(完整word版)高二数学期末考试试题及其答案
高二年级下学期期末考试数学试题与答案解析(共三套)

高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
高二数学期末考试题及答案

高二数学期末考试题及答案Learn standards and apply them. June 22, 2023一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.1.若抛物线y 2=2px 的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .-2B .2C .-4D .42.理已知向量a =3,5,-1,b =2,2,3,c =4,-1,-3,则向量2a -3b +4c 的坐标为A .16,0,-23B .28,0,-23C .16,-4,-1D .0,0,9文曲线y =4x -x 2上两点A 4,0,B 2,4,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为A .1,3B .3,3C .6,-12D .2,43.过点0,1作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有A .1条B .2条C .3条D .4条4.已知双曲线222112x y a -=的离心率2,则该双曲线的实轴长为 A .2 B .4C .23D .435.在极坐标系下,已知圆C 的方程为=2cos θ,则下列各点中,在圆C 上的是A .1,-3πB .1,6πC .2,34πD 2,54π6.将曲线y =sin3x 变为y =2sin x 的伸缩变换是A .312x x y y '=⎧⎪⎨'=⎪⎩B .312x xy y '=⎧⎪⎨'=⎪⎩C .32x x y y '=⎧⎨'=⎩D .32x xy y'=⎧⎨'=⎩7.在方程sin cos 2x y θθ=⎧⎨=⎩为参数表示的曲线上的一个点的坐标是A .2,-7B .1,0C .12,12D .13,238.极坐标方程=2sin 和参数方程231x ty t =+⎧⎨=--⎩t 为参数所表示的图形分别为A .圆,圆B .圆,直线C .直线,直线D .直线,圆9.理若向量a =1,,2,b =2,-1,2,a 、b 夹角的余弦值为89,则=A .2B .-2C .-2或255D .2或-255文曲线y =e x +x 在点0,1处的切线方程为 A .y =2x +1 B .y =2x -1 C .y =x +1 D .y =-x +110.理已知点P 1的球坐标是P 14,2π,53π,P 2的柱坐标是P 22,6π,1,则|P 1P 2|=A .21B .29C .30D .42文已知点P 在曲线fx =x 4-x 上,曲线在点P 处的切线垂直于直线x +3y =0,则点P 的坐标为A .0,0B .1,1C .0,1D .1,011.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为A .32,+∞B .1,32C .2,+∞D .1,212.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为A .5B .10C .20D 15二、填空题:本大题共4小题,每小题4分,共16分.请将答案填在试卷的答题卡中.13.理已知空间四边形ABCD 中,G 是CD 的中点,则1()2AG AB AC -+=.文抛物线y =x 2+bx +c 在点1,2处的切线与其平行直线bx +y +c =0间的距离是 .14.在极坐标系中,设P 是直线l :cos θ+sin θ=4上任一点,Q 是圆C :2=4cos θ-3上任一点,则|PQ |的最小值是________.15.理与A -1,2,3,B 0,0,5两点距离相等的点Px ,y ,z 的坐标满足的条件为__________.文函数fx =ax 3-x 在R 上为减函数,则实数a 的取值范围是__________.16.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为_____________________.三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分双曲线与椭圆2212736x y +=有相同焦点,且经过点15,4,求其方程.18.本题满分12分在直角坐标系xOy 中,直线l 的参数方程为:415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数,若以O为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为=2cos θ+4π,求直线l 被曲线C 所截的弦长.19.本题满分12分已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M-3,m到焦点的距离为5,求抛物线的方程和m的值.20.本题满分12分文已知函数fx=x2x-a.1若fx在2,3上单调,求实数a的取值范围;2若fx在2,3上不单调,求实数a的取值范围.理本题满分12分如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=219,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.1求EF的长;2证明:EF⊥PC.参考答案一、 选择题:本大题共12小题,每小题3分,共36分.内为文科答案二、填空题:本大题共4小题,每小题4分,共16分.13.理12BD 文32214.21-15.理2x -4y +4z =11 文a ≤0 16.x 2-23y =1 三、解答题:本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.17.本题满分12分解:椭圆2213627y x +=的焦点为0,3,c =3,………………………3分 设双曲线方程为222219y x a a-=-,…………………………………6分 ∵过点15,4,则22161519a a-=-,……………………………9分 得a 2=4或36,而a 2<9,∴a 2=4,………………………………11分双曲线方程为22145y x -=.………………………………………12分18.本题满分12分解:将方程415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩t 为参数化为普通方程得,3x +4y +1=0,………3分将方程2θ+4π化为普通方程得,x 2+y 2-x +y =0, ……………6分 它表示圆心为12,-12,半径为22的圆, …………………………9分则圆心到直线的距离d =110, …………………………………………10分 弦长为2211721005r d -=-=. …………………………………12分20.文本题满分12分解:由fx =x 3-ax 2得f ′x =3x 2-2ax =3xx -23a.…………3分 1若fx 在2,3上单调,则23a ≤0,或0<23a≤2,解得:a ≤3.…………6分∴实数a 的取值范围是-∞,3.…………8分 2若fx 在4,6上不单调,则有4<23a<6,解得:6<a <9.…………11分 ∴实数a 的取值范围是6,9.…………12分20.理本题满分12分解:1以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立直角坐标系,…………2分由条件知:AF =2,…………3分∴F 0,2,0,P 0,0,219,C 8,6,0.…4分从而E 4,3,19,∴EF =222(40)(32)(190)-+-+-=6.…………6分 2证明:EF =-4,-1,-19,PC =8,6,-219,…………8分 ∵EF PC ⋅=-4×8+-1×6+-19×-219=0,…………10分 ∴EF ⊥PC .…………12分第一课件网系列资料 .。
2023最新高二数学上册期末考试试卷及答案

2023最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)1、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C )A.p:∃x∈R,sinx≥1⌝B.p:∀x∈R,sinx≥1⌝C.p:∃x∈R,sinx>1⌝D.p:∀x∈R,sinx>1⌝2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B ).A .160B .180C .200D .2203.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( C ).A .5B .13C .13D .374.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线x 2a 2y 2b 2的离心率为( D )A. B. C.D. 735443535.在△ABC中,能使sinA >成立的充分不必要条件是( C )32A .A∈ B .A∈ C .A∈(0,π3)(π3,2π3)(π3,π2)D .A∈(π2,5π6)6.△ABC 中,如果==,那么△ABC 是( B ).Aatan Bbtan Cc tan A .直角三角形B .等边三角形 C .等腰直角三角形D .钝角三角形7.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B )A .1∶2B .1∶1C .3∶1D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A. B.5553C. D. 255359.当x >1时,不等式x +≥a 恒成立,则实数a 的取值范围是( D 11-x ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组,所表示的平面区域被直线y =kx +分为⎪⎩⎪⎨⎧4≤ 34 ≥30≥y x y x x ++34面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A.B. C. D. (0,22)(0,33)(0,55)(0,66)解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈。
高二数学期末试卷带答案

高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知向量,满足,与的夹角为,则的值为( )A .1B .C .D .2.设为正数,,,,则三数( )A .至少有一个不大于B .都小于C .都大于D .至少有一个不小于3.如下图,在平行四边形ABCD 中,AD=2AB=2,∠BAC="90°." 将△ACD 沿AC 折起,使得BD=. 在三棱锥D-ABC 的四个面中,下列关于垂直关系的叙述错误的是( )A .面ABD ⊥面BCDB .面ABD ⊥面ACDC .面ABC ⊥面ACD D .面ABC ⊥面BCD4.利用独立性检验来考察两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 与Y 有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为( ) A.25% B.75%C.2.5% D.97.5%5.A.{1,2,3,4} B.{1,2} C.{1,3} D.{2,4}6.已知函数,在下列区间中,包含零点的区间是()A. B. C. D.7.下列语句不是全称命题的是()A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小8.集合的子集的个数是()A.1 B.2 C.3 D.49.如图是函数的部分图象,则函数的零点所在的区间是()A. B. C. D.10.抛物线截直线所得的弦长等于A. B. C. D.1511.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0) B.(2, 0) C.(3, 0) D.(-1, 0)12.某五所大学进行自主招生,同时向一所重点中学的五位学习成绩优秀、并在某些方面有特长的学生发出提前录取通知单.若这五名学生都乐意进这五所大学中的任意一所就读,则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率是()A. B. C. D.13.双曲线的渐近线方程是()A. B. C. D.14.已知抛物线的焦点弦AB的两端点为,则关系式的值一定等于()A. B. C. D.15.不等式的解集是()A. B. C. D.16.已知命题p:3≥3,q:3>4,则下列判断正确的是( )A.p q为真,p q为真,p为假B.p q为真,p q为假,p为真C.p q为假,p q为假,p为假D.p q为真,p q为假,p为假17.已知几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.18.设z=,,则下列命题中正确的是()A.的对应点在第一象限B.的对应点在第四象限C.不是纯虚数D.是虚数19.若集合,集合,则“”是“”成立的(▲)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件20.直线x=1的倾斜角和斜率是()A.45°,1B.,不存在C.135°, -1D.,不存在二、填空题21.已知复数满足等式(是虚数单位).则的最小值是__________.22.命题:“对任意实数m ,”的否定是23..已知极限存在,则实数的取值范围是____________.24.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 . 25.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.26.已知集合,且下列三个关系:•‚ƒ有且只有一个正确,则 .27.已知函数在区间上是减函数,则实数a 的取值范围是 . 28.若随机变量,且,,则当__________.(用数字作答)29.对任意的实数,若恒成立,则m 的取值范围为 .30.在报名的5名男生和4名女生中,选取5人参加志愿者服务,要求男生、女生都有,则不同的选取方法的种数为 (结果用数值表示).三、解答题31.如图:区域A 是正方形OABC (含边界),区域B 是三角形ABC (含边界)。
高二下学期期末考试数学试卷(含参考答案)

高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。
黑龙江省哈师大附中2021-2022学年高二上学期期末考试数学试题+Word版含答案

哈师大附中2020级高二上学期期末考试数学试题总分150分 时间120分钟一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 抛物线的焦点坐标为( )A. B.C.1,016⎛⎫ ⎪⎝⎭ D.1,08⎛⎫⎪⎝⎭2. 已知直线1l :和2l :,若1l ∥2l ,则( )A .3B . 1C .-1D .3或-13. ()812x -展开式中x 项的系数为( )A .28B .28-C .112D .112-4. 已知点P 是椭圆2212xy +=上的动点,PM x ⊥于点M ,若12PN NM =,则点N 的轨迹方程为( )A .229124x y +=B .22124x y +=C .224129x y +=D .22129x y +=5. 圆221:260O x y x y +-+=和圆222:60O x y x +-=的公共弦AB 的垂直平分线的方程是( )A .2330x y -+=B .2350x y --=C .3290x y --=D .3270x y -+=6. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种7. 过双曲线22221(0,0)x y a b a b-=>>的右焦点作一条渐近线的垂线,垂足为,与另一条渐近线相交于点,若,则此双曲线的离心率为( ) A .12B .2C .3D .58. 已知是抛物线的焦点,抛物线上动点满足,若在准线上的射影分别为且的面积为5,则=( )A .94 B.134C.214D.254二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得得5分,有选错的得0分,部分选对的得3分) 9. 下列命题中说法正确的是( ) A .已知随机变量X()B n p ,,若,,则23p =B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量ξ服从正态分布1(0)N ,,若(1)P p ξ>=,则1(10)2P p ξ-<≤=- D .某人在10次射击中,击中目标的次数为X ,(100.8)X B ,,则当=8X 时概率最大10. 已知双曲线的右焦点为,直线l 经过F 与双曲线交于,A B 两点.则下列说法正确的是( )A .虚轴长为2 B. 的最小值为2 C .存在以为中点的弦 D. 以为直径的圆与直线33x =相交 11. 如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F 为圆心的圆形轨道Ⅰ上绕月球飞行,然后在P 点处变轨进以F 为一个焦点的椭圆轨道Ⅱ绕月球飞行,最后在Q 点处变轨进入以F 为圆心的圆形轨道Ⅲ绕月球飞行,设圆形轨道Ⅰ的半径为R ,圆形轨道Ⅲ的半径为r ,则下列结论中正确的序号为( )A.轨道Ⅱ的焦距为R r -B. 轨道Ⅱ的长轴长为R r +C.若R 不变,r 越大,轨道Ⅱ的短轴长越小D.若r 不变,R 越大,轨道Ⅱ的离心率越大 12. 已知的焦点,l 为抛物线的准线,A 、B 为抛物线上任意两点,(1,3)M -,O 为坐标原点,则下列说法正确的是( )A .过M 与抛物线C 有且只有一个公共点的直线有两条B .||AM 与A 到l 距离之和的最小值为3C . 若直线过,则抛物线C 在A 、B 两点处的切线互相垂直D .若直线与的斜率之积为14-,则直线过点三、填空题(本题共4小题,每小题5分,共20分)13.已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线上,则这个等边三角形的边长为_____________.14. 甲同学和乙同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若甲同学每局获胜的概率均为34,且每局比赛相互独立,则在甲先胜一局的条件下,甲最终能获胜的概率是____. 15. 已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为________________________.16.设椭圆2213xy +=的左焦点为,点在椭圆上且在第一象限,直线与圆222x y r +=相交于两点,若是线段的两个三等分点,则直线的斜率为_____________________.四、解答题17.(本题满分10分)已知圆C 的圆心在0x y +=上,点()2,0A 在圆C 上,且圆C 与直线40x y --=相切. (1)求圆C 的标准方程;(2)过点A 和点()3,2的直线l 交圆C 于A ,E 两点,求弦AE 的长.18.(本题满分12分)《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是产国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线,某企业生产流水线检测员每天随机从流水线上抽取100件新生产的产品进行检测,某日检测抽取的100件产品的柱状图如图所示:(1)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率.若从出厂的所有产品中随机取出3件,求至少有一件产品是一级品的概率;(2)现从样本产品中利用分层抽样的方法随机抽取10件产品,再从这10件中任意抽取3件,设取到一级品的件数为ξ,求随机变量ξ的分布列和数学期望.19.(本题满分12分)已知椭圆C :22221(0)x y a b a b +=>>2,且以两焦点为直径的圆的面积为π.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,在y 轴上是否存在点D ()0,m ,使直线AD 与BD 的斜率之和AD BD k k +为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.20.(本题满分12分)已知平面内两个定点(2,0)A -,(2,0)B ,过动点M 作直线AB 的垂线,垂足为N ,且2||MN AN BN =⋅. (1)求点M 的轨迹E 的方程;(2)若直线:2l y kx =+E 交于,A B 两点,且2,0)F ,0FA FB =,求实数k 的值.21.(本题满分12分)已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成四边形面积为45(1)求椭圆E 的标准方程;(2)过点()0,3P -的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交3y =-于点M 、N ,若15PM PN +≤,求k 的取值范围.22.(本题满分12分)已知抛物线2:2(0)E y px p =>上的点0(,4)D x 与(,0)2pF 的距离5DF =. (1)求抛物线E 方程;(2)若4p ≤,直线l 与抛物线交于,A B 两点,P 为抛物线上不同于,A B 的动点,直线PA ,PB 分别交直线2x =-于M ,N 两点,且M ,N 的纵坐标之积为8-,直线AB 是否过定点,请求出此定点;若不过定点,请说明理由.哈师大附中2020级高二上学期期末考试数学答案一、单选题题号 1 2 3 4 5 6 7 8 答案CCCACCBD二、多选题题号 9 10 11 12 答案BCDBDABDBC三、 填空题13. 6 14. 151615. 1616. 2四、解答题17、(本小题满分10分)(1)设圆的标准方程为()()222x a y b r -+-=,由题意得()22202a b a b r r⎧⎪+=⎪⎪-+=⎨=,解得11a b r ⎧=⎪=-⎨⎪=⎩,所以圆的标准方程为()()22112x y -++=;5分(2)直线l 过点()2,0A 和点()3,2,直线的斜率为2l k =, 直线l 为()22y x =-,即240x y --=.设圆心到直线的距离为d ==,8分∵22212AE d r ⎛⎫+= ⎪⎝⎭,∴AE =, ∴弦AE10分18、(本小题满分12分)(1)解:抽取的100件产品是一级品的频率是70710010=,根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,故从出厂的所有产品中任取1件,是一级品的概率是710, 设从出厂所有产品中随机选3件,至少有一件是一级品的事件为A . 则()379731(1)101000P A =--=. (2)、由题意可知10件产品中一级品7件,二级品2件,三级品1件,故ξ的取值范围是{}0123,,,,()3331010120C P C ξ===,()12733107140C C P C ξ===,()217331021240C C P C ξ===,()373107324C P C ξ=== ξ∴的分布列为:ξ∴的数学期望为:E ξ=21721240241071340+=+ 19、(本小题满分12分)(1)由已知可得2222,,c a c a b c ππ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得22a =,221b c ==,所求椭圆方程为2212x y +=.4分(2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得()2212860k x kx +++=,则()22264241216240k k k ∆=-+=->,解得k <k >设()11,A x y ,()22,B x y ,则122812k x x k +=-+,122612x x k =+, 6分设存在点()0,D m ,则11AD y m k x -=,22BD y m k x -=,所以:()()11112121222221112(2)()2(2)64222182(2)63322AD BD y y kx kx x x k k k m k m x x x x x x x x k k m k m k k m m m m m +=+=+=+-+--+=+-----=+-+-+=-=.要使AD BD k k +为定值,只需()221k m =-与参数k 无关,故210m -=,解得12m =,当12m =时,0AD BD k k +=.综上所述,存在点10,2D ⎛⎫⎪⎝⎭,使得AD BD k k +为定值,且定值为0.20、(本小题满分12分)(1)设点M 坐标为(,)x y ,则(,0)N x ,(0,)MN y =-,(2,0)AN x =+,(2,0)BN x =-, 2||MN AN BN =⋅,224y x ∴=-,即:224x y -=,∴点M 的轨迹方程为224x y -=;4分(2)将直线方程与曲线方程联立2224y kx x y ⎧=⎪⎨-=⎪⎩,()2212260k x kx ∴---=, 直线与双曲线交于两点,所以()2221082410k k k ⎧-≠⎪⎨∆=+->⎪⎩,所以232k <且21k ≠, 设()11,A x y ,()22,B x y ,则122221k x x k+=-,12261x x k -=-,6分1122(22,),(22,),FA x y FB x y =-=-由已知0FA FB =得:12121222()80x x x x y y -+++=,因为11222,2,y kx y kx ==所以12121222()8(2)(2)0x x x x kx kx -+++= 所以21212(1)(222)()100k x x k x x ++-++=,8分所以22(1)22)1006221k k k k++-+--= 化简得:23210,k k +-=即(31)(1)0kk -+=113k k ==-或 10分 由232k<且21k ≠,所以13k = 12分21、(本小题满分12分)(1)因为椭圆过()0,2A -,故2b =, 因为四个顶点围成的四边形的面积为5122452a b ⨯⨯=,即5a=故椭圆的标准方程为:22154x y +=.4分(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450400(1)(1)0k k k k ∆=-+>⇒-+>,解得1k <-或1k >.①又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 6分 直线112:2y AB y x x +=-,令3y =-,则112M x xy =-+,同理222N x x y =-+.8分又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k--++++===---++-+++故515k≤即3k ≤,②10分 综上①②,31k -≤<-或13k <≤. 12分 22、(本小题满分12分) (1)由20016165,,5,10160,282222p px x p p p p p p +==+=-+===且所以所以所以或, 故抛物线方程24y x =或216yx =. 4分(2)由4p ≤知24y x =设()00,P x y 、()11,A x y 、()22,B x y ,直线AB 方程为x my n =+,代入抛物线方程化简得2440y my n --=,则212121616044m n y y m y y n ⎧∆=+>⎪+=⎨⎪=-⎩,6分由直线PA 的斜率101001101022444PA y y y y k y y x x y y --===-+-则直线PA 的方程:()00104y y x x y y -=-+,8分又2004y x =,即直线PA 的方程:()101040x y y y y y -++=,令2x =-,得10108M y y y y y -=+,同理20208N y y y y y -=+,10分10201020888M N y y y y y y y y y y --⋅=⋅=-++,整理得()()2120880y y y ++=. 则128y y =-,即48n -=-, 2n ∴=,故直线PA 的方程:2x my =+,即直线AB 过定点(2,0).12分。
高二下学期期末数学试卷及答案

高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。
安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。
3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。
高二数学下学期期末考试试卷含答案(共3套)

B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析

北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。
高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
湖北省黄冈市2018-2019学年高二上学期期末考试数学(理科)试题 Word版含解析

湖北省黄冈市2018年秋季高二年级期末考试数学试题(理科)第Ⅰ卷(共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.任意抛两枚一圆硬币,记事件:恰好一枚正面朝上。
:恰好两枚正面朝上。
:恰好两枚正面朝上。
:至少一枚正面朝上。
:至多一枚正面朝上,则下面事件为对立事件地是()A. 与B. 与C. 与D. 与【结果】D【思路】【思路】依据对立事件地定义,逐项判断即可.【详解】因为与地并事件不是必然事件,因此A错。
至少一枚正面朝上包含恰好两枚正面朝上,所以与m不是对立事件,故B错。
因与是均表示两枚正面向上,所以与是相等事件,故C错。
所以选D.【点睛】本题主要考查对立事件地概念,属于基础题型.2.某同学地6次数学测试成绩(满分100分)进行统计,作出地茎叶图如图所示,给出有关该同学数学成绩地以下表达:①中位数为84。
②众数为85。
③平均数为85,。
④极差为12.其中,正确表达地序号是()A. ①④B. ①③C. ②④D. ③④【结果】B【思路】【思路】由茎叶图思路中位数,众数,平均数,极差【详解】①依据茎叶图可知,中位数为,故正确②依据茎叶图可知,数据出现最多地是83,故众数为83,故错误③平均数.故正确④依据茎叶图可知最大地数为91,最小地数为78,故极差为91-78=13,故错误综上,故正确地为①③故选B【点睛】本题主要考查了思路茎叶图中地数据特征,较为简单3.已知双曲线方程为,则其焦点到渐近线地距离为()A. 2B. 3C. 4D. 6【结果】A【思路】【思路】先由双曲线地方程求出焦点坐标,以及渐近线方程,再由点到直线地距离公式求解即可.【详解】因为双曲线方程为,所以可得其一个焦点为,一款渐近线为,所以焦点到渐近线地距离为,故选A.【点睛】本题主要考查双曲线地简单性质,属于基础题型.4.点地坐标分别是,,直线与相交于点,且直线与地斜率地商是,则点地轨迹是()A. 直线B. 圆C. 椭圆D. 抛物线【结果】A【思路】【思路】设点M坐标,由题意列等量关系,化简整理即可得出结果.【详解】设,由题意可得,,因为直线与地斜率地商是,所以,化简得,为一款直线,故选A.【点睛】本题主要考查曲线地方程,通常情况下,都是设曲线上任一点坐标,由题中款件找等量关系,化简整理,即可求解,属于基础题型.5.下面命题中地假命题是()A. 对于命题,,则B. “”是“”地充分不必要款件C. 若命题为真命题,则都是真命题D. 命题“若,则”地逆否命题为:“若,则”【结果】C【思路】【思路】利用命题地否定,判断A。
(word版)高二数学期末考试试题及其答案

禄劝一中高中 2021-2021学年高二〔上〕期末数学模拟试卷一、选择题:本大题共12个小题,每题5分,共60分.1.〔5分〕集合M={1,2,3},N={2,3,4},那么以下式子正确的选项是〔〕A .M?NB .N?MC .M∩N={2,3}D .M∪N={1,4}2.向量 ,那么2 等于〔 〕A .〔4,﹣5〕B .〔﹣4,5〕C .〔0,﹣1〕D .〔0,1〕3.在区间〔1,7〕上任取一个数,这个数在区间〔 5,8〕上的概率为〔 〕A .B .C .D .4.要得到函数y=sin 〔4x ﹣〕的图象,只需将函数y=sin4x 的图象〔〕A .向左平移单位B .向右平移 单位C .向左平移单位D .向右平移单位5.两条直线m ,n ,两个平面 α,β,给出下面四个命题:①m ∥n ,m ⊥α?n ⊥α②α∥β,m?α,n?β?m ∥n ③m ∥n ,m ∥α?n ∥α④α∥β,m ∥n ,m ⊥α?n ⊥β其中正确命题的序号是〔 〕A .①③B.②④C.①④D.②③6.执行如图所以的程序框图,如果输入a=5,那么输出n=〔〕A .2B .3C .4D .57.下表提供了某厂节能降耗技术改造后在生产 A 产品过程中记录的产量 x(吨)与相应的生 产能耗y(吨)的几组对应数据:根据上表提供的数据,假设求出yx 3 4 5 6 关于x 的线性回归方程为? ,那么表中 t 的值为y t 4 yx A .3 B . C .D .8.f 〔x 〕=〔x ﹣m 〕〔x ﹣n 〕+2,并且α、β是方程f 〔x 〕=0的两根,那么实数m ,n ,α,β的大小关系可能是〔 〕A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n9.某锥体的三视图〔单位:cm〕如下列图,那么该锥体的体积为〔〕A.2cm3B.4cm3C.6cm3D.8cm310.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,那么的值为〔〕A.B.C.D.11.一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,假设不考虑蚂蚁的大小,那么某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是〔〕A.1﹣B.1﹣C.1﹣D.1﹣12.函数f〔x〕=,x1,x2,x3,x4,x5是方程f〔x〕=m的五个不等的实数根,那么x1+x2+x3+x4+x5的取值范围是〔〕A.〔0,π〕B.〔﹣π,π〕C.〔lg,π1〕D.〔π,10〕二、填空题〔每题5分,总分值20分〕13.假设直线2x+〔m+1〕y+4=0与直线mx+3y+4=0平行,那么m=.14.=﹣1,那么tanα=.15.假设变量x、y满足约束条件,那么z=x﹣2y的最大值为.kx3,x016.函数fx k,假设方程ffx20恰有三个实数根,那么实数k的1,x02取值范围是三、解答题〔本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=〔2a+c〕sinA+〔2c+a〕sinC.〔Ⅰ〕求B的大小;〔Ⅱ〕假设b=,A=,求△ABC的面积.r18.:a 、b 、c是同一平面上的三个向量,其中 a =(1,2).①假设|c |=25,且c ∥a ,求c 的坐标.②假设|b |=5,且a +2b 与2a -b 垂直,求a 与b 的夹角.219.设S n 是等差数列{a n }的前n 项和, S 3=6,a 4=4.〔1〕求数列{a n }的通项公式;〔2〕假设b n=3﹣3,求证: + ++ < .20为了了解某省各景点在群众中的熟知度,随机对 15~65岁的人群抽样了n 人,答复以下问题“某省有哪几个著名的旅游景点?〞统计结果如以下列图表.组号 分组 答复正确的人数 答复正确的人数占本组的频率第1组 [15,25〕 a0.5第2组 [25,35〕 18x第3组 [35,45〕 b0.9 第4组 [45 ,55〕 9 0.36第5组[55,65] 3y〔1〕分别求出 a,b,x,y 的值;〔2〕从第2,3,4组答复正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?〔3〕在〔2〕抽取的6人中随机抽取 2人,求所抽取的人中恰好没有第3组人的概率.21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E分别是线段BB1、AC1的中点.1〕求证:DE∥平面A1B1C1;2〕假设平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.22.圆C:x2+y2+2x﹣3=0.1〕求圆的圆心C的坐标和半径长;2〕直线l经过坐标原点且不与y轴重合,l与圆C相交于A〔x1,y1〕、B〔x2,y2〕两点,求证:为定值;C相交于D、E两点,求直线m的方程,使△CDE的面积〔3〕斜率为1的直线m与圆最大.禄劝一中高中 2021-2021学年高二〔上〕期末数学模拟试卷参考答案一.选择题〔每题5分,共12分〕123456789101112C B C B C B A B A A C D二、填空题〔每题5分,共12分〕13.-314.15.316.1,1317〔Ⅰ〕解:∵2bsinB=〔2a+c〕sinA+〔2c+a〕sinC,由正弦定理得,2b2=〔2a+c〕a+〔2c+a〕c,化简得,a2+c2﹣b2+ac=0.∴.0<B<π,∴B=.〔Ⅱ〕解:∵A=,∴C=.∴sinC=sin==.由正弦定理得,,∵,B=,∴.∴△ABC的面积=.18.解:①设c(x,y)∵c∥a且|c|=252x y0∴y220x2∴x2∴c=(2,4)或c=(-2,-4).②∵〔a+2b〕⊥〔2a-b〕∴〔a+2b〕·〔2a-b〕=0, 2a2+3a·b-2b2=0∴2|a|2+3|a|·|b cos-2|b|2=0∴2×5+3×5×5cos-2×5=0,∴cos=-124∴θ=π2kπ,∵θ∈[0,π],∴θ=π. 19.解:〔1〕设公差为d,那么,解得,a n=n.〔2〕证明:∵b n=3﹣3=3n+1﹣3n=2?3n,=,{}是等比数列.∵=,q=,∴+++==〔1﹣〕<.20解:〔1〕由频率表中第4组数据可知,第4组总人数为9〔1分〕25,再结合频率分布直方图可知25100,n10a 100100.5 5b1001027,183〔4〕x0.9,y2015〔2〕因为第2,3,4组答复正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:1862人;54第3组:2763人;54第4组:961人〔8分〕54〔3〕设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.那么从6人中随机抽取2人的所有可能的结果为:〔A1,A2〕,〔A1,B1〕,〔A1,B2〕,〔A1,B3〕,〔A1,C1〕,〔A2,B1〕,〔A2,B2〕,〔A2,B3〕,〔A2,C1〕,〔B1,B2〕,〔B1,B3〕,〔B1,C1〕,〔B2,B3〕,〔B2,C1〕,〔B3,C1〕共15个根本领件,其中恰好没有第3组人共3个根本领件,〔10分〕∴所抽取的人中恰好没有第3组人的概率是:P31〔12分〕15.521.〔1〕证明:取棱A1C1的中点F,连接EF、B1F 那么由EF是△AA111AA 1C的中位线得EF∥AA,EF=又DB1∥AA1,DB1=AA1所以EF∥DB1,EF=DB1故四边形DEFB1是平行四边形,从而1 DE∥BF所以DE∥平面A1B1C1〔Ⅱ〕解:因为E是AC1的中点,所以V A﹣DCE=V D﹣ACE=过A作AH⊥BC于H因为平面平面ABC⊥平面BB1111C,CC,所以AH⊥平面BB C 所以==所以V A﹣DCE=V D﹣ACE==22.解:〔1〕圆C:x2+y2+2x﹣3=0,配方得〔x+1〕2+y2=4,那么圆心C的坐标为〔﹣1,0〕,圆的半径长为2;〔2〕设直线l的方程为y=kx,联立方程组,消去y得〔1+k2〕x2+2x﹣3=0,那么有:;所以为定值;〔3〕解法一:设直线m的方程为y=kx+b,那么圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由〔1〕知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,那么圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.。
高二数学上学期期末考试试卷含答案(共3套)

高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
山东省菏泽第一中学2021-2022学年高二下学期期末考试数学(文)试题 Word版含答案

高二数学下学期期末考试试题(文科)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,ii -1= A.i 2121+ B.i 2121+- C.i 2121- D. i 2121-- 2.设集合A={-1,0,1},B={x|x>0},则A B=A.{-1,0}B.{-1}C.{0,1}D.{1}3.有一段“三段论”推理是这样的:对于可导函数f (x ),若0)(0='x f ,则x=0x 是函数f (x )的极值点,由于f (x )=3x 在x=0处的导数值为0,所以x=0是f (x )=3x 的极值点,以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确4.用反证法证明命题:“已知a 、b 是自然数,若a+b ≥3,则a 、b 中至少有一个不小于2”提出的假设应当是( )A.a 、b 至少有二个不小于2B.a 、b 至少有一个不小于2C.a 、b 都小于2D. a 、b 至少有一个小于25.已知x 、y 的值如图所示,假如y 与x 呈现线性相关且回归直线方程为y=bx+27,则b=A.21-B.21C.101-D. 1016. 函数f (x )的导函数()x f ',满足关系式()x x f x x x f ln 3)(2-'+=,则)2(f '的值为A.47 B.-47 C.49 D.-49 7.执行如图所示的程序框图,则输出的k 的值为A.7B.6C.5D.48. 某班主任对全班50名同学进行了作业量调查,数据如下表;依据表中数据得到k=059.526242327981518502≈⨯⨯⨯⨯⨯-⨯⨯)(,由于P(024.52≥k )=0,025 则认为宠爱玩电脑玩耍与认为作业量的多少有关系的把握大约为A.97.5%B.95%C.90%D.无充分依据9. 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话。
江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)一,选择题(每小题5分,共12小题60分)1.已知命题,下面命题中正确地是( )A. B.C. D.【结果】C【思路】试题思路:命题,使地否定为,使,故选C.考点:特称命题地否定.2.若,且,则实数地值是()A. B. C. D.【结果】D【思路】试题思路:由得,,∴,故.考点:向量垂直地充要款件.3.对于简单随机抽样,每个个体每次被抽到地机会( )A. 相等B. 不相等C. 无法确定D.与抽取地次数相关【结果】A【思路】【思路】依据简单随机抽样地概念,直接选出正确选项.【详解】依据简单随机抽样地概念可知,每个个体每次被抽到地机会相等,故选A.【点睛】本小题主要考查简单随机抽要地概念,属于基础题.4.如图,在三棱柱中,为地中点,若,则下面向量与相等地是( )A. B. C. D.【结果】A【思路】【思路】利用空间向量加法和减法地运算,求得地表达式.【详解】由于是地中点,所以.故选A.【点睛】本小题主要考查空间向量加法和减法地运算,考查化归与转化地数学思想方式,属于基础题.5.如图是2013年某大学自主招生面试环节中,七位评委为某考生打出地分数地茎叶统计图,去掉一个最高分和一个最低分后,所剩数据地平均数和众数依次为()A. B. C. D.【结果】A【思路】【思路】先去掉最高分和最低分,然后计算出平均数和众数.【详解】去掉最高分,去掉最低分,剩余数据为,故众数为,平均数为,故选A.【点睛】本小题主要考查平均数地计算,考查众数地识别,考查阅读理解能力,属于基础题. 6.计算机执行下面地算法步骤后输出地结果是( )A. 4,-2B. 4,1C. 4,3D. 6,0【结果】B【思路】【思路】依据程序运行地顺序,计算出输出地结果.【详解】运行程序,,,,输出,故选B.【点睛】本小题主要考查计算程序输出结果,考查程序语言地识别,属于基础题.7.过点且与抛物线只有一个公共点地直线有()A. 1款B. 2款C. 3款D. 4款【结果】C【思路】【思路】画出图像,依据图像判断符合题意地公共点个数.【详解】画出图像如下图所示,由图可知,这两款直线与抛物线只有一个公共点,另外过点还可以作出一款与抛物线相切地直线,故符合题意地直线有款,故选C.【点睛】本小题主要考查直线和抛物线地位置关系,考查直线和抛物线交点个数问题,属于基础题.8.一个均匀地正方体玩具地各面上分别标以数(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上地一面出现奇数(指向上地一面地数是奇数),事件B表示向上地一面地数不超过3,事件C表示向上地一面地数不少于4,则()A. A与B是互斥事件 B. A与B是对立事件C. B与C是对立事件D. A与C是对立事件【结果】C【思路】【思路】分别求得事件所包含地基本事件,由此判断正确选项.【详解】依题意可知,,.故不是互斥事件,不是对立事件,是对立事件,不是对立事件.故选C.【点睛】本小题主要考查互斥事件和对立事件地概念,属于基础题.9.有下面调查方式:①学校为了解高一学生地数学学习情况,从每班抽2人进行座谈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)已知集合M ={1,2,3},N ={2,3,4},则下列式子正确的是( ) A .M ⊆N B .N ⊆M C .M ∩N ={2,3} D .M ∪N ={1,4} 2.已知向量,则2等于( )A .(4,﹣5)B .(﹣4,5)C .(0,﹣1)D .(0,1)3.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为( ) A .B .C .D .4.要得到函数y =sin (4x ﹣)的图象,只需将函数y =sin4x 的图象( ) A .向左平移单位 B .向右平移单位 C .向左平移单位D .向右平移单位5.已知两条直线m ,n ,两个平面α,β,给出下面四个命题: ①m ∥n ,m ⊥α⇒n ⊥α ②α∥β,m ⊂α,n ⊂β⇒m ∥n ③m ∥n ,m ∥α⇒n ∥α ④α∥β,m ∥n ,m ⊥α⇒n ⊥β 其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③6.执行如图所以的程序框图,如果输入a =5,那么输出n =( ) A .2B .3C .4D .57.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,若求出关于的线性回归方程为,那么表中的值为 A . B . C . D . 8.已知f (x )=(x ﹣m )(x ﹣n )+2,并且α、β是方程f (x )=0的两根,则实数m ,n ,α,β的大小关系可能是( )A x y yx ˆ0.70.35yx =+t 3 3.15 3.5 4.5x 3456y 2.5t 4 4.5A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n9.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()A.2cm3B.4cm3C.6cm3D.8cm310.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,则的值为()A.B.C.D.11.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()A.1﹣B.1﹣C.1﹣D.1﹣12.已知函数f(x)=,x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(﹣π,π)C.(lg π,1)D.(π,10)二、填空题(每题5分,满分20分)13.若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=.14.已知=﹣1,则tanα=.15.若变量x、y满足约束条件,则z=x﹣2y的最大值为.16.已知函数()3,01,02+≥⎧⎪=⎨⎛⎫<⎪⎪⎝⎭⎩kkx xf xx ,若方程()()20f f x-=恰有三个实数根,则实数k的取值范围是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,2b sin B=(2a+c)sin A+(2c+a)sin C.(Ⅰ)求B的大小;(Ⅱ)若b=,A=,求△ABC的面积.18.已知:、、是同一平面上的三个向量,其中=(1,2).① 若||=2,且∥,求的坐标. ② 若||=,且+2与2-垂直,求与的夹角.19.设S n 是等差数列{a n}的前n 项和,已知S 3=6,a 4=4. (1)求数列{a n }的通项公式; (2)若b n =3﹣3,求证:++…+<.20为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表.(1)分别求出的值;a b c a c 5c a c b 25a b a b a b n y x b a ,,,(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E 分别是线段BB1、AC1的中点.(1)求证:DE∥平面A1B1C1;(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.22.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案一.选择题(每小题5分,共12分)二、填空题(每小题5分,共12分) 13. -3 14.15. 3 16. 11,3⎛⎤-- ⎥⎝⎦17(Ⅰ)解:∵2b sin B =(2a +c )sin A +(2c +a )sin C , 由正弦定理得,2b 2=(2a +c )a +(2c +a )c , 化简得,a 2+c 2﹣b 2+ac =0. ∴.∵0<B <π, ∴B =.(Ⅱ)解:∵A =,∴C =.∴sin C =sin ==.由正弦定理得,,∵,B =,∴.∴△ABC 的面积=.18. 解:①设 ∵∥且||=2∴∴∴=(2,4)或=(-2,-4) .),(y x c =→c a c 5⎩⎨⎧=+=-200222y x y x 2±=x c c②∵(+2)⊥(2-)∴(+2)·(2-)=0, ∴22+3·-22=0∴2||2+3||·||-2||2=0 ∴2×5+3××-2×=0,∴= -1 ∴θ=,∵θ∈[0,π],∴θ=π.19.解:(1)设公差为d ,则,解得,∴a n =n .(2)证明:∵b n =3﹣3=3n +1﹣3n =2•3n ,∴=,∴{}是等比数列.∵=,q =,∴++…+==(1﹣)<.20解:(1)由频率表中第4组数据可知,第4组总人数为, …(1分) 再结合频率分布直方图可知,a b a b a b a b a a b b a a b θcos b 525θcos 45θcos π2πk +2536.09==n 10010025.025=⨯∴1000.01100.55a =⨯⨯⨯=,…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:人; 第3组:人; 第4组:人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:. …(12分) 21.(1)证明:取棱A 1C 1的中点F ,连接EF 、B 1F 则由EF 是△AA 1C 1的中位线得EF ∥AA 1,EF =AA 1 又DB 1∥AA 1,DB 1=AA 1 所以EF ∥DB 1,EF =DB 1故四边形DEFB 1是平行四边形,从而DE ∥B 1F 所以DE ∥平面A 1B 1C 1(Ⅱ)解:因为E 是AC 1的中点,所以V A ﹣DCE =V D ﹣ACE =过A 作AH ⊥BC 于H因为平面平面ABC ⊥平面BB 1C 1C ,所以AH ⊥平面BB 1C 1C , 所以==所以V A ﹣DCE =V D ﹣ACE ==279.01003.0100=⨯⨯⨯=b 2.0153,9.02018====y x 265418=⨯365427=⨯16549=⨯51153==P22.解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.。