于G ,∵OH ⊥AB ,∴DG ∥OH ,∴△OCH ∽△DCG , ∴OH OC DG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x ) ∴y=ACO OBD S S=()323582x x -(0<x <8) (3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF=AE ,∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6 综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.2.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = , ∴∠ADE=∠AFE=45°,∵∠ABD=45°,∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD ,∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°,∵42AB = ,∴BF=42cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8,∵BE 2=EF 2+BF 2, 82<BE ≤413 ,∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.3.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=,∵B B ∠=∠, ∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4,∴DF=CD •sin60°=23CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.4.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB =90°,即MA ⊥AB ,∴MN 是⊙O 的切线;(2)①证明:∵D 是弧AC 的中点,∴∠DBC =∠ABD ,∵AB 是直径,∴∠CBG+∠CGB =90°,∵DE ⊥AB ,∴∠FDG+∠ABD =90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.5.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE=13 OEOC=,∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32; (3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD , ∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣3,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣3,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.设切点为E ,连接CE ,∵⊙C 的圆心在直线y =﹣2x +1上,∴此直线和y 轴,x 轴的交点D (0,1),F (12,0), ∴OF =12,OD =1, ∵CE ∥OF ,∴△DOF ∽△DEC ,∴OD OF DE CE= , ∴112DE = , ∴DE =2,∴OE =3,t 的最大值为3, 当⊙C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小.同理可得t 的最小值为﹣1.综上所述,t 的取值范围为﹣1≤t ≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.7.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =,求圆O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长.【详解】(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合∵△ALB 是△AHD 旋转所得∴∠ABL=∠ADB ,AL=AH设∠CAG=a ,则∠CBG=a∵BG ⊥AC∴∠BCA=90°-a ,∴∠ADB=∠ABD=90°-a∴在△BAD 中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH ,AE=AE∴△ALE ≌△AHE ,∴LE=EH∵HD=LB,222EH BE DH=+∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=2 2∴BN=5∴22r=【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形8.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB=22AC BC=25,∴cos∠ABC=BCAB =5,∴BH=BC•cos∠ABC=25,∴BK=BH•co s∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE=32AC=6,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:62+21m3⎛⎫⎪⎝⎭=m2,∵m>0,∴m=42;综上所述,①当BC=3CE时,m=22或42.②如图4,过F作FG⊥HE于点G,∵CH⊥AB,HB=HD,∴CB=CD,∴∠CBD=∠CDB,∴DFE BEF=,即DF EF BE EF+=+,∴DF BE=,∴EF∥BD,∴FHDEFHSS=DHEF,∵在Rt△FHG中,FGHG=tan∠FHE=512,设FG=5k,HG=12k,则FH=22FG HG+=22(5)(12)k k+=13k,∴DH=HE=FH=13k,EG=HE﹣HG=13k﹣12k=k,∴EF=22FG EG+=22(5)k k+=26k,∴FHDEFHSS=26k=26.【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.9.如图,在ABC∆中,90C∠=︒,30CAB∠=︒,10AB=,点D在线段AB上,2AD=.点P从D点出发,沿DB方向运动,以DP为直径作O,当P运动到点B时停止运动,设DP m=.(1)AO=___________,BP=___________.(用m的代数式表示)(2)当m为何值时,O与ABC∆的一边相切?(3)在点P整个运动过程中,过点P作O的切线交折线AC CB-于点E,将线段EP 绕点E顺时针旋转60︒得到EF,过F作FG EP⊥于G.①当线段FG长度达到最大时,求m的值;②直接写出点F 所经过的路径长是________.(结果保留根号) 【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =-;(3)①112;②1153762+ 【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】 (1)2222DP m AO =+=+,8BP AB AP m =-=- (2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒ ∴2AO OH =∴22m m +=解得4m =情况2:与BC 相切时,Rt BON∆中,∵60B∠=︒∴3cos2ONBOB==即32282mm=-解得32348m=-(3)①在Rt EFG∆中,∵30EFG A∠=∠=︒,90EGF∠=︒,∴3cos30cos30FG EF PE EP︒︒=⋅=⋅=,∴当FG最大时即PE最大当点E与点C重合时,PE的值最大.易知此时53553AC BCEPAB⨯⨯===.在Rt EAP∆中,∵30A∠=︒∴1532AP EP==∴1511222m DP==-=(3)F轨迹如图:从1F到2F到B1133233AF AE EF AD PE =-=-==, 2532CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒. ∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.10.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A 点出发,到笔直的河岸l 去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A 关于直线l 的对称点A ′,连接A ′B 交l 于点P ,则PA +PB =A ′B 的值最小.解答问题:(1)如图2,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求PA +PC 的最小值;(2)如图3,已知菱形ABCD 的边长为6,∠DAB =60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P 从点A 出发,以每秒2个单位的速度,沿A →C 的方向,向点C 运动.当到达点C 后,立即以相同的速度返回,返回途中,当运动到x 轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是23;(2)①点M的位置是(3,0)时,用时最少;②S与t之间的函数关系式是当33<t≤43时,S=183﹣3t;当0<t≤33时,S =3t.当43<t≤63时,S=﹣3t+183.【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C到(3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM22AM AC3答:PA+PC的最小值是3(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=3,∴S=12AP×BO=12×2t×3=3t;③当3t3AP=32t﹣332t,∴S=12AP×BO=12×(32t)×3=3﹣3t.当3t3S=12AB×BP=123﹣(t﹣3]=﹣3t3答:S与t之间的函数关系式是当3<t3时,S=33t;当0<t3S=3t.当3t3S=﹣3t3【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.。
2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案
备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(一)1.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于⊙O的密切点.已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(﹣2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O 的密切点,直接写出t的取值范围.2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB 边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O 上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T 与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.3.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tanB=,tanC=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.4.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.5.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.6.如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时,设AD=x.(1)则△FMN的形状是,△ADM的形状是;(2)△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出的取值范围;(3)若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.7.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A 的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.8.如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON =OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.9.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.10.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC 于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案1.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标xM,xN是方程5x2﹣4x﹣10=0的两根,解得xM=,xN=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.2.解:(1)如图1,∵P1(1,0),A(0,﹣5),B(4,3),∴AB==4,P1A==,P1B==3,∴P1不在以AB为直径的圆弧上,故∠AP1B不是AB关于⊙O的内直角,∵P2(0,3),A(0,﹣5),B(4,3),∴P2A=8,AB=4,P2B=4,∴P2A2+P2B2=AB2,∴∠AP2B=90°,∴∠AP2B是AB关于⊙O的内直角,同理可得,P3B2+P3A2=AB2,∴∠AP3B是AB关于⊙O的内直角,故答案为:∠AP2B,∠AP3B;(2)∵∠APB是AB关于⊙O的内直角,∴∠APB=90°,且点P在⊙O的内部,∴满足条件的点P形成的图形为如图2中的半圆H(点A,B均不能取到),过点B作BD⊥y轴于点D,∵A(0,﹣5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x﹣5,∴当直线y=2x+b过直径AB时,b=﹣5,连接OB,作直线OH交半圆于点E,过点E作直线EF∥AB,交y 轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴,∴OH=AH=EH,∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF∥AB,直线AB的解析式为y=2x﹣5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是﹣5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE 关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT =90°,∴点H在以DT为直径的圆上,如图3,当⊙G与MN相切时,GH⊥MN,∵OM=1,ON=2,∴MN==,∵∠GMH=∠OMN,∠GHM=∠NOM,ON=GH=2,∴△GHM≌△NOM(ASA),∴MN=GM=,∴OG=﹣1,∴OT=+1,当T与M重合时,t=1,∴此时t的取值范围是﹣﹣1≤t<1,②若点H与点M重合时,临界位置有两个,一个是当点T与M重合时,t=1,另一个是当TM=4时,t=5,∴此时t的取值范围是1≤t<5,综合以上可得,t的取值范围是﹣﹣1≤t<5.3.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a2=﹣2(舍去),∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,解得a1=2,(舍去)∴BD=3+a=3+2=5.∴或5.(3)①如答图4,连接AD,BD,∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.4.(1)证明:∵C是的中点,∴=,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC==6,∵C是的中点,∴OC⊥AD,∴OA2﹣OF2=AF2=AC2﹣CF2,∴52﹣OF2=62﹣(5﹣OF)2,∴OF=1.4,又∵O是AB的中点,∴BD=2OF=2.8.5.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.6.解:(1)如图1,∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,即△FMN是直角三角形,∵∠FDE=60°,∴∠AMD=∠FDE﹣∠A=30°,∴∠AMD=∠A,∴DM=DA,∴△ADM是等腰三角形;故答案为:直角三角形,等腰三角形;(2)如图2,△ADM是等腰三角形,∴DM=AD=x,FM=4﹣x,又∵∠FED=60°,∠A=30°,∴∠FNM=90°,∴MN=MF•sinF=(4﹣x),FN=,∴y==,=.当0<x≤2时,∴y=S四边形DENM=S△FDE﹣S△FMN=4,当2≤x<4时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴,=.(3)如图3,点M作MG⊥AC于点G,由(2)得DM=x,∵∠MDG=60°,∴MG=,MNF=90°∴MN⊥FC要使以点M为圆心,MN长为半径的圆与边AC、EF相切,则有MG=MN,∴,解得:x=2,∴圆的半径MN=.7.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.8.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴ON﹣OM=OC.9.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.10.解:(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,∴AC=AB•tanB=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,∴S△EAF=AE•EF=AE×AE=AE2,当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,∴AE=AB•sinB=2sin60°=2×=,S△EAF=AE2=×3=,∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.。
人教版九年级数学上册 圆 几何综合专题练习(解析版)(1)
人教版九年级数学上册圆几何综合专题练习(解析版)(1)一、初三数学圆易错题压轴题(难)1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,(1)求证:直线AB是⊙O的切线;(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.【答案】(1)见解析;(2)5【解析】【分析】(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出DC=35x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.【详解】(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC=5x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=535xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.2.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.5.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE ⊥AB ,∴∠FDG+∠ABD =90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.6.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围); (3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a , 由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示: 在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = ,∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)
人教版九年级数学上册 圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB 是直径,∴∠ACB =90°,∴∠CAB+∠ABC =90°;∵∠MAC =∠ABC ,∴∠MAC+∠CAB =90°,即MA ⊥AB ,∴MN 是⊙O 的切线;(2)①证明:∵D 是弧AC 的中点,∴∠DBC =∠ABD ,∵AB 是直径,∴∠CBG+∠CGB =90°,∵DE ⊥AB ,∴∠FDG+∠ABD =90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE=1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.3.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题4.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(312)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣32,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.5.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(370【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN)×FN=9,∴FN=2,∴DM =2,DH =4, ∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC ,∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC ,∴△GEH ∽△CHD ,∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE =70∴BC =70【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.6.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A =30°时,求∠CDB 的度数;(2)当m =2时,求BE 的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=22或42;②262【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB22AC BC5,∴cos∠ABC=BCAB 5,∴BH=BC•cos∠ABC=255,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC =3CE , ∴CE=13m ,BE =32m , ∵DE ∥AC ,∴△DEB ~△ACB , ∴DE AC =BE BC =32, ∴DE =32AC =6, ∵CD =CB =m , ∴Rt △CDE 中,由勾股定理得:62+21m 3⎛⎫ ⎪⎝⎭=m 2, ∵m >0,∴m =42;综上所述,①当BC =3CE 时,m =22或42.②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHDEFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHD EFH SS =26k =262. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+-∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.8.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可.②明显以E点与C点重合前后为节点,点F的运动轨迹分两部分,第一部分为从P开始运动到E点与C点重合,即图中的12F F,根据1212F F AC AF CF=--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cosONBOB==即32282mm=-解得32348m=-(3)①在Rt EFG∆中,∵30EFG A∠=∠=︒,90EGF∠=︒,∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大 当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.9.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(23351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO=,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HDOH OAHDB H===;(3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO =, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=EB OB =, ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.10.已知点A 为⊙O 外一点,连接AO ,交⊙O 于点P ,AO=6.点B 为⊙O 上一点,连接BP ,过点A 作CA ⊥AO ,交BP 延长线于点C ,AC=AB .(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)433PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB,∴∠OPB=∠OBP=∠APC,∵AC=AB,∴∠C=∠ABP,∵AC ⊥AO , ∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12 又∵圆O 与直线MN 有交点,∴r ,2r ≤,∴22364r r -≤,∴5r ≥ 又∵圆O 与直线AC 相离,∴r <6,即65r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。
人教版九年级上册数学《圆》单元测试卷(含答案)
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
九年级圆 几何综合达标检测(Word版 含解析)
九年级圆 几何综合达标检测(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,∴BN BP BP BC=, ∵B B ∠=∠,∴BPN BCP ∆∆∽,∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.5.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;试题解析:(1)∵C(0,8),D(-4,0),∴OC=8,OD=4,设OB=a,则BC=8-a,由折叠的性质可得:BD=BC=8-a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8-a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB=34 OBOD=,在Rt△AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b , 则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形, 则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
九年级上册数学 圆 几何综合(篇)(Word版 含解析)
九年级上册数学圆几何综合(篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)1810.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】解:(1)证明:∵DE⊥AB∴∠BED=90°∴∠A+∠ADE=90°∵∠ADC=90°∴∠GDF+∠ADE=90°∴∠A=∠GDF∵BD BD∴∠A=∠GFD∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45° ∴EF =BE∵∠DAE =∠ADE =45° ∴DE =AE ∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90°令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4过点N 作NS ⊥DP 于S , 在Rt △PSN 中,PS =SN =22 DS =62﹣22=42SN 221tan DS 242SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR 在Rt △DFR 中,∵DF =1122,tan 2FDR ∠=∴12102410,FR DR ==在Rt △FKR 中,∵FR =1210tan ∠FKR =2 ∴KR =6105∴DK =DR ﹣KR =24106101810=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.2.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3331331+- 【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x 4-=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似4.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣433时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin603OB ON ==, 4310AO ∴=-, 43123AP ∴=-, 432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
模型25 圆综合之中点弧模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇
模型介绍【模型解读】类型一中点弧与相似点P 是优弧AB上一动点,则∠1=∠2,∠PCB为公共角,子母型相似【补充】⑥PE •PC =PA •PB【以下五个条件知一推四】1点C 是AB 的中点2AC =BC 3OC ⊥AB 4PC 平分∠APB52CE CP CB ⋅=(即~CPB CBE △△)类型二中点弧与旋转【模型解读】点P 是优弧AB 上一动点,且点C 是 AB 的中点邻边相等+对角互补旋转相似模型,一般用来求圆中三条线段之间的数量关系.由于对角互补,即180PBC PAC ∠∠︒+=,显然'PAP 共线,且'PC P C =,通过导角不难得出相似.类型三中点弧+内心可得等腰【模型讲解】外接圆+内心⇒得等腰如图,圆O 是△ABC 外接圆圆心,I 是三角形ABC 模型25圆综合之中点弧模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇内心,延长AI 交圆O 于D ,证DI =DC =BD【简证】∠1=∠4+∠5,∠4=∠3,∠2=∠5∴∠1=∠2+∠3类型四弧中点与垂径定理【模型解读】知1推51AD平分∠CAB 2D是 CB的中点3DO⊥CB4CE EB=5//AC OD612 OE AC=例题精讲考点一:中点弧与相似三角形的综合【例1】.如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED =4,则AB的长为_______解:∵AB=AC,∴∠ACB=∠ABC=∠D,∵∠BAD=∠BAD,∴△ABD∽△AEB,∴,∴AB2=3×7=21,∴AB=.变式训练【变式1-1】.如图,四边形ABCD内接于⊙O,对角线AC、BD交于点P,且AB=AD,若AC=7,AB=3,则BC•CD=40.解:∵AB=AD=3,∴=,∴∠ADP=∠ACD,∵∠DAP=∠CAD,∴△ADP∽△ACD,∴=,∴=,∴AP=,PC=AC﹣PA=7﹣=,∵∠CBP=∠CAD,∠BCP=∠ACD,∴△CBP∽△CAD,∴=,∴BC•CD=CA•CP=7×=40.故答案为:40.【变式1-2】.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为_______解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=FA=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.考点二中点弧与旋转的综合【例2】.在OBAD∠=︒,点C为弧BD的AB=,10AD=,60的内接四边形ABCD中,6中点,则AC的长是.解:如图,过C 作CE AB ⊥于E ,CF AD ⊥于F ,则90E CFD CFA ∠=∠=∠=︒, 点C 为弧BD 的中点,∴ BC CD =,BAC DAC ∴∠=∠,BC CD =,CE AB ⊥ ,CF AD ⊥,CE CF ∴=,A 、B 、C 、D 四点共圆,D CBE ∴∠=∠,在CBE ∆和CDF ∆中CBE D E CFD CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CBE CDF ∴∆≅∆,BE DF ∴=,在AEC ∆和AFC ∆中,E AFC EAC FAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEC AFC ∴∆≅∆,AE AF ∴=,设BE DF x ==,6AB = ,10AD =,3AE AF x ∴==+,106x x ∴-=+,解得:2x =,即8AE =,163cos303AE AC ∴==︒1633.变式训练【变式2-1】.如图,已知AB 是O 的弦,点C 是弧AB 的中点,D 是弦AB 上一动点,且不与A 、B 重合,CD 的延长线交于O 点E ,连接AE 、BE ,过点A 作AF BC ⊥,垂足为F ,30ABC ∠=︒.(1)求证:AF 是O 的切线;(2)若6BC =,3CD =,求DE 的长;(3)当点D 在弦AB 上运动时,CEAE BE+的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.(1)证明:如图,连接AC ,OA ,OC ,OC 交AB 于H ,260AOC ABC ∠=∠=︒ ,OA OC =,AOC ∴∆是等边三角形,60CAO ACO ∴∠=∠=︒, 点C 是弧AB 的中点,∴ BC AC =,30ABC BAC ∴∠=∠=︒,180180603090CHA OCA CAB ∴∠=-∠-∠=︒-︒-︒=︒,AB OC ∴⊥,1302OAD OAC ∴∠=∠=︒,30ABC ∠=︒ ,ABC OAD ∴∠=∠,//OA BF ∴,AF BF ⊥ ,OA AF ∴⊥,AF ∴是O 的切线;(2)解: BCAC =,CBD BEC ∴∠=∠,BCD BCE ∠=∠ ,BCD ECB ∴∆∆∽,∴BC CD EC CB =,∴636EC =,12EC ∴=,1239DE EC CD ∴=-=-=;(3)结论:3CE AE BE =+,CEAE BE+的值不变.理由:如图,连接AC ,OC ,OC 交AB 于H ,作//AN EC 交BE 的延长线于N , BCAC =,CB CA ∴=,由(1)得,OC AB ⊥,12BH AH AB ∴==,30ABC ∠=︒ ,30ABC BAC BEC AEC ∴∠=∠=∠=∠=︒,cos302BH BC ∴=︒=,∴122AB AC =,//CE AN ,30N CEB ∴∠=∠=︒,30EAN AEC ∠=∠=︒,EAN N ∴∠=∠,N AEC ∴∠=∠,AE EN =,ACE ABN ∠=∠ ,ACE ABN ∴∆∆∽,∴3CE AC BN AB ==,∴CE CE EN BE AE BE ==++,∴CE AE BE +的值不变.考点三:中点弧+内心可得等腰三角形【例3】.如图,已知⊙O 是△ABC 的外接圆,点I 是△ABC 的内心,延长AI 交BC 于点E ,交⊙O 于点D ,连接BD 、DC 、BI .求证:DB =DC =DI .证明:∵点I 是△ABC 的内心,∴∠BAD =∠DAC ,∠ABI =∠IBC ,∵⊙O 是△ABC 的外接圆,∠BAD =∠DAC ,∴=,∴BD =CD ,∵=,∴∠CAD =∠CBD ,∵∠DBI =∠IBC +∠CBD ,∠BID =∠ABI +∠BAI ,∴∠DBI =∠BID ,∴DB =DI ,∴DB =DC =DI .变式训练【变式3-1】.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE =∠BDA ,∴△DAE ∽△DBA ,∴AD :DB =DE :DA ,即AD :9=4:AD ,∴AD =6,∴DI =6,∴BI =BD ﹣DI =9﹣6=3.【变式3-2】.如图1,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC ·BE =25,求BG 的长.解:(1)∵AB =AC ,∴∠ABC =∠ACB ,又∵∠ACB =∠BCD ,∠ABC =∠ADC ,∴∠BCD =∠ADC ,∴ED =EC ;(2)如图,连接OA ,∵AB =AC ,∴ AB AC ,∴OA ⊥BC ,∵CA =CF ,∴∠CAF =∠CFA ,∴∠ACD =∠CAF +∠CFA =2∠CAF ,∵∠ACB =∠BCD ,∴∠ACD =2∠ACB ,∴∠CAF =∠ACB ,∴AF ∥BC ,∴OA ⊥AF ,∴AF 为⊙O 的切线;(3)∵∠ABE =∠CBA ,∠BAD =∠BCD =∠ACB ,∴△ABE ∽△CBA ,∴AB BE BC AB=,∴AB 2=BC •BE ,∵BC •BE =25,∴AB =5,如图,连接AG ,∴∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,∵点G 为内心,∴∠DAG =∠GAC ,又∵∠BAD +∠DAG =∠GAC +∠ACB ,∴∠BAG =∠BGA ,∴BG =AB =5.考点四:弧中点与垂径定理【例4】.如图,AB 为O 的直径,C ,D 为圆上的两点,//OC BD ,弦AD ,BC 相交于点E .(1)求证: AC CD=;(2)若2CE =,6EB =,求O 的半径.(1)证明:OC OB = ,OBC OCB ∴∠=∠,//OC BD ,OCB CBD ∴∠=∠,OBC CBD ∴∠=∠,∴AC CD =;(2)连接AC ,2CE = ,6EB =,8BC ∴=,AC CD =,CAD ABC ∴∠=∠,ACB ACB ∠=∠ ,ACE BCA ∴∆∆∽,∴AC CB CE AC =,即82AC AC=,解得,4AC =,AB 是直径,90ACB ∴∠=︒,AB ∴==,O ∴ 的半径为.变式训练【变式4-1】.如图,AB 是⊙O 的直径,点C 为的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ;(2)若AD =BE =4,求BF 的长.(1)证明:∵C 是中点,∴=,∵AB 是⊙O 的直径,且CF ⊥AB ,∴=,∴=,∴CD =BF ,在△BFG 和△CDG 中,,∴△BFG ≌△CDG (AAS );(2)解:如图,连接OF ,设⊙O 的半径为r ,Rt △ADB 中,BD 2=AB 2﹣AD 2,即BD 2=(2r )2﹣42,Rt △OEF 中,OF 2=OE 2+EF 2,即EF 2=r 2﹣(r ﹣4)2,∵==,∴=,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣42=4[r2﹣(r﹣4)2],解得:r=2(舍)或6,∴BF2=EF2+BE2=62﹣(6﹣4)2+42=48,∴BF=4.【变式4-2】.如图,AB是⊙O的直径,点E为弧AC的中点,AC、BE交于点D,过A的切线交BE的延长线于F.(1)求证:AD=AF;(2)若,求tan∠ODA的值.解:(1)连接AE,OE交AC于H,∵AB是直径,∴∠AEB=90°,∴∠B+∠BAE=90°,∵AF是⊙O的切线,∴∠BAF=90°,∴∠BAE+∠FAE=90°,∴∠B=∠FAE,∵点E为弧AC的中点,∴=,∴∠B =∠CAE ,∴∠CAE =∠FAE ,在△ADE 和△AFE 中,,∴△ADE ≌△AFE (ASA ),∴AD =AF ;(2)∵,∴设AO =2x ,AF =3x ,∴AB =4x ,∴BF ===5x ,∵S △ABF =×AB ×AF =×BF ×AE ,∴AE =x ,∴EF ==x ,∵点E 为弧AC 的中点,∴OE ⊥AC ,AH =CH ,∵∠DAE =∠EAF ,∠AEF =∠AHE =90°,∴△AEH ∽△AFE ,∴,∴==,∴AH =x ,HE =x ,∴OH =x ,HD =x ,∴tan ∠ODA ==.考点五弧中点与垂径模型(三等弧模型)【例5】.如图,AB 是O 的直径,点C 为 BD的中点,CF 为O 的弦,且CF AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG ∆≅∆;(2)若2AD BE ==,求BF的长.证明:(1)C 是 BD的中点,∴ CD BC =,AB 是O 的直径,且CF AB ⊥,∴ BCBF =,∴ CD BF =,CD BF ∴=,在BFG ∆和CDG ∆中,F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFG CDG AAS ∴∆≅∆;(2)如图,连接OF ,设O 的半径为r ,Rt ADB ∆中,222BD AB AD =-,即222(2)2BD r =-,Rt OEF ∆中,222OF OE EF =+,即222(2)EF r r =--,CDBC BF ==,∴ BD CF =,BD CF ∴=,2222(2)4BD CF EF EF ∴===,即2222(2)24[(2)]r r r -=--,解得:1r =(舍)或3,2222223(32)212BF EF BE ∴=+=--+=,BF ∴=;1.如图,在⊙O 中AB 为直径,C 为弧AB 的中点,EF ∥AB ,连接AC 交EF 于点D ,若已知DF =2DE ,则CD :AD 的值为()A.1:3B.1:2C.1:2D.1:4解:如图,连接CO交EF于H,连接AE,CF,BC,∵DF=2DE,∴设DE=x,DF=2x,∴EF=3x,∵C为弧AB的中点,∴OC⊥AB,∠CAB=∠CBA=45°,∵EF∥AB,∴OC⊥EF,∠CDH=45°,∴EH=HF=x,∴DH=x=CH,∴CD=x,∵∠EAD=∠CFD,∠ADE=∠CDF,∴△ADE∽△FDC,∴,∴,∴AD=2x,∴CD:AD=1:4.故选:D.2.如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON上的点.若⊙O的半径为1,则AP+BP的最小值为()A.2B.C.D.1解:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′,OB,∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故选:C.3.在⊙O的内接四边形ABCD中,AB=6,AD=10,∠BAD=60°,点C为弧BD的中点,则AC的长是.解:如图2中,过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中,∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中,,∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=6,AD=10,∴AE=AF=x+3,∴10﹣x=6+x,解得:x=2,即AE=8,∴AC==,故答案为.4.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠BAD=∠CAD,∠ABE=∠CBE,∵∠BED=∠BAE+∠ABE,∠DBE=∠EBC+∠CBD,∠CBD=∠CAD,∴∠BED=∠EBD,∴DE=DB;(2)解:连接CD,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴BD=CD,∵BD=4,∴BC==4,∴△ABC外接圆的半径为2.5.如图,AB是⊙O的直径,AC为弦,D是的中点,过点D作EF⊥AC,交AC的延长线于E,交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)若sin∠F=,AE=4,求⊙O的半径和AC的长.(1)证明:连接OD,OC.∵D是的中点,∴∠BOD=∠BOC,∵∠A=∠BOC,∴∠BOD=∠A,∴OD∥AC,∵EF⊥AC,∴∠E=90°,∴∠ODF=90°,即EF是⊙O的切线;(2)解:在△AEF中,∵∠E=90°,sin∠F=,AE=4,∴AF==12.设⊙O的半径为R,则OD=OA=OB=R,AB=2R.在△ODF中,∵∠ODF=90°,sin∠F=,∴OF=3OD=3R.∵OF+OA=AF,∴3R+R=12,∴R=3.连接BC,则∠ACB=90°.∵∠E=90°,∴BC∥EF,∴AC:AE=AB:AF,∴AC:4=2R:4R,∴AC=2.故⊙O的半径为3,AC的长为2.6.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.解法二:可以作OB中点G,连接FG,EG,证明OEFG是平行四边形即可,得对角线互相平分.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.解法二:可以过E点作EG∥OB交AC于点G,连接DG.∵EG∥OB,AE=EB,∴AG=OG∵OF=FC,∴OG=OF,∴OD=FG,∵AE⊥OE,AG=OG,∴EG=AO=OG,∵∠DOG=∠FGE,∴DOG≌△FGE(SAS),∴DG=EF,∵DF=EF,∴DG=DF,∴DO⊥FG,∴EG⊥AO,∴EA=EO,∴∠BAC=45°7.如图,△ABC内接于⊙O,AB是⊙O的直径,C是中点,弦CE⊥AB于点H,连接AD,分别交CE、BC于点P、Q,连接BD.(1)求证:P是线段AQ的中点;(2)若⊙O的半径为5,D是的中点,求弦CE的长.(1)证明:∵CE⊥AB,AB是直径,∴,又∵∴,∴∠CAD=∠ACE,∴AP=CP,∵AB是⊙O的直径,∴∠ACB=90˚,∴∠ACE+∠BCP=90°,∠CAD+∠CQA=90°,∴∠BCP=∠CQA,∴CP=PQ,∴AP=PQ,即P是线段AQ的中点;(2)解:∵,AB是直径,∴∠ACB=90˚,∠ABC=30˚,又∵AB=5×2=10,∴AC=5,BC=5,∴CH=BC=,又∵CE⊥AB,∴CH=EH,∴CE=2CH=2×=5.8.如图,已知AB是⊙O的弦,点C是弧AB的中点,D是弦AB上一动点,且不与A、B 重合,CD的延长线交于⊙O点E,连接AE、BE,过点A作AF⊥BC,垂足为F,∠ABC =30°.(1)求证:AF是⊙O的切线;(2)若BC=6,CD=3,求DE的长.(3)当点D在弦AB上运动时,的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.(1)证明:如图,连接AC,OA,OC,OC交AB于H,∵∠AOC=2∠ABC=60°,OA=OC,∴△AOC是等边三角形,∴∠CAO=∠ACO=60°,∵点C是弧AB的中点,∴,∴∠ABC=∠BAC=30°,∴∠CHA=180﹣∠OCA﹣∠CAB=180°﹣60°﹣30°=90°,∴AB⊥OC,∴∠OAD=∠OAC=30°,∵∠ABC=30°,∴∠ABC=∠OAD,∴OA∥BF,∵AF⊥BF,∴OA⊥AF,∴AF是⊙O的切线;(2)解:∵,∴∠CBD=∠BEC,∵∠BCD=∠BCE,∴△BCD∽△ECB,∴,∴,∴EC=12,∴DE=EC﹣CD=12﹣3=9;(3)结论:,的值不变.理由:如图,连接AC,OC,OC交AB于H,作AN∥EC交BE的延长线于N,∵,∴CB=CA,由(1)得,OC⊥AB,∴BH=AH=,∵∠ABC=30°,∴∠ABC=∠BAC=∠BEC=∠AEC=30°,∴BH=BC cos30°=BC,∴,∵CE∥AN,∴∠N=∠CEB=30°,∠EAN=∠AEC=30°,∴∠EAN=∠N,∴∠N=∠AEC,AE=EN,∵∠ACE=∠ABN,∴△ACE∽△ABN,∴,∴=,∴的值不变.解法二:连接AC,可知BC=AC,∠BCA=120°,可得BC:AC:AB=1:1:,再利用相似三角形的性质解决问题.9.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=m,BD=n,求的值(用含m,n的式子表示).解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠ABE=∠DBC=60°,∴∠DBE=∠ABC,又∵AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=AD,即AB+BM=AD,∴AB+AC=AD;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=m,BD=n,∴=.10.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4.∴MN•MC=BM2=32.11.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.12.如图1,在平面直角坐标系xOy中,点A(﹣,0),B(3,0),以AB为直径的⊙G交y轴于C、D两点.(1)填空:请直接写出⊙G的半径r、圆心G的坐标:r=;G(,);(2)如图2,直线y=﹣x+5与x,y轴分别交于F,E两点,且经过圆上一点T(2,m),求证:直线EF是⊙G的切线.(3)在(2)的条件下,如图3,点M是⊙G优弧上的一个动点(不包括A、T两点),连接AT、CM、TM,CM交AT于点N.试问,是否存在一个常数k,始终满足CN•CM =k?如果存在,求出k的值,如果不存在,请说明理由.解:(1)∵A(﹣,0),B(3,0),AB是直径,∵AB=4,∴⊙G的半径为2,G(,0),故答案为r=2,,0.(2)如图2中,连接GT,过点T作TH⊥x轴于H,∵直线y=﹣x+5与x、y轴交于E、F两点,则E(0,5),F(5,0),∵直线y=﹣x+5经过T(2,m),则m=﹣×2+5=3,∴T(2,3),故TH=3.GH=,HF=3,在Rt△HGT中,GT=r=2,∴GH=GT,∴∠GTH=30°,在Rt△THF中,tan∠FTH===,∴∠FTH=60°,∴∠GTF=∠GTH+∠HTF=30°+60°=90°,∴GT⊥EF,∴直线EF是⊙G的切线.(3)如图3中,连接CG、TG、TC.在Rt△COG中,OG=,CG=r=2,∴OC=3,∠CGO=60°.∵C(0,3),T(2,3),∴CT∥x轴,∴CT=2,即CT=CG=GT=2,∴△CGT是等边三角形,∴∠CGT=∠TCG=∠CGA=60°,∴∠CTA=∠CGA=30°,∠M=∠CGT=30°,∴∠CTA=∠M,在△CNT和△CTM中,∵∠TCN=∠MTC,∠CTN=∠M,∴△CNT∽△CTM,∴=,∴CN•CM=CT2=(2)2=12.∴k=CN•CM=12.13.已知:如图,抛物线y=x2﹣x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E 点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.解:(1)由抛物线可知,点C的坐标为(0,m),且m<0.设A(x1,0),B(x2,0).则有x1•x2=3m又OC是Rt△ABC的斜边上的高,∴△AOC∽△COB∴∴,即x1•x2=﹣m2∴﹣m2=3m,解得m=0或m=﹣3而m<0,故只能取m=﹣3(3分)这时,y=x2﹣x﹣3=﹣4故抛物线的顶点坐标为(,﹣4).(2)由已知可得:M(,0),A(﹣,0),B(3,0),C(0,﹣3),D(0,3)∵抛物线的对称轴是直线x=,也是⊙M的对称轴,连接CE∵DE是⊙M的直径,∴∠DCE=90°,∴直线x=,垂直平分CE,∴E点的坐标为(2,﹣3)∵,∠AOC=∠DOM=90°,∴∠ACO=∠MDO=30°,∴AC∥DE∵AC⊥CB,∴CB⊥DE又∵FG⊥DE,∴FG∥CB由B(3,0)、C(0,﹣3)两点的坐标易求直线CB的解析式为:y=﹣3可设直线FG的解析式为y=+n,把(2,﹣3)代入求得n=﹣5故直线FG的解析式为y=﹣5.(3)存在常数k=12,满足AH•AP=12,假设存在常数k,满足AH•AP=k连接CP,∵AB⊥CD,∴=∴∠P=∠ACH(或利用∠P=∠ABC=∠ACO),又∵∠CAH=∠PAC,∴△ACH∽△APC,=,∴即AC2=AH•AP,在Rt△AOC中,AC2=AO2+OC2=()2+(3)2=12,∴AH•AP=k=12;(也可以证明△AOH∽△APB,可得AH•AP=AO•AB,由此即可解决问题)。
2024年中考数学常见几何模型全归纳(全国通用)专题31 圆中的重要模型之四点共圆模型(解析版)
专题31圆中的重要模型之四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。
相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。
本文主要介绍四点共圆的四种重要模型。
四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。
这也是圆的基本定义,到定点的距离等于定长点的集合。
条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。
【答案】2【分析】首先连接OE,由角器上对应的读数.【详解】解:连接OE,A .13B .52∵在ABC 中,90BAC【答案】30【分析】连接AC 与BD 又易知在Rt ACD △中,【详解】解:连接AC 与∵四边形形ABCD 是矩形,12OA OB OC OD AC又∵DE BF 于E ,即是直角三角形,∴12OE BD ,∴OA OC OD OE ,∴点A B 、、,由旋转的性质可知:AF AB ,【答案】122【分析】(1)根据条件,证明AOD COD△△△△,代入推断即可.(2)通过AOG ABC证明ODF CBF△△,代入推断即可.又∵∵CE CF∴CEF CFE模型2、定边对双直角共圆模型C同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A、B、C、D四个点满足90ABD ACD,结论:A、B、C、D四点共圆,其中AD为直径。
2)定边对双直角模型(异侧型)条件:若平面上A、B、C、D四个点满足90ABC ADC,结论:A、B、C、D四点共圆,其中AC为直径。
【点睛】本题考查了圆的直径所对的圆周角为【点睛】此题主要考查圆内接四边形,直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质等知识点,解答此题的关键是添加辅助线构造特殊三角形,求出线段.模型3、定边对定角共圆模型条件:如图1,平面上A 、B 、C 、D 四个点满足ADB ACB ,结论:A 、B 、C 、D 四点共圆.条件:如图2,AC 、BD 交于H ,AH CH BH DH ,结论:A B C D 、、、四点共圆.例1.(2023·江苏·九年级假期作业)如图,在Rt ABC 中,∠BAC =90°,∠ABC =40°,将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上.(1)求∠BAD 的度数;(2)求证:A 、D 、B 、E 四点共圆.【答案】(1)10°;(2)见解析【分析】(1)由三角形内角和定理和已知条件求得∠C 的度数,由旋转的性质得出AC =AD ,即可得出∠ADC =∠C ,最后由外角定理求得∠BAD 的度数;(2)由旋转的性质得到∠ABC =∠AED ,由四点共圆的判定得出结论.【详解】解:(1)∵在Rt ABC 中,∠BAC =90°,∠ABC =40°,∴∠C =50°,∵将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上,∴AC =AD ,∴∠ADC =∠C =50°,∴∠ADC =∠ABC +∠BAD =50°,∴∠BAD =50°-40°=10°证明(2)∵将 ABC 绕A 点顺时针旋转得到 ADE ,∴∠ABC =∠AED ,∴A 、D 、B 、E 四点共圆.【点睛】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.例3.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE 绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC,∴△ACE ≌△BCD (SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H,如图:∵△ACE ≌△BCD ∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD 4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos 30DG∴AF =AE -FE 80;【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例4.(2022·贵州遵义·统考中考真题)探究与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D ,那么A ,B ,C ,D 四点在同一个圆上.探究展示:如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D (依据1)B D ∵180AEC B点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆)点B ,D 在点A ,C ,E 所确定的O 上(依据2)点A ,B ,C ,E 四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:__________;依据2:__________.(2)图3,在四边形ABCD 中,12 ,345 ,则4 的度数为__________.(3)拓展探究:如图4,已知ABC 是等腰三角形,AB AC ,点D 在BC 上(不与BC 的中点重合),连接AD .作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E与判定,掌握以上知识是解题的关键.模型4、对角互补共圆模型P条件:如图1,平面上A、B、C、D四个点满足ABC ADC,结论:A、B、C、D四点共圆.条件:如图2,BA、CD的延长线交于P,PA PB PD PC,结论:A、B、C、D四点共圆.A.2B.22【答案】A【分析】先根据等腰三角形的性质可得,,,A B E D四点共圆,在以BE为直径的圆上,连接【答案】43/113【分析】过点B作BH AM交F,点A,M,B,C四点共圆,得法求解,12AMBS AM DE△【详解】解析:过点B作BH 于点,如图所示:【答案】52 2【分析】连接BD并延长,利用四点共圆的判定定理得到的性质和圆周角定理得到DBF性质解答即可得出结论.(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD 时,O 是四边形AEBD O 的切线;(3)已知1206BC ,,点M 是边BC 的中点,此时P 是四边形出圆心P 与点M 距离的最小值.【答案】(1)证明见解析(2)证明见解析(3)32(3)解:如图所示,作线段AB 的垂直平分线,分别交∵120AB AC BAC ,,∴B课后专项训练1.(2023秋·河北张家口·九年级校考期末)如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【答案】D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【详解】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选D.【点睛】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.,.下2.(2023·安徽合肥·校考一模)如图,O是AB的中点,点B,C,D到点O的距离相等,连接AC BD列结论不一定成立的是()A .12B .3=4C .180ABC ADCD .AC 平分BAD【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD .即点A 、B 、C 、D 都在圆O 上.A .∵ AB AB ,∴12 ,故A 不符合题意;B .∵ BCBC ,∴3=4 ,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ,故C 不符合题意;D .∵ BC 和CD不一定相等,∴BAC 和DAC 不一定相等,∴AC 不一定平分BAD ,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.3.(2023·江苏宿迁·九年级校考期末)如图,在Rt ABC △中,90ACB ,3BC ,4AC ,点P 为平面内一点,且CPB A ,过C 作CQ CP 交PB 的延长线于点Q ,则CQ 的最大值为()【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.4.(2023·北京海淀·九年级校考期中)如图,点接AC,BD.请写出图中任意一组互补的角为【答案】DAB【分析】首先判断出点【答案】130【分析】根据题意得到四边形【详解】解:由题意得到∴四边形ABCD为圆∵∠ABC=50°,∴∠【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.6.(2023·浙江金华·A.3B.1∵PE AB 于点E ,PD AC 于点,∴90AEP ADP ,∴180AEP ADP ,∴A 、E 、D 四点共圆,PA 是直径,在Rt PDC 中,45C ,∴△是等腰直角三角形,45APD ∴APD △也是等腰直角三角形,45PAD ,∴PED PAD ∴45AED ,∴AED C ,∵EAD CAB ,∴AED ∽设2AD x ,则2PD DC x ,22x ,如图2,取AP 的中点O 则2AO OE OP x ,∵604515EAP BAC PAD ,过E 作EM AP 于M ,则EM x,cos30OM OE ,∴36222OM x x ,∴6226222AM x x x ,由勾股定理得: 222226222AE AM EM x x +【答案】3632 /323 【分析】数形结合,根据动点的运动情况判断点【详解】解:如图旋转,连接以BC 为直径作O ,以AE 为半径作在ABD △和ACE △中AB AC AD AE BAD CAEPBC PBA ACB PBC 90BAC BPC EAD ∵,122AB ∵,A 的半径为62∴又∵90BAC EAD ,CAD,∵33BC ,OP BC∵MQ,MC与圆O相切,1QOM COM COP 【答案】(1)见详解(2)证明:如下图所示由题意可知AC 逆时针旋转90得到边AE ,90E ACB ,则90ACB ∵,AE BF ∥,90 ∵,90EFC ,,F ,E 四点共圆..∵四边形ABCD是菱形,AC,且 GOC GCO90==∵, 点90DHC DOC=BDF OCH=,且BF OM ∵, 点==90AED AOD尝试应用如图2,点D 为等腰Rt ABC △外一点,AB AC ,BD CD ,过点A 的直线分别交DB 的延长线和CD 的延长线于点N ,M ,求证:12ABN ACM S S AN AM △△.问题拓展如图3,ABC 中,AB AC ,点D ,E 分别在边AC ,BC 上,60BDA BEA ,AE ,BD ,直接写出BE 的长度(用含a ,b 的式子)∵ABC 为等腰直角三角形,∴AB AC , 又∵BD CD ,即:=90BDC ,∴A 、B 在ABN 与ACE △中,AB AC ABN ACE BN CE,∴∴BAN BAE CAE BAE BAC ∴1122AME AMC S AE AM AN AM S S △△∴60AFB BAF ABF ,AB AF AC ,∵60BDA BEA ,∴A 、D 、E 、B 、F 五点共圆,则:13 ,24 ,60BEF AEB ,【答案】问题情境:见解析;问题解决:(1)102;(2)13522【分析】[问题情境]连结AC ,取AC 的中点O ,连结OB 、OD ,根据直角三角形斜边上的中线等于斜边的一半,可得OD OA OC OB ,以此即可证明;[问题解决](1)根据题意可得225AE AD DE ,由[问题情境]结论可知A 、D 、E 、据圆周角定理以及正方形的性质可得45PDE PAE ,则PAE △为等腰直角三角形,设AP 长为a ,根据勾股定理列出方程,求解即可;(2)由[问题情境]结论可知A 、D 、E 、P 四点共圆,过点O 作OG AD 于点G ,作OH 接OB 交O 于点P ,连接PB ,根据题意可得四边形MBNP 为矩形,则要求MN 的最小值,即求值,根据平行线的性质和中点的定义可得OG 为ADE V 的中位线,得1AG ,12OG ,同理可证四边形1【翻折】(1)如图1,将DEF 沿线段AB 翻折,连接CF ,下列对所得四边形ACBF 的说法正确的是平分CBF 、CAF ,②AB 、CF 互相平分,③12ACBF S AB CF 四边形,④A 、C 、B 、F 四点共圆.AB 垂直平分CF ,故②ABC ABF ACBF S S S 四边形1122AB AB FG 12AB CG 取AB 的中点O ,连接CO FO ,ABC ABF △、△均为直角三角形,∴OB OC OA OF ,∴A 、B 、F 四点共圆,故()沿线段向左平移,∴AB CF ,CF BE 的中点,∴BE BD BF特殊情况分析:(1)如图1,正方形ABCD 中,点P 为对角线时针旋转ADC 的度数,交直线BC 于点Q .小明的思考如下:连接DQ ,∵AD CQ ∥,90ADC DCQ ,∴ACQ DAC ∵90DPQ ,∴180DPQ DCQ ,∴点D P Q 、、PDQ PCQ DQP PCD∵在菱形ABCD 中BC AD ∥,180ADC DCQ ,DPQ ADC ,∵180DPQ DCQ ,∴点P C Q 、、、共圆,∴DQP ACD ,ACB PDQ ,∵AC 为菱形ABCD 的对角线,ACB ACD ,∴PDQ DQP ,∴ DP PQ ;(3)解:3PQ 或3.由于点P 为对角线AC 上一个动点,分两类情况讨论如下:所示:180302ADC ACD,。
2022年九年级中考复习数学考点训练——几何专题:《圆的综合》(四)及答案
备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(四)1.(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN =1,试证明:PN=PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD﹣PC的最大值.2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点C为BM 上一点,连接AC与⊙O交于点D,E为⊙O上一点,且满足∠EAC =∠ACB,连接BD,BE.(1)求证:∠ABE=2∠CBD;(2)过点D作AB的垂线,垂足为F,若AE=6,BF=,求⊙O的半径长.3.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD 上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.4.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x 轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q 交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan∠AFC的值;(3)若△DEF与△AEB相似,求EF的值.5.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA 到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.6.如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE 于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.7.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为.(直接写出结果)8.已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E 是⊙O上两点,连接AD、DE、AE.(1)如图1,求证:∠AED﹣∠CAD=45°;(2)如图2,若DE⊥AB于点H,过点D作DG⊥AC于点G,过点E作EK⊥AD于点K,交AC于点F,求证:AF=2DG;(3)如图3,在(2)的条件下,连接DF、CD,若∠CDF=∠GAD,DK=3,求⊙O的半径.9.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.10.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.参考答案1.(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴=.又∵∠B=∠B,∴△BPN∽△BCP.∴==.∴PN=PC;(2)如图2,在BC上取一点G,使得BG=1,(3)同(2)中证法,如图3,取BG=1,当点P在DG的延长线上时,PD﹣PC的最大值,最大值为.2.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠DAB+∠DBA=90°,∵BM是⊙O的切线,∴AB⊥BC,∴∠ABC=90°,即∠CBD+∠DBA=90°,∴∠DAB=∠CBD,∵∠ABC=90°,∴∠ACB=90°﹣∠BAC,∵∠EAC=∠ACB,∴∠EAC=90°﹣∠BAC=90°﹣(∠EAC﹣∠BAE),∴∠BAE=2∠EAC﹣90°,∵AB是直径,∴∠AEB=90°,∴∠ABE=90°﹣∠BAE=90°﹣(2∠EAC﹣90°)=2(90°﹣∠EAC)=2(90°﹣∠ACB)=2∠CAB=2∠CBD.∴∠ABE=2∠CBD;(2)如图,连接DO并延长交AE于点G,∵∠DOB=2∠BAD,∠ABE=2∠CAB,∴∠DOB=∠ABE,∴DG∥BE,∴∠AGO=∠AEB=90°,∴AG=EG=AE=3,∠AOG=∠DOF,OA=OD,∴△AOG≌△DOF(AAS)∴DF=AG=3,又OF=OB﹣BF=OD﹣,在Rt△DOF中,根据勾股定理,得OD2=DF2+OF2,即OD2=32+(OD﹣)2,解得OD=.答:⊙O的半径长为.3.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,∵S△ABF=AB×FH=×BF×AD,∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.4.解:(1)∵点A(0,4),∴AO=4,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得:42+x2=(x+2)2,解得:x=3,∴OB=BE=3,AB=5,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BFA=∠AFC,∴△BFA∽△AFC∴==,设EF=x,则AF=4+x,BF=(4+x),∵在Rt△BEF中,BE2+EF2=BF2,∴32+x2=[(4+x)]2,解得:x=,即EF=,∴tan∠AFC===;(3)①当△DEF∽△AEB时,∠BAE=∠FDE,∴∠ADE=∠FDE,∴BD垂直平分AF,∴EF=AE=4;②当△DEF∽△BEA时,∠ABE=∠FDE,∴AB∥DF,∴∠ADF=∠CAB=90°,∴DF相切⊙Q,∴∠DAE=∠FDE,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,如图所示:则∠FDH=∠DAG,四边形OGHF是矩形,∴OG=FH,∵△ABE≌△ABO,∴∠OAB=∠EAB,∵AB⊥AD,∴∠DAE=∠CAO,∵∠CAO=∠DAE,∴∠DAE=∠DAE,∴∠DAE=∠DAG=∠FDE=∠FDH,∴AG=AE=4,∴EF=FH=OG=AO+AG=4+4=8,综上所述,若△DEF与△AEB相似,EF的值为4或8.5.(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠FAG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,∴S△ABC=×4×6=12;当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,∴S△ABC=×4×(4+2)=8+8,∴△ABC的面积为12或8+8.6.(1)证明:∵四边形FGED是⊙O的内接四边形,∴∠FGE+∠ADE=180°,∵∠AGF+∠FGE=180°,∴∠AGF=∠ADE,又∠GAF=∠DAE,∴△AFG∽△AED;(2)解:由(1)得:△AFG∽△AED,∴当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,如图①所示:∵四边形ABCD是矩形,AB=6,BC=9,∴CD=AB=6,AD=BC=9,∠BAD=∠ABC=∠BCD=∠ADC=90°,∵⊙O是△ECD的外接圆,∠ECD=90°,∴DE是⊙O的直径,∴∠DFE=90°,∴∠AFE=180°﹣∠DFE=180°﹣90°=90°,∴∠BAF=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∴AF=BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,∵∠DFE=90°,∴AF=DF=AD=×9=,∴BE=AF=;②当DE=AD=9时,在Rt△DCE中,由勾股定理得:CE===3,∴BE=BC﹣CE=9﹣3;③当AE=AD=9时,在Rt△ABE中,由勾股定理得:BE===3;综上所述,当BE的长为或9﹣3或3时,△AFG为等腰三角形,故答案为:或9﹣3或3;(3)证明:过O作OH⊥AB于点H,反向延长OH交CD于点I,如图②所示:则∠AHI=90°,∵四边形ABCD是矩形,∴CD=AB=6,∠BCD=∠BAD=∠ADC=90°,∴∠AHI=∠BAD=∠ADC=90°,∴四边形AHID为矩形,∴HI=AD=9,∠OID=90°,∴∠ECD=∠OID,∴OI∥CE,∵∠BCD=90°,∴DE为直径,∴OD=OE,∴OI是△DCE的中位线,∴DI=CD=3,OI=EC,∵BE=1,BC=9,∴EC=8,∴OI=×8=4,∴OH=HI﹣OI=9﹣4=5,在Rt△DEC中,由勾股定理得:DE===10,∴⊙O的半径OD=5∴OH是⊙O的半径,又OH⊥AB,∴AB与⊙O相切.7.(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBA=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴PA=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=PA,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.8.(1)证明:如图1,连接CO,CE,∵AB是直径,∴∠ACB=90°,∵AC=BC,∴∠B=∠CAB=45°,∴∠COA=2∠B=90°,∵,∴∠CAD=∠CED,∴∠AED﹣∠CAD=∠AED﹣∠CED=∠AEC=∠COA=45°,即∠AED﹣∠CAD=45°;(2)如图2,连接CO并延长,交⊙O于点N,连接AN,过点E 作EM⊥AC于M,则∠CAN=90°,∵AC=BC,AO=BO,∴CN⊥AB,∴AB垂直平分CN,∴AN=AC,∴∠NAB=∠CAB,∵AB垂直平分DE,∴AD=AE,∴∠DAB=∠EAB,∴∠NAB﹣∠EAB=∠CAB﹣∠DAB,即∠GAD=∠NAE,∵∠CAN=∠CME=90°,∴AN∥EM,∴∠NAE=∠MEA,∴∠GAD=∠MEA,又∵∠G=∠AME=90°,AD=EA,∴△ADG≌△EAM(AAS),∴AG=EM,AM=DG,又∵∠MEF+∠MFE=90°,∠MFE+∠GAD=90°,∴∠MEF=∠GAD,又∵∠G=∠FME=90°,∴△ADG≌△EFM(ASA),∴DG=MF,∵DG=AM,∴AF=AM+MF=2DG;(3)∵∠CDF=∠GAD,∠FCD=∠DCA,∴△FCD∽△DCA,∴∠CFD=∠CDA=∠CBA,∵AC=BC,AB为直径,∴△ABC为等腰直角三角形,∴∠CFD=∠CDA=∠CBA=45°,∴△GFD为等腰直角三角形,设GF=GD=a,则FD=a,AF=2a,∴==,∵∠FAK=∠DAG,∠AKF=∠G=90°,∴△AFK∽△ADG,∴==,在Rt△AFK中,设FK=x,则AK=3x,∵FK2+AK2=AF2,∴x2+(3x)2=(2a)2,解得,x=a(取正值),∴FK=a,在Rt△FKD中,FK2+DK2=FD2,∴(a)2+32=(a)2,解得,a=(取正值),∴GF=GD=,AF=,∵△FCD∽△DCA,∴=,∴CD2=CA•FC,∵CD2=CG2+GD2,∴CG2+GD2=CA•FC,设FC=n,则(﹣n)2+()2=(+n)n,解得,n=,∴AC=AF+CF=+=,∴AB=AC=,⊙O的半径为.9.(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴=,即=,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.10.(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴AD2﹣(AD﹣2)2=(2)2﹣22,∴AD=5.∴AH===2∴S四边形ABCD=2S△ABD=2וAH=BD•AH=2×2=20.即四边形ABCD的面积是20.。
数学九年级上册 圆 几何综合单元测试卷(含答案解析)
数学九年级上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式;(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==,∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0),点C 与点F (-1,0)都在抛物线上.设()()13y a x x =++,用(03A ,代入得 ()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下:∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠,∴MED MDE ∠=∠.∴ME MD =.∵MA MD AD ME AD =+=+,∴⊙M 与⊙A 外切.2.如图,△ABC 内接于⊙O ,点D 在AB 边上,CD 与OB 交于点E ,∠ACD =∠OBC ;(1)如图1,求证:CD ⊥AB ;(2)如图2,当∠BAC =∠OBC +∠BCD 时,求证:BO 平分∠ABC ;(3)如图3,在(2)的条件下,作OF ⊥BC 于点F ,交CD 于点G ,作OH ⊥CD 于点H ,连接FH 并延长,交OB 于点P ,交AB 边于点M .若OF =3,MH =5,求AC 边的长.【答案】(1)见解析;(2)见解析;(3)AC =485 【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F ,再根据已知条件得∠3=90°,得CD ⊥AB ;(2)延长BO 交AC 于K ,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO 平分∠ABC ;(3)延长BO 交AC 于点K ,延长CD 交⊙O 于点N ,联结BN ,由条件可得CH=NH ,BF=CF ,从而HF 是△CBN 的中位线,HF ∥BN ,得出∠OEH=∠EHM 又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt △OBF 中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.3.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)3;(3)ADCD62+6【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵OA=OB=32,AB=6,∴OA 2+OB 2=AB 2,∴△AOB 是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°, ∵∠BAC=30°,∴BE=AB=3,∴AE=22AB BE -=33,∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32,∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×323∴AD=2DF=36,∴AD 36CD ==6. 综上所述:AD CD =62+或6. 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.4.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形;(3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为18629322x -==-(秒). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-, 运动时间为1862932x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.5.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45° ∴△NQC 为等腰直角三角形∴NC=NQ=3a ,∴BC=2NC=6a在Rt △CFN 中,=∵PQ OQ ⊥∴PQ ∥BC∴∠PQE=∠BCG∵PE ∥BG∴∠PEQ=∠BGC∴△PQE ∽△BCG ∴=PQ PE BC BG即126=+PQ r r a r 解得:PQ=4a∵PQ OQ +=∴4a +2a=解得:∴=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.6.如图,AB 为⊙O 的直径,CD ⊥AB 于点G ,E 是CD 上一点,且BE =DE ,延长EB 至点P ,连接CP ,使PC =PE ,延长BE 与⊙O 交于点F ,连结BD ,FD .(1)连结BC ,求证:△BCD ≌△DFB ;(2)求证:PC 是⊙O 的切线;(3)若tan F =23,AG ﹣BG,求ED 的值.【答案】(1)详见解析;(2)详见解析;(3)DE=1339.【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=53求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE =PC ,所以∠PEC =∠PCE ,所以∠PCE =∠COB ,因为AB ⊥CD 于G ,所以∠COB+∠OCG =90°,所以∠OCG+∠PEC =90°,即∠OCP =90°,所以OC ⊥PC ,所以PC 是圆O 的切线.(3)因为直径AB ⊥弦CD 于G ,所以BC =BD ,CG =DG ,所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG, 设BG =2x ,则CG =3x .连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG ,所以2392x x -=,解得x =3,所以BG =2x CG =3x =所以BC =,所以BD =BC =3, 因为∠EBD =∠EDB =∠BCD ,所以△DEB ∽△DBC , 所以BDB DC DE D =,因为CD =2CG =所以DE =21339DB CD =. 【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .7.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.8.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是813132+,最小值是813132- 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',∴CO+PQ≤CQ'+P'Q',又∵CQ=CQ',∴PQ<P'Q',即PQ最短.在Rt△ABC中22228610AB AC BC=+=+=,1122ABCS AC BC AB CP ∆=•=•,∴684.810AC BCCPAB•⨯===,∴PQ=CP﹣CQ=6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP-=-=.当P在点B左侧3.6米处时,PQ长最短是1.2.(3)△ACF的面积有最大和最小值.如图3,取AB的中点G,连接FG,DE.∵∠EAF=90°,1 tan3AEF∠=,∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3,又∵AD =9,∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1, ∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 13313BC BAC AC ∠===, 在Rt △ACH 中,313913sin 3GH AG BAC =•∠== ∴119131F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯-=;∴四边形ADCF 面积最小值是:27313813132722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵229131F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22AC F H +•=⨯⨯+=; ∴四边形ADCF 面积最大值是27313813132722+++=; 综上所述,四边形ADCF 面积最大值是813132+,最小值是813132-. 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =-;(3)①112;②1153762+ 【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】 (1)2222DP m AO =+=+,8BP AB AP m =-=- (2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒ ∴2AO OH =∴22m m +=解得4m =情况2:与BC 相切时,Rt BON ∆中,∵60B ∠=︒ ∴3cos 2ON B OB ==即32282mm =- 解得32348m =- (3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒,∴3cos30cos30FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553102AC BC EP AB ⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 2532CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒. ∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.10.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A 点出发,到笔直的河岸l 去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A 关于直线l 的对称点A ′,连接A ′B 交l 于点P ,则PA +PB =A ′B 的值最小.解答问题:(1)如图2,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求PA +PC 的最小值;(2)如图3,已知菱形ABCD 的边长为6,∠DAB =60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P 从点A 出发,以每秒2个单位的速度,沿A →C 的方向,向点C 运动.当到达点C 后,立即以相同的速度返回,返回途中,当运动到x 轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是23;(2)①点M的位置是(3,0)时,用时最少;②S与t之间的函数关系式是当33<t≤43时,S=183﹣3t;当0<t≤33时,S =3t.当43<t≤63时,S=﹣3t+183.【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C到(3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM22AM AC3答:PA+PC的最小值是3(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=3,∴S=12AP×BO=12×2t×3=3t;③当3t3AP=32t﹣332t,∴S=12AP×BO=12×(32t)×3=3﹣3t.当3t3S=12AB×BP=123﹣(t﹣3]=﹣3t3答:S与t之间的函数关系式是当3<t3时,S=33t;当0<t3S=3t.当3t3S=﹣3t3【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.。
九年级中考数学考点训练——几何专题:《圆的综合》试卷(五)(Word版含答案)
九年级中考数学考点训练——几何专题:《圆的综合》(五)1.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请说明理由;(3)如图②,若点E在上,连接DE,CE,已知BC=5,BE=1,求DE及CE的长.2.如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.(1)如图2,若点P与点M重合,则∠PAB=,线段PA与PB的比值为;(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB.3.如图,已知⊙O是△ABC的外接圆,直径AD与BC垂直,垂足为点E.(1)求证:∠ABC=∠ACB;(2)连接OB,CD,若OB=,CD=5,求CE的长.4.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF 的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.5.如图,在⊙O中的内接四边形ABCD中,AB=AD,E为弧AD上一点.(1)若∠C=110°,求∠BAD和∠E的度数;(2)若∠E=∠C,求证:△ABD为等边三角形.6.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP =AC.(1)求证:PA是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.7.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;(2)如图2,若∠DBC=15°,求证:AD:AC=:;(3)如图3,若AC、BD交于点E,连接OE,且OE=2,若BD=3CD,求AD的长.8.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?9.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.10.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)参考答案1.解:(1)由圆周角定理得,∠ADF=∠ABE,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,在△ADF和△ABE中,,∴△ADF≌△ABE(SAS);(2)∵△ADF≌△ABE,∴AE=AF,∠EAB=∠FAD,∵∠BAD=90°,∴∠EAF=90°,∴△AEF为等腰直角三角形,∴EF=AE,∴DE﹣BE=AE;(3)如图,过点B作BH⊥CE于点H,∵四边形ABCD为正方形,故∠BEC=45°,∠DEC=45°,在△BEC中,BE=1,BC=5,∠EBC=45°,则BH=BE sin∠EBC=1•sin45°==EH,在Rt△BCH中,CH===,EC=EH+CH=4;在△EDC中,∠DEC=45°,CE=4,CD=BC=5,过点C作CH⊥ED于点H,在Rt△ECH中,EC=4,∠DEC=45°,则CH=EH=EC=4,在Rt△CDH中,CH=4,CD=5,则HD=3,∴DE=EH+CH=7.2.解:(1)若点P与点M重合,如下图所示,∵点B、B关于CM对称,则PB=PB′,B′C=BC,而PC=PC,∴△PB′C≌△PBC(SSS),故∠B=∠PB′C=90°,在Rt△AB′C中,B′C=BC=AC,∴∠PAB=30°,在Rt△PAB中,∵∠A=30°,∴PB=PA,故答案为30°,2;(2)①∵B、C、D、P在圆上∴∠PBC=∠B′DC,又∵B关于直线CM的对称点为B′,∴△PB′C≌△PBC(AAS),∴∠P B′C=∠PBC,∴∠P B′C=∠B′DC,∴CB′=CD;②同理∠DCA=∠APB且∠A=∠A,∴△ACD∽△APB,∴,∵AC:CB=2:1,又BC=CB′=CD,∴,∴,即AP=2PB.3.(1)证明:∵AD⊥BC,∴=,∴∠ABC=∠ACB;(2)解:连接OC,如图,设OE=x,则DE=OD﹣OE=﹣﹣x,在Rt△OEC中,CE2=OC2﹣OE2=()2﹣x2,在Rt△CDE中,CE2=CD2﹣DE2=52﹣(﹣x)2,∴()2﹣x2=52﹣(﹣x)2,解得x=,∴CE==.4.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF 、DE 、DF ; (2)连接OP ,如图2所示: ∵AB 是半圆O 的直径,=2,∴∠APB =90°,∠AOP =×180°=60°, ∴∠ABP =30°,同(1)得:四边形PECF 是正方形, ∴PF =CF ,在Rt △APB 中,PB =AB •cos ∠ABP =8×cos30°=8×=4,在Rt △CFB 中,BF ====CF ,∵PB =PF +BF , ∴PB =CF +BF , 即:4=CF +CF ,解得:CF =6﹣2;(3)①∵AB 为⊙O 的直径, ∴∠ACB =∠ADB =90°, ∵CA =CB , ∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF , ∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°, ∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ), 在Rt △ACB 中,AC =BC =AB =×70=35,∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225; ②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S=A′B•PF=PB•A′P,△A′PB∴×50×PF=×40×30,解得:PF=24,∴S=PF2=242=576(m2),四边形PEDF∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.5.解:(1)∵四边形ABCD内接于⊙O,∴∠BAD+∠C=180°,∵∠C=110°,∴∠BAD=70°,∵AB=AD,∴∠ABD=∠ADB=55°,∵四边形ABDE内接于⊙O,∴∠ABD+∠E=180°,∴∠E=125°.(2)∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵四边形ABDE是⊙O的内接四边形,∴∠ABD+∠E=180°,又∵∠E=∠C,∴∠BAD=∠ABD,∴AD=BD,∵AB=AD,∴AD=BD=AD,∴△ABD为等边三角形.6.(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,∴AP=AC=3.在Rt△PAO中,OA=OP=3,∴⊙O的半径为3.7.解:(1)∵△ABC为等边三角形,则∠ABC=∠ACB=∠BAC=60°,∵∠BDC=∠BAC=60°,∠ADC=∠ACB=60°=∠BDC,∴BD平分∠ADC;(2)过点A作AH⊥BD于点H,在Rt△AHD中,∠ADH=60°,设AD=2a,则AH=a,HD=a,∵∠ABC=60°,∠DBC=15°,∴∠ABH=60°﹣15°=45°,∴△为等腰直角三角形,则AB=AH=a=AC,∴AD:AC=:;(3)设CD=m,在DB上截取DF=CD,连接CF,∵∠BDC=60°,故△CDF为等边三角形,则CD=DF=CF=m,∠DFC=60°,则BD=3CD=3m,则BF=2m,∵∠BFC=180°﹣∠DFC=120°=∠ADC,∵FC=CD,∠FBC=∠CAD,∴△BFC≌△ADC(AAS),∴AD=BF=2m,∵∠DFC=∠ADB=60°,∴FC∥AD,∴△AED∽△CEF,故=2,设EC=2t,则AE=4t,AC=6t,SG=CG=3t,故GE=t,连接AO,过点O作OG⊥AC于点G,∵△ABC为等边三角形,则∠OAG=30°,在Rt△AOG中,OG=AG tan∠OAG=3t×=t,在Rt△OGE中,OG=t,GE=t,OE=2,由勾股定理得:(t)2+t2=(2)2,解得t=,则AC=6;过点A作CD的垂线交CD的延长线于点K,在Rt△ADK中,∠ADK=180°﹣∠ADC=60°,AD=2m,则DK=m,AK=m,在Rt△AKC中,AK=m,KC=KD+CD=m+m=2m,AC=6,由勾股定理得:(m)2+(2m)2=(6)2,解得m=6,则AD=2m=12.8.解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°。
决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(二)
决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(二)1.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.2.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.3.如图,在△ABC中,AB=AC.以AB为直径的⊙O与BC交于点E,与AC交于点D点,点F在边AC的延长线上,且∠CBF=∠BAC.(1)试说明FB是⊙O的切线;(2)过点C作CG⊥AF,垂足为C.若CF=4,BG=3,求⊙O的半径;(3)连接DE,设△CDE的面积为S1,△ABC的面积为S2,若=,AB=10,求BC 的长.4.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).5.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.6.已知:四边形ABCD内接于⊙O,连接AC、BD,∠BAD+2∠ACB=180°.(1)如图1,求证:点A为弧BD的中点;(2)如图2,点E为弦BD上一点,延长BA至点F,使得AF=AB,连接FE交AD于点P,过点P作PH⊥AF于点H,AF=2AH+AP,求证:AH:AB=PE:BE;(3)在(2)的条件下,如图3,连接AE,并延长AE交⊙O于点M,连接CM,并延长CM交AD的延长线于点N,连接FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求AH的长.7.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.8.在图1至图3中,⊙O的直径BC=30,AC切⊙O于点C,AC=40,连接AB交⊙O于点D,连接CD,P是线段CD上一点,连接PB.(1)如图1,当点P,O的距离最小时,求PD的长;(2)如图2,若射线AP过圆心O,交⊙O于点E,F,求tan F的值;(3)如图3,作DH⊥PB于点H,连接CH,直接写出CH的最小值.9.如图,在△ABC中,AB=AC=10cm,BD⊥AC于D,且BD=8cm.点M从点A出发,沿AC方向匀速运动,速度为2cm/s;同时直线PQ由点B出发沿BA方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于P,交BC于Q,连接PM,设运动时间为t(s),0<t≤5.(1)CM=,PQ=,BQ=;(用含t的式子表示)(2)当四边形PQCM是平行四边形时,求t的值;(3)当点M在线段PC的垂直平分线上时,求t的值;(4)是否存在时刻t,使以PM为直径的圆与△ABC的边相切?若存在,直接写出t的值;若不存在,请说明理由.10.如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.(1)如图1,AB是⊙O的直径;(2)如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;(3)如图3,在(2)的条件下,MN与⊙O相切于点M,交EB的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN=AB,EN=26,求线段CD的长.参考答案1.解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)AF=CE+BD,理由如下:连接OD,DE,由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.12.解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED﹣∠FED=∠F AC﹣∠F AD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AB=8,∠ABG=45°,∴AG=,在Rt△ADE中,AE=AD,∴,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.13.解:如图,(1)证明:连接AE,∵AB是直径,∴∠AEB=90°,又∵AB=AC,∴∠BAE=BAC,∴∠CBF=∠BAE,∵∠BAE+∠ABE=90°,∴∠CBF+∠ABE=90°,即AB⊥BF∵AB是直径,∴FB与⊙O相切.所以FB是⊙O的切线;(2)∵AB=AC,∴∠ABC=∠ACB,∵AB⊥BF,CG⊥AC,∴∠ABC+∠GBC=∠ACB+∠BCG,∴∠GBC=∠BCG,∴BG=CG=3.∵CG=3,CF=4,∴FG=5,∴FB=8,∵tan∠F==,∴AB=6,∴⊙O的半径为3.答:⊙O的半径为3.(3)连接BD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AE⊥BC,∴E为BC中点,∴S△CDE=S△DEB,∵=,设S1=a,S2=5a,∴S△BCD=2a,S△ABD=3a,∴=,∴=,∵AB=AC=10,∴AD=6,CD=4,∵在Rt△ABD中,BD==8,∴在Rt△BCD中,BC==4.答:BC的长为4.14.解:(1)如图1,连接OA,OB,∵P A,PB为⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB+∠P AO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵P A,PB为⊙O的切线,∴P A=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=P A+PD+=r+r+r=(+1+)r.15.解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图1中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tan∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠HBA=∠BHJ,∴tan∠BHE=.16.(1)证明:连接OA、OB、OD,∵∠BAD+2∠ACB=180°,∠BAD+∠BCD=180°,∴2∠ACB=∠BCD,即∠ACB=∠ACD,∵∠AOD=2∠ACD,∠AOB=2ACB,∴∠AOD=∠AOB,∴,即点A为弧AB的中点;(2)在HF上截取点Q,使HQ=AH,连接PQ、AE,∵PH⊥AF,∴PH是AQ的垂直平分线,∴P A=PQ,∴∠P AQ=∠PQA,AH=HQ,∴QF=AF﹣AQ=AF﹣2AH,又∵PQ=AP=AF﹣2AH,∴PQ=QF,∴∠F=∠FPQ=PQA=P AQ,∵,∴∠ABD=∠ADB=P AQ,∴∠F=∠ABD,∴EB=EF,∵AB=AF,∵FH⊥BF,∴∠EAF=∠PHF=90°,∴EA∥PH,∴=,又∵AF=AB,EF=BE,∴=;(3)连接MD、MB,∵,,∴∠AMB=∠AMD,∠MBD=∠MAD,∴∠MED=∠AMB+∠MBD,∠MDN=∠AMD+∠MAD,∴∠MED=∠MDN,∵∠MED=∠MND,∴∠MDN=∠MND,∴MD=MN=,∵,∴AB=AD,∵AB=AF,∴AD=AF,∴∠ADF=∠AFD,由(1)知∠ABD=∠BDA,∴∠BDF=∠ADF+∠ADB=(∠ADF+∠AFD+∠ABD+∠BDA)=×180°=90°,∴DF=12•sin∠ACB=12•sin∠ABD=12×,∴BF=12,∴AF=AB=6,由(2)知∠MAB=∠MAF=90°,∴∠MDB=90°,∴∠MDB+∠BDF=180°,∴M、D、F共线,∵,∴∠ABD=∠AMD,∴sin∠ABD=sin∠AMD,∴=,即=,∴DF1=,DF2=﹣10(舍去),∴BD==,∵∠BMD+∠BAD=180°,∠P AH+∠BAD=180°,∴∠BMD=∠P AH,∴tan∠BMD====tan∠P AH,tan∠PFH=tan∠EBA==,设PH=24k,则AH=7k,FH=32k,∴32k+7k=6,∴k=,∴AH=7k=.17.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.18.解:(1)如图1,连接OP,∵AC切⊙O于点C,∴AC⊥BC.∵BC=30,AC=40,∴AB=50.由S△ABC=AB•CD=AC•BC,即,解得CD=24,当OP⊥CD时,点P,O的距离最小,此时.(2)如图2,连接CE,∵EF为⊙O的直径,∴∠ECF=90°.由(1)知,∠ACB=90°,由AO2=AC2+OC2,得(AE+15)2=402+152,解得.∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF=∠AFC.又∠CAE=∠F AC,∴△ACE∽△AFC,∴.∴.(3)CH的最小值为.解:如图3,以BD为直径作⊙G,则G为BD的中点,DG=9,∵DH⊥PB,∴点H总在⊙G上,GH=9,∴当点C,H,G在一条直线上时,CH最小,此时,,,即CH的最小值为.19.解:(1)∵AB=AC=10cm,BD⊥AC,BD=8cm.∴由勾股定理可得:AD=6cm,∴DC=4cm,∴在Rt△BDC中,BC==4cm,由题意得:CM=AC﹣AM=(10﹣2t)cm,BP=tcm;∵PQ∥AC,∴△BPQ∽△BAC,∴==,∴==,∴PQ=tcm,BQ=cm;故答案为:(10﹣2t)cm,tcm,cm;(2)当四边形PQCM是平行四边形时,PQ∥AC且PQ=CM,∴t=10﹣2t,解得s.∴四边形PQCM是平行四边形时,s;(3)当点M在线段PC的垂线平分线上时,MP=MC,过点M作ME⊥AB于点E,如图所示:在Rt△ABD中,∵AB=10cm,BD=8cm,∴cm,∴,在Rt△AEM中,∵AM=2t,,∴,∴,∴,解得:t1=0(舍去),s,∴当点M在线段PC的垂直平分线上时,s;(4)存在t=或或或,使以PM为直径的圆与△ABC的边相切.①与AC相切,即PM⊥AC,=cos A,∴=,∴t=;②与AB相切,即MP⊥AB,=cos A,∴=,∴;③与BC相切,即PM中点O到BC距离为,如图,设切点为K,连接EK,则EK⊥BC,作PG⊥BC于G,AS⊥BC于S,MH⊥BC于H,PN⊥AC,则EK∥PG∥AS∥MH,∵BC=4cm,AB=AC,AS⊥BC,∴BS=2cm,∴AS==4cm,∴PG:BP=AS:AB=4:10=2:5,∴PG=cm;同理:MH:CM=AS:AC=4:10=2:5,∴MH=(10﹣2t)cm.∵E为PM的中点,∴K为GH的中点,∴EK是梯形PGHM的中位线,∴EK==(10﹣t)cm,∵PM=2EK,∴PM=(10﹣t)cm.∵=cos A=,AP=(10﹣t)cm,∴AN=(10﹣t)=(6﹣t),∴MN=|AN﹣AM|=|6﹣t﹣2t|=|6﹣t|cm;∵BD⊥AC,PN⊥AC,∴PN∥BD,∴△APN∽△ABD,∴=,∵BD=8cm,AP=(10﹣t)cm,AB=10cm,∴PN=×8=(8﹣t)cm,∴在Rt△PMN中,由勾股定理得:+=,整理得:33t2﹣140t+100=0,解得:或.综上,存在t=或或或,使以PM为直径的圆与△ABC的边相切.20.解(1)如图1,连接BD.∵=,∴∠BDC=∠ADC=45°,∴∠ADB=90°,∴AB是圆O的直径.(2)如图2,连接OG、OD、BD.则OA=OD=OB,∴∠OAD=∠ODA,∠OBD=∠ODB,∴∠DOB=∠OAD+∠ODA=2∠BAD,∵∠FGC=2∠BAD,∴∠DOB=∠FGC=∠BGD,∴B、G、O、D四点共圆,∴∠ODE=∠OBG,∵BE⊥CD,∠BDC=45°,∴∠EBD=45°=∠EDB,∴∠OBE=∠ODE=∠OBG,∴BA平分∠FBE.(3)如图3,连接AC、BC、CO、DO、EO、BD.∵AC=BC,∴AC=BC,∵AB为直径,∴∠ACB=90°,∠CAB=∠CBA=45°,CO⊥AB,延长CO交圆O于点K,则∠DOK=∠OCD+∠ODC=2∠ODC=2∠OBE=2∠FBA,连接DM、OM,则∠MOD=2∠MAD,∵2∠MAD+∠FBA=135°,∴∠MOD+∠FBA=135°,∴2∠MOD+2∠FBA=270°,∴2∠MOD+∠DOK=270°,∵∠AOM+∠DOM+∠KOK=270°,∴∠AOM=∠DOM,∴AM=DM,连接MO并延长交AD于H,则∠MHA=∠MHD=90°,AH=DH,设MH与BC交于点R,连接AR,则AR=DR,∵∠ADC=45°,∴∠ARD=∠ARC=90°,△ADR是等腰直角三角形,∴∠BRH=∠ARH=45°∵∠ACR+∠BCE=∠BCE+∠CBE=90°,∴∠ACR=∠CBE,∴△ACR≌△CBE(AAS),∴CR=BE=ED,作EQ⊥MN于Q,则∠EQN=∠EQM=90°,连接OE,则OE垂直平分BD,∴OE∥AD∥MN,∴四边形OEQM是矩形,∴OM=EQ,OE=MQ,延长DB交MN于点P,∵∠PBN=∠EBD=45°,∴∠BNP=45°,∴△EQN是等腰直角三角形,∴EQ=QN=EN=13,∴OA=OB=OC=OD=OM═13,AB=2OA=26,∴BC=OC=26,∵MN=AB=20,∴OE=MQ=MN﹣QN=20﹣13=7,∵∠ORE=45°,∠EOR=90°,∴△OER是等腰直角三角形,∴RE=OE=14,设BE=CR=x,则CE=14+x,在Rt△CBE中:BC2=CE2+BE2,∴262=(x+14)2+x2,解得x=10,∴CD=CR+RE+DE=10+14+10=34.。
人教版九年级数学上册 《圆中的求线段长度的相关计算》必考题型专项分类专题练习
《圆中的求线段长度的相关计算》必考经典题型专项分类专题练习(专题分类练习+详细解析)题型一:垂径定理中的线段长度计算1. 如图,四边形PAOB是扇形OMN的内接矩形,顶点P在MN⏜上,且不与M,N重合,当P点在MN⏜上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.逐渐变大B.逐渐变小C.不变D.不能确定2. 如图,AB是☉O的直径,AB=6,OD⊥AB,弧BC为30°,P是直径AB上的点,则PD+PC的最小值是________.3. ☉O过等边△ABC的各个顶点,且AB=2,则☉O的半径为( )A.1B.√3C.2√33D.√324. 如图,点A,N在半圆O上,四边形ABOC,DNMO均为矩形,BC=a,MD=b,则a,b的关系为( )A.a>bB.a=bC.a<bD.a≤b5. 已知,如图,☉O的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.题型二:和圆周角、圆心角相关的线段长度计算1. 如图,在☉O中,弦AC=2√3,点B是圆上一点,且∠ABC=45°,则☉O的半径R=________.2. 如图所示,☉O的两条弦AB,CD交于点P,连接AC,BD,若S△ACP ∶S△DBP=16∶9,则AC∶BD=________.3. 如图,小正方形的边长均为1,则∠1的正切值为( )A.15B.14C.13D.124. 如图,☉O的半径为4,△ABC是☉O的内接三角形,连接OB,OC,若∠BAC和∠BOC互补,则弦BC的长度为( )A.3√3B.4√3C.5√3D.6√35. 正方形ABCD的四个顶点都在☉O上,点E是☉O上的一点.(1)如图①,若点E在AB⏜上,点F是DE上的一点,DF=BE.求证:△ADF≌△ABE.(2)在(1)的条件下,小明还发现线段DE,BE,AE之间满足等量关系:DE-BE=√2AE.请你说明理由.(3)如图②,若点E在AD⏜上.写出线段DE,BE,AE之间的等量关系.(不必证明)题型三:和切线有关的线段长度计算1. 如图,一圆内切于四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.383.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC,BC相切于点D,E.则AD为( )A.2.5B.1.6C.1.5D.13. 如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB 处将水管密封起来,互相垂直的两墙面与水管分别相切于D,E两点,经测量发现AD和BE的长恰是方程x2-25x+150=0的两根(单位:cm),则该自来水管的半径为________cm.4. 如图,已知:射线PO与☉O交于A,B两点,PC,PD分别切☉O于点C,D.(1)请写出两个不同类型的正确结论.(2)若CD=12,tan∠CPO=1,求PO的长.2题型四:扇形、多边形中的线段长度计算1. 已知正六边形的边长为2,则它的内切圆的半径为( )A.1B.√3C.2D.2√32. 粉笔是校园中最常见的必备品.现有一盒刚打开的六角形粉笔,总支数为50支.如图是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为________mm.⏜的中点,连接BM,CM.3. 如图,正方形ABCD内接于☉O,M为AD(1)求证:BM=CM.⏜的长.(2)当☉O的半径为2时,求BM4. 如图,已知等边△ABC内接于☉O,BD为☉O内接正十二边形的一边,CD=5√2cm,求☉O的半径R.《圆中的求线段长度的相关计算》必考经典题型专项分类专题练习(专题分类练习+详细解析)(解析版)题型一:垂径定理中的线段长度计算⏜上,且不与M,N重合, 1. 如图,四边形PAOB是扇形OMN的内接矩形,顶点P在MN⏜上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( ) 当P点在MNA.逐渐变大B.逐渐变小C.不变D.不能确定【解析】选C.连接OP,∵在直角三角形PAB中,AB2=PA2+PB2,又∵在矩形PAOB 中,OP=AB, ∴PA 2+PB 2=AB 2=OP 2.2. 如图,AB 是☉O 的直径,AB=6,OD ⊥AB,弧BC 为30°,P 是直径AB 上的点,则PD+PC 的最小值是________.【解析】作C 点关于AB 的对称点C ′,连接DC ′交AB 于P 点,过D 点作直径DE,连接EC ′,如图, ∴BC⏜=BC′⏜=30°,PC=PC ′, ∴DC ′是PD+PC 的最小值.又∵弧EC ′的度数=90°-30°=60°,∴∠D=30°, 而DE=AB=6,在Rt △DEC ′中,EC ′=12DE=3, DC ′=√3EC ′=3√3.即PD+PC 的最小值是3√3.答案:3√33. ☉O 过等边△ABC 的各个顶点,且AB=2,则☉O 的半径为 ( )A.1B.√3C.2√33D.√32【解析】选C.连接OB,OC,过点O 作OD ⊥BC 于点D. ∵△ABC 为等边三角形, ∴AB=BC=AC,∴AB⏜=BC ⏜=AC ⏜, ∴∠BOC 为120°. 又OD ⊥BC,OB=OC,∴∠COD=60°,∠COD=30°,CD=12BC=1, ∴cos ∠OCD=CDOC , ∴OC=CD cos∠OCD =√32=2√33. 4. 如图,点A,N 在半圆O 上,四边形ABOC,DNMO 均为矩形,BC=a,MD=b,则a,b 的关系为 ( )A.a>bB.a=bC.a<bD.a ≤b【解析】选B.连接ON,OA,如图,∵点A,N在半圆上,∴ON=OA,∵四边形ABOC,DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD,即a=b.5. 已知,如图,☉O的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.【证明】过点O作OM⊥AB于点M,ON⊥CD于点N.∵PO平分∠APD,OM⊥AB,ON⊥CD.∴OM=ON,连接OA,OD,在Rt△AOM中,AM=√OA2−OM2,在Rt△DON中,DN=√OD2−ON2,又∵OA=OD,OM=ON,∴AM=DN,∴2AM=2DN,即AB=CD.题型二:和圆周角、圆心角相关的线段长度计算1. 如图,在☉O中,弦AC=2√3,点B是圆上一点,且∠ABC=45°,则☉O的半径R=________.【解析】∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴R2+R2=(2√3)2,解得R=√6. 答案:√62. 如图所示,☉O的两条弦AB,CD交于点P,连接AC,BD,若S△ACP ∶S△DBP=16∶9,则AC∶BD=________.【解析】由题干图可知∠C=∠B,∠A=∠D, ∴△ACP∽△DBP,∴S△ACPS△DBP =(ACBD)2,即(ACBD)2=169,∴AC∶BD=4∶3.答案:4∶33. 如图,小正方形的边长均为1,则∠1的正切值为( )A.15B.14C.13D.12【解析】选D.如图,∵∠1=∠2,∴tan∠1=tan∠2=12.4. 如图,☉O的半径为4,△ABC是☉O的内接三角形,连接OB,OC,若∠BAC和∠BOC互补,则弦BC的长度为( )A.3√3B.4√3C.5√3D.6√3BC.【解析】选B.过点O作OD⊥BC于点D,则BD=CD=12∠BOC,∵∠BAC+∠BOC=180°,∠BAC=12∴∠BOC=120°,∠BAC=60°,∴∠BOD=60°.在Rt△BOD中,BD=OBsin60°=2√3,∴BC=4√3.5. 正方形ABCD的四个顶点都在☉O上,点E是☉O上的一点.⏜上,点F是DE上的一点,DF=BE.求证:△ADF≌△ABE.(1)如图①,若点E在AB(2)在(1)的条件下,小明还发现线段DE,BE,AE之间满足等量关系:DE-BE=√2AE.请你说明理由.⏜上.写出线段DE,BE,AE之间的等量关系.(不必证明) (3)如图②,若点E在AD【解析】(1)在正方形ABCD中,AB=AD.⏜,∴∠1=∠2,∵∠1和∠2所对的弧都是AE在△ADF和△ABE中,{AD=AB,∠1=∠2, DF=BE,∴△ADF≌△ABE(SAS).(2)由(1)得△ADF≌△ABE,∴AF=AE,∠3=∠4.在正方形ABCD中,∠BAD=90°,∴∠BAF+∠3=90°,∴∠BAF+∠4=90°,∴∠EAF=90°.∴△EAF是等腰直角三角形.∴EF2=AE2+AF2,∴EF2=2AE2.∴EF=√2AE.∵DE-DF=EF,∴DE-BE=√2AE.(3)BE-DE=√2AE.题型三:和切线有关的线段长度计算1. 如图,一圆内切于四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.38【解析】选B.如图,根据切线长定理可知,AE=AH,BE=BF,CF=CG,DG=DH.所以AE+DG=AH+DH=AD,BE+CG=BF+CF=BC,所以AB+BC+CD+DA=AE+BE+BC+CG+DG+DA=2AD+2BC=2×7+2×10=34.3.如图,Rt △ABC 中,∠ACB=90°,AC=4,BC=6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC,BC 相切于点D,E.则AD 为 ( )A.2.5B.1.6C.1.5D.1【解析】选B.连接OD,OE,OC,设OD=r,∵AC,BC 切☉O 于D,E, ∴∠ODC=∠OEC=90°,OD=OE, ∵S △AOC +S △BOC =S △ABC ,即12OD ·AC+12OE ·BC=12BC ·AC,12r ·4+12r ·6=12×6×4,r=2.4,AD=AC-r=1.6.3. 如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB 处将水管密封起来,互相垂直的两墙面与水管分别相切于D,E 两点,经测量发现AD 和BE 的长恰是方程x 2-25x+150=0的两根(单位:cm),则该自来水管的半径为________cm.【解析】连接OD,OE.解方程x2-25x+150=0,得x1=10,x2=15,∴设AD=10,BE=15,半径为r,∴AB=AD+BE=25,∴(AD+r)2+(BE+r)2=AB2,即(10+r)2+(15+r)2=252,解得:r=5.答案:54. 如图,已知:射线PO与☉O交于A,B两点,PC,PD分别切☉O于点C,D.(1)请写出两个不同类型的正确结论.(2)若CD=12,tan∠CPO=12,求PO的长.【解析】(1)不同类型的正确结论有:①PC=PD,②∠CPO=∠DPO,③CD⊥BA,④∠CEP=90°,⑤PC2=PA·PB.(2)连接OC,∵PC,PD分别切☉O于点C,D∴PC=PD,∠CPO=∠DPA,∴CD⊥AB,∵CD=12,∴DE=CE=12CD=6.∵tan∠CPO=12,∴在Rt△EPC中,PE=12,∴由勾股定理得CP=6√5,∵PC切☉O于点C,∴∠OCP=90°.在Rt △OPC 中,∵tan ∠CPO=12, ∴OC PC =12,∴OC=3√5, ∴OP=√OC 2+PC 2=15.题型四:扇形、多边形中的线段长度计算1. 已知正六边形的边长为2,则它的内切圆的半径为 ( ) A.1B.√3C.2D.2√3【解析】选B.如图,由正六边形的性质知,三角形AOB 为等边三角形,所以,OA=OB=AB=2,AC=1,由勾股定理,得内切圆半径OC=√3.2. 粉笔是校园中最常见的必备品.现有一盒刚打开的六角形粉笔,总支数为50支.如图是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD 的周长约为________mm.【解析】作B ′M ′∥C ′D ′,C ′M ′⊥B ′M ′于点M ′.粉笔的半径是6mm.则边长是6mm. ∵∠M ′B ′C ′=60°,∴B ′M ′=B ′C ′·cos60°=6×12=3(mm), C ′M ′=B ′C ′sin60°=6×√32=3√3(mm). 则题干图中,AB=CD=11×3√3=33√3(mm). AD=BC=5×6+5×12+3=93(mm).则周长是:2×33√3+2×93=(66√3+186)mm. 答案:(66√3+186)3. 如图,正方形ABCD 内接于☉O,M 为AD ⏜的中点,连接BM,CM. (1)求证:BM=CM.(2)当☉O 的半径为2时,求BM⏜的长.【解析】(1)∵四边形ABCD 是正方形, ∴AB=CD, ∴AB⏜=CD ⏜, ∵M 为AD ⏜的中点, ∴AM ⏜=DM ⏜,∴AB ⏜+AM ⏜=CD ⏜+DM ⏜,即BM⏜=CM ⏜,∴BM=CM.(2)∵☉O 的半径为2, ∴☉O 的周长为4π, ∴BM⏜的长=38×4π=32π.4. 如图,已知等边△ABC 内接于☉O,BD 为☉O 内接正十二边形的一边,CD=5√2cm,求☉O 的半径R.【解析】连接OB,OC,OD,∵等边△ABC 内接于☉O,BD 为内接正十二边形的一边, ∴∠BOC=13×360°=120°,∠BOD=112×360°=30°, ∴∠COD=∠BOC-∠BOD=90°, ∵OC=OD,∴∠OCD=45°,∴OC=CD ·cos 45°=5√2×√22=5(cm). 即☉O 的半径R=5cm.学海迷津:数学学习十大方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
人教版九年级上册数学 圆 几何综合中考真题汇编[解析版]
人教版九年级上册数学 圆 几何综合中考真题汇编[解析版]一、初三数学 圆易错题压轴题(难)1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==, 2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BHAF AB BF∴==6242x BH ==,223PH x ∴=,13BH x =, 163CH x ∴=-,在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===. PBE ∴∽ECM ,PB BE EC MC ∴=,即232663xx x x =--, 解得:185x =,即125BE =,1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC 于D 点,过D 作⊙O 的切线交BC 于E.(1)若O 为AB 的中点(如图1),则ED 与EC 的大小关系为:ED EC (填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么? (3)当⊙O 过BC 中点时(如图3),求CE 长. 【答案】(1)ED=EC ;(2)成立;(3)3 【解析】试题分析:(1)连接OD ,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO ,即可得到∠CDE=∠C ,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.4.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.5.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==,在Rt △PQA 中,9045APQ AP t ∠=︒=,,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = ,解得:85t = ; 若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
九年级圆 几何综合专题练习(word版
九年级圆 几何综合专题练习(word 版一、初三数学 圆易错题压轴题(难)1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。
(1)求这条抛物线的解析式; (2)求点E 的坐标;(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由【答案】(1)y=x 2+2x-8(2)(-1,-72)(3)(-8,40),(-154,-1316),(-174,-2516) 【解析】分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,从而求出点E 的坐标;(3)设点P (a , a 2+2a -8), 则228,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-(2)由(1)可得:228y x x =+-,当0y =时,124,2x x =-=;∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,则116322AG AB ==⨯= ,设,则, 在Rt AGE ∆中,,在中,()222218CE EF CF a =+=+-,∵AE CE = ,∴()22918a a +=+- ,解得:72a =, ∴712E ⎛⎫-- ⎪⎝⎭,; (3)设点()2,28a a a P +-,则228,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,PQ COBQ OB =,即228822a a a +-=-, 解得:10a =(舍去);22a =(舍去);38a =- ,∴()18,40P - ;b.当PBQ ∆∽BCO ∆时,PQ BOBQ CO =,即228228a a a +-=-, 解得:12a =(舍去),2154a =-;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.2.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G . (1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中. ①若BF =22时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2)①1825;②当BE 为10,395或445时,△CEG 为等腰三角形;(3)724. 【解析】 【分析】(1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得:当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445;(3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果. 【详解】 (1)∵AB ∥CD . ∴∠ABD =∠BDC , ∵∠ABD =∠ECG , ∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°, ∵∠EFC =∠CBD . ∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣433时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大,易知此时53553102AC BC EP AB ⨯⨯===,3tan30(2)EP AP m =⋅=+⋅, 533(2)23m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin603OB ON ==, 4310AO ∴=-, 43123AP ∴=-, 432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学九年级上册圆几何综合专题练习(解析版)一、初三数学圆易错题压轴题(难)1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D ,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,AC=12AB=4,在Rt△AOC中,∵∠ACO=90°,AO=5,∴22AO AC-,∴OD=5,∴CD=OD﹣OC=2;(2)如图2,过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3,∵AC=x,∴CH=|x﹣4|,在Rt△HOC中,∵∠CHO=90°,AO=5,∴22HO HC+223|x4|+-2825x x-+∴CD=OD ﹣OC=5过点DG ⊥AB 于G ,∵OH ⊥AB ,∴DG ∥OH ,∴△OCH ∽△DCG , ∴OH OC DG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x ) ∴y=ACO OBD S S=()323582x x -(0<x <8) (3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF=AE ,∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.2.在直角坐标系中,A (0,4),B (4,0).点C 从点B 出发沿BA 方向以每秒2个单位的速度向点A 匀速运动,同时点D 从点A 出发沿AO 方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C 、D 运动的时间是t 秒(t>0).过点C 作CE ⊥BO 于点E ,连结CD 、DE .⑴ 当t 为何值时,线段CD 的长为4;⑵ 当线段DE 与以点O 为圆心,半径为的⊙O 有两个公共交点时,求t 的取值范围; ⑶ 当t 为何值时,以C 为圆心、CB 为半径的⊙C 与⑵中的⊙O 相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】 试题分析:(1)过点C 作CF ⊥AD 于点F ,则CF ,DF 即可利用t 表示出来,在Rt △CFD 中利用勾股定理即可得到一个关于t 的方程,从而求得t 的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.3.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC交半圆O于点P,则点P即为所确定的点的位置.理由如下:连接CD,梯形ACDB的面积=()(26)41622AC DB AB+⨯+⨯==为定值,要使点P的关联图形的面积最大,就要使△PCD的面积最小,∵CD为定长,∴P到CD的距离就要最小,连接OC,设交半圆O于点P,∵AC⊥OA,AC=OA,∴∠AOC=45°,过C作CF⊥BD于F,则ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴OC⊥CD,OC=2∴PC在半圆外,设在半圆O上的任意一点P′到CD的距离为P′H,则P′H+P′O>OH>OC,∵OC=PC+OP,∴P′H>PC,∴当点P运动到半圆O与OC的交点位置时,点P的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.4.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;(2)设∠AO 1B 的度数为x ,两圆重叠部分图形的周长为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O 2A 所在的直线与⊙O 1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x 的取值范围.【答案】(1)83π(2)(0≤x ≤180) (3)O 2A 与⊙O 1相切;当0≤x ≤90和0≤x ≤180时,线段O 2A 所在的直线与⊙O 1相交【解析】试题分析:(1)解法一、依对称性得,∠AO 2B =∠AO 1B =120°,∴解法二、∵O 1A=O 1B=O 2A=O 2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大5.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1) ∵DF =2OD ,∴OF =3OD =3OC ,∴13OE OC OC OF ==, ∵∠COE =∠FOC ,∴△COE ∽△FOE , ∴∠OCF =∠DEC =90°,∴CF 是⊙O 的切线;(2)∵∠COD =∠BAC ,∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO:OF=BD:DM=2,又∵BD=DC,∴DM=CM,∴FM为中位线,∴FM=32 2,∴S△AOF: S△BDM=(32:26)234 =;∵111118(322)42 22222BDM BCDS S BC DE∆∆==⨯•=⨯⨯⨯-=;∴S△AOF=3424⨯=32;【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣3,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣3,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.7.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()2OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==1262OC BC OB =-=-61262182()cm +--,运动时间为1862932x -==-). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()2ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴==,1262OC BC OB =-=-, 移动的距离为612621862()cm +-=-, 运动时间为18629322x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.8.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A =30°时,求∠CDB 的度数;(2)当m =2时,求BE 的长度;(3)在点B 的整个运动过程中,①当BC =3CE 时,求出所有符合条件的m 的值.②连接EH ,FH ,当tan ∠FHE =512时,直接写出△FHD 与△EFH 面积比. 【答案】(1)60°;(2)45;(3)①m =2或2;②262【解析】【分析】(1)根据题意由HB =HD ,CH ⊥BD 可知:CH 是BD 的中垂线,再由∠A =30°得:∠CDB =∠ABC =60°;(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB22AC BC5,∴cos∠ABC=BCAB 5,∴BH=BC•cos∠ABC25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE =32AC =6, ∵CD =CB =m , ∴Rt △CDE 中,由勾股定理得:62+21m 3⎛⎫ ⎪⎝⎭=m 2, ∵m >0,∴m =42;综上所述,①当BC =3CE 时,m =22或42.②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD , ∴FHDEFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHDEFH SS =26k 26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.9.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为2,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG2,可求得2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到2x,然后依据S△BHG=122,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB 、OC .∵AB=AC ,AO=AO ,OB=OC ,∴△ABO ≌△ACO .∴∠BAO=∠CAO .∵∠BAC=2∠CAE ,∴∠BAO=∠CAE .在△ABF 和△ACE 中,ABF ACE AB ACBAF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△ACE .∴BF=CE .(3)连接HG 、BM .∵AB=AC ,∠BAO=∠CAO ,∴AG ⊥BC ,BG=CG .∵BH=DH ,∴HG 是△BCD 的中位线.∴HG ∥CD .∴∠GHF=∠CDE=90°.∵OA=OC ,∴∠OAC=∠OCA .∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°, ∴∠FHO=∠AFD=∠HFO .∴HO=OF .∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG .∴OH=OG .∴OF=OG .∵OM=OC ,∴四边形MFCG 是平行四边形.又∵MC 是圆O 的直径,∴∠CBM=90°.∴四边形MFGB 是矩形.∴MB=FG ,∠FMB=∠AFN=90°.∵MF ∥BC ,∴△MFH ∽△CBH . ∴12HF MF BH CB ==. ∴HF :HD=1:2.∴HF=FD . 在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HG HG x=. ∴.∴S△BHG=12BH•HG=12×2x•2x=42,解得:x=2.∴HB=4,GH=22.由勾股定理可知:BG=26.∴MF=26.∴MN=NF=6.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)33PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB ,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴233PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤,∴55r ≥ 又∵圆O 与直线AC 相离,∴r <6,即565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。