仪器分析紫外分光光度计习题答案(学习资料)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 紫外可见分光光度法-习题解答

思考题

1.什么是选择性吸收?它与物质的分子结构有什么关系?

【答】当对某一物质从长波到短波进行扫描时,光波能量νh E =符合某一价电子的量子化能级差基态激发态E E E -=∆时,该频率ν(或波长λ)的光则被吸收,而其它波长的光

不被吸收的现象,称为光的选择性吸收。被选择性吸收的某一波长光的大小反映了某一跃迁所需的量子化能级差的大小,与跃迁类型有关,即与组成分子的元素和化学键类型有关,所以选择性吸收的波长是物质分子结构的反映。

2.紫外吸收光谱有什么特征?紫外光谱说明什么?

【答】(1)紫外吸收光谱是由于分子的价电子能级跃迁引起的,是带状光谱。

(2)由于分子的价电子能级跃迁只有*→σσ、*→σn 、*→ππ、*

→πn 四种基本跃迁类型,加上电荷迁移跃迁和配位场跃迁两种变化形式,所以分子的紫外吸收光谱一般吸收峰的数量比较少,而且各种能级跃迁的能量差别不是很大,各吸收带之间常常有重叠而不易区分的现象,特征性不是很强。

(3)紫外光谱的三大要素为吸收峰的位置(横坐标)、强度(纵坐标)和光谱形状。吸收峰在横坐标的位置和形状为化合物定性的指标,而峰的强度为化合物定量的指标;基本参数是最大吸收峰的峰的位置max λ和相应吸收带的强度max ε。

(4)通过吸收峰位置可判断产生吸收带化合物的类型和骨架结构;吸收峰的强度有助于K 带、B 带和R 带灯吸收带类型的识别;峰的形状也有助于化合物类型的判断。总之,化合物的紫外光谱是化合物元素组成、化学键、共轭与骨架情况的部分结构信息的反映。

3.为什么说Beer 定律只适用于单色光?

【答】从吸收光谱的三大要素可知,吸收峰的强度是化合物定量的依据。在一个吸收峰的不同波长处相对应的吸收强度是不相同,即它们的吸光系数不相同,在最大波长max λ处的吸光系数max ε最大,两侧均逐渐变小,所以可以认为吸光系数是波长的函数:)(λεf =,

但在某一波长处——也就是单色光的条件下,吸光度系数是某一确定的常数值,这时才有化合物的吸光度与浓度成正比的关系式kc cl A ==ε成立。

4.紫外-可见分光光度计从光路分类有哪几类?

【答】从光路角度来说,紫外-可见分光光度计一般有:单光束分光光度计、双光束分光光度计、二极管阵列检测分光光度计等。

5.简述用紫外分光光度法定性鉴定未知物方法。

【答】用紫外分光光度法进行定性鉴定,一般采用对比法,即将未知物的吸收光谱特征与标准化合物的光谱特征进行对照比较;也可以利用文献所载的紫外-可见标准图谱进行核对。如果两者完全相同,则可能是同一种化合物;如果两者差别明显,则肯定不是同一种化合物。具体的比较方法有:(1)对比吸收光谱特征数据;(2)对比吸光度或吸光系数的比值;

(3)对比吸收光谱的一致性。

6.举例说明紫外分光光度法检查物质纯度。

【答】UV 法检查物质纯度分为:(1)杂质检查;(2)杂质的限量检测。

具体方法应根据被检查的化合物(大量)与所含杂质(少量)的UV 吸收情况来确定。 ①化合物无吸收杂质有较强吸收:例如乙醇和环己烷中含少量杂质苯,苯在256nm 处有吸收峰,乙醇和环己烷则无吸收,直接测定杂质苯含量。

②化合物有较强吸收杂质无吸收或吸收很弱:直接测定化合物含量,例如生产化合物过程中伴随的溶剂(无吸收)有时没有被完全除去,可采用该方法。

③化合物和杂质都有较强吸收:检测比较困难。可采用某一波长处吸光度A 限定值方法,例如肾上腺素中杂质肾上腺酮在max λ=310nm 处,必须使其吸光度A <0.05;也可采用

峰谷吸光度比值控制杂质的限量,例如,解毒药碘解磷定有很多杂质,如顺式异构体、中间体等,采用其最大吸收波长294nm 处杂质无吸收,碘解磷定在吸收谷262nm 有吸收,而碘解磷定纯品的39.3/262294=A A ,如果有杂质,则在吸收谷处的吸光度262A 会增大,致使

39.3/262294<A A ,我国《药典》规定,其比值不应小于3.1。

7.电子跃迁有哪几种类型?跃迁所需要的能量大小顺序如何?哪几种跃迁在紫外-可见吸收光谱上可以反映出来?

【答】电子跃迁类型有:*→σσ、*→σn 、*→ππ、*

→πn 四种基本跃迁类型,还有电荷迁移跃迁和配位场跃迁两种变化形式,共有6种。

跃迁所需要的能量大小顺序:*→σσ>*→σn >*→ππ>*

→πn 。 除了*

→σσ跃迁类型外,其它跃迁在紫外-可见吸收光谱上都可以反映出来。

8.以有机化合物的官能团说明各种类型的吸收带,并指出各吸收带在紫外-可见吸收光谱中的大概位置和各吸收带的区别。

【答】R 带:由杂原子的不饱和基团产生的*→πn 跃迁引起的吸收带。例如:>C=O 、—NO 、—NO 2、—N=N —等生色团。R 带波长处于~300nm 附近,弱吸收,一般ε<100。溶剂极性增加时,R 带发生短移。

K 带:由共轭双键中的*→ππ跃迁产生的吸收带,吸收峰的位置随着共轭体系增加而长移,一般为强吸收带,ε>104。溶剂极性增加时,K 带发生长移。

B 带:为芳香族化合物的特征吸收带。在蒸气状态中,能反映振动-转动能级的精细结构,例如苯蒸气在230~270nm 处出现B 带精细结构的吸收光谱。随着溶剂的极性逐渐增加,B 带的精细峰会逐渐变得不明显,直至精细结构消失而变成一个光滑的吸收峰。

E 带:也是芳香族化合物特征吸收带,由苯环的3个双键环状共轭的*→ππ跃迁产生的吸收带分为E 1(180nm ,ε4.7×104)和E 2(220nm ,ε7000)带,波长短(靠近光谱图最左边)而吸收强度大是其显著特征。

9.举例说明发色团和助色团,并解释长移和短移。

【答】发色团:能够在紫外-可见光区范围产生吸收的原子基团。例如:含有C=C 、C=O 、—NO 2、—N=N —、>C=S 等基团的化合物,它们是含有*→ππ或*→πn 跃迁的基团。

助色团:是指含有非键电子的杂原子饱和基团。例如—OH 、—NH 2、—OR 、—SH 、—Cl 、—Br 、—I 等。当这些基团与生色团或饱和烃相连时,由于其非键电子(孤对电子)与

相关文档
最新文档