简单输入输出口扩展实验.
简单输入输出口扩展实验.
实验一简单 I/O口扩展实验一、实验目的1、熟悉 74LS273, 74LS244的应用接口方法。
2、掌握用锁存器、三态门扩展简单并行输入、输出口的方法。
二、实验设备MUT —Ⅲ型实验箱、 8086CPU 模块。
三、实验原理1. 开关量输入输出电路(1电路原理:开关量输入电路由 8只开关组成,每只开关有两个位置 H 和 L ,一个位置代表高电平,一个位置代表低电平。
对应的插孔是:K1~K8。
开关量输出电路由 8只 LED 组成,对应的插孔分别为 LED1~LED8,当对应的插孔接低电平时 LED 点亮。
原理图如下图所示。
(2电路测试:开关量输入电路可通过万用表测其插座电压的方法测试,即开关的两种状态分别为低电平和高电平;开关量输出电路可通过在其插孔上接低电平的方法测试,当某插孔接低电平时相应二极管发光。
2. 简单 I/O口扩展电路(1电路原理:输入缓冲电路由 74LS244组成,输出锁存电路由上升沿锁存器74LS273组成。
74LS244是一个扩展输入口, 74LS273是一个扩展输出口,同时它们都是一个单向驱动器,以减轻总线的负担。
74LS244的输入信号由插孔 IN0~IN7输入,插孔 CS244是其选通信号,其它信号线已接好; 74LS273的输出信号由插孔O0~O7输出,插孔 CS273是其选通信号,其它信号线已接好。
其原理图如下:(2电路测试:当 74LS244的 1、 19脚接低电平时, IN0~IN7与 DD0~DD7对应引脚电平一致;当 74LS273的 11脚接低电平再松开 (给 11脚一上升沿后, O0~O7与DD0~DD7对应引脚电平一致。
或用简单 I/O口扩展实验测试:程序执行完读开关量后, 74LS244的 IN0~IN7与 DD0~DD7对应引脚电平一致; 程序执行完输出开关量后, 74LS273 的 O0~O7与 DD0~DD7对应引脚电平一致。
3. 程序框图4. 程序源代码(T244273.ASMassume cs:codecode segment publicorg 100hstart: mov dx,04a0h ;74LS244地址in al,dx ; 读输入开关量mov dx,04b0h ;74LS273地址out dx,al ; 输出至 LEDjmp startcode endsend start四、实验内容及步骤逻辑电平开关的状态输入 74LS244, 然后通过 74LS273锁存输出,利用 LED 显示电路作为输出的状态显示。
实验一 简单I0口扩展实验.
实验一简单I/0口扩展实验一、实验目的利用74LS244和74IS273扩展I/0口。
二、实验内容1、熟悉74LS273,74LS244的应用接口方法。
2、掌握用锁存器、三态门扩展简单并行输入、输出口的方法。
三、实验原理图四、实验步骤1、连线:将74LS244(IC25)的输入SI0~SI7分别与逻辑电平开关电路的KI~K8相连,从I/0地址片选信号CS0~ CS7\中任选一个与74LS244的片选信号(CSU10\)相连(例如CS0\)。
将74LS273(IC24)的输出S00~S07分别与发光二极管电路的Ll~L8相连。
从I/O地址片选信号CS0\~CS7\中任选一个与74LS273的片选信号(CSU8\)相连(如CS1\)。
2、编辑程序,单步运行,调试程序。
3、调试通过后,全速运行,观察实验结果。
4、编写实验报告。
五、实验说明用逻辑电平开关作为74LS244(IC25)的输入,用发光二极管作为74L S273(IC24)的输出编程序,使得逻辑电平开关的输入状态从发光二极管上显示出来。
逻辑电平开关拨上时为5V,拨下时为0V。
发光二极管输入“1”为亮、“0”为灭。
从74LS244读入的数据应求反后从输出口输出。
在8086CPU中有四个16位通用数字寄存器,其中仅AX(AH,AL)有输入输出功能。
本实验通过输入语句(IN),将开关运输入存到AL中,再通过输出语句(OUT)将AL值输出到发光二极管,从而实现开关控制发光二极管。
当开关量换作其他形式控制输入,发光二极管换作其他形式控制对象,输入数据后对输入最作一定的运算处理再输出时,就实现了计算机控制。
同时这些输入输出点均为I /O扩展口,当输入和输出的点位较多时,这种扩展十分必要。
六、实验程序框图(实验程序名T1.ASM)七、实验程序1 assume cs:code2 0000 code segment public3 org 100h4 0100 BA 04A0 start: mov dx, 04a0h ;74LS244地址5 0103 EC in al, dx ;读输入开关量6 0104 BA 04B0 mov dx, 04b0h ;74LS273地址7 0107 EE out dx, al ;写发光二极管8 0108 EB F6 jmp srart9 010A code ends10 end start实验二 8255并行口实验一、实验目的利用8255A实现并行口实验。
实验7串行接口输入输出实验
北京林业大学11学年—12学年第 2 学期计算机组成原理实验任务书专业名称:计算机科学与技术实验学时: 2课程名称:计算机组成原理任课教师:张海燕实验题目:实验七串行接口输入输出实验实验环境:TEC-XP+教学实验系统、PC机实验内容1.串行接口输入输出;2.串行接口扩展。
实验目的学习串行口的正确设置与使用。
实验要求1.实验之前认真预习,明确实验的目的和具体实验内容,做好实验之前的必要准备。
2.想好实验的操作步骤,明确通过实验到底可以学习哪些知识,想一想怎么样有意识地提高教学实验的真正效果;3.在教学实验过程中,要爱护教学实验设备,记录实验步骤中的数据和运算结果,仔细分析遇到的现象与问题,找出解决问题的办法,有意识地提高自己创新思维能力。
4.实验之后认真写出实验报告,重点在于预习时准备的内容,实验数据,运算结果的分析讨论,实验过程、遇到的现象和解决问题的办法,自己的收获体会,对改进教学实验安排的建议等。
善于总结和发现问题,写好实验报告是培养实际工作能力非常重要的一个环节,应给以足够的重视。
必要知识串行接口是计算机主机和某些设备之间实现通信,硬件造价比较低廉、标准化程度比较高的一种输入输出接口线路,缺点是通信的速度比较低。
从在程序中使用串行接口芯片的角度看,接口芯片内有用户可以访问的4个寄存器,分别是接收CPU送来数据的输出数据缓冲寄存器,向CPU提供数据的输入数据缓冲寄存器,接收CPU发来的控制命令的控制寄存器,向CPU提供接口运行状态的状态寄存器,必须有办法区分这4个寄存器。
接口芯片中还有执行数据串行和并行转换的电路,接口识别电路等。
串行接口用于执行数据的输入输出操作。
一次输入或输出操作通常需要两个操作步骤完成,第一步是为接口芯片提供入出端口地址,即把指令寄存器低位字节的内容(8位的IO端口地址)经过内部总线和运算器部件写进地址寄存器AR,第二步是执行输入或输出操作,若执行输入指令IN,则应从接口芯片读出一个8位的数据并经过数据总线DB和内部总线IB写进寄存器堆中的R0寄存器,若执行OUT指令,则需要把R0寄存器的内容经过内部总线IB和数据总线DB写入接口芯片。
简单io口扩展实验报告
简单io口扩展实验报告
简单IO口扩展实验报告
本次实验旨在学习如何通过简单IO口扩展模块对单片机的IO口进行扩展,实现多个IO口的输入输出功能。
我们需要了解简单IO口扩展模块的基本原理和工作方式。
简单IO 口扩展模块通过与单片机的SPI总线进行通信,实现对其内部寄存器的读写操作,从而实现对IO口的扩展。
在实验中,我们使用STM32F103C8T6开发板和简单IO口扩展模块,通过连接它们的SPI总线,可以将扩展模块的IO口与开发板的IO口进行连接,实现IO口的扩展。
具体连接方式如下图所示:
(此处省略图片)
接下来,我们需要进行程序设计。
在初始化时,需要设置SPI总线的相关参数,然后对扩展模块进行初始化,将其内部寄存器中的数据清零。
然后,通过读写寄存器的方式,可以对扩展模块的每个IO 口进行配置,设置其输入输出状态、上下拉电阻等参数。
在程序中,我们可以通过读取扩展模块的输入口状态,判断是否有外部信号输入,根据需要进行相应的操作。
例如,当输入口接收到高电平信号时,可以控制某个输出口输出高电平信号,从而实现控制设备的功能。
在实验中,我们可以通过连接LED和按键来进行简单的IO口扩展实验。
将LED连接到扩展模块的输出口,按键连接到扩展模块的输入口,通过控制按键输入信号,实现对LED的控制。
总的来说,本次实验通过学习简单IO口扩展模块的原理和工作方式,掌握了通过SPI总线进行IO口扩展的方法,实现了对单片机多个IO口的输入输出控制,为后续的硬件控制和应用开发打下了基础。
简单i o口扩展实验实验报告
简单i o口扩展实验实验报告简单I/O口扩展实验实验报告引言:简单I/O口扩展实验是一项基础的电子实验,通过扩展I/O口,可以实现对外部设备的控制和数据交互。
本实验旨在通过实际操作,了解I/O口扩展的原理和应用。
实验目的:1. 了解I/O口的基本概念和工作原理;2. 学习使用I/O口扩展芯片实现对外部设备的控制;3. 掌握I/O口扩展的编程方法和应用技巧。
实验器材和材料:1. Arduino开发板;2. I/O口扩展芯片;3. 连接线;4. 外部设备(如LED灯、蜂鸣器等)。
实验步骤:1. 连接Arduino开发板和I/O口扩展芯片。
将I/O口扩展芯片的引脚与Arduino开发板的数字引脚相连,确保连接正确可靠。
2. 编写程序。
使用Arduino开发环境,编写程序代码,实现对I/O口扩展芯片的控制。
根据实际需求,可以选择控制外部设备的开关、亮度、频率等。
3. 上传程序。
将编写好的程序上传到Arduino开发板,确保程序能够正确运行。
4. 运行实验。
运行程序,观察外部设备的状态变化。
通过改变程序中的参数,可以实现对外部设备的不同控制效果。
实验结果与分析:通过实验,我们成功地实现了对外部设备的控制。
通过改变程序中的参数,我们可以控制外部设备的开关、亮度、频率等。
这说明I/O口扩展技术具有很大的应用潜力,可以实现对各种外部设备的控制和数据交互。
实验总结:通过本次实验,我们深入了解了I/O口扩展的原理和应用。
通过编写程序,我们掌握了I/O口扩展的编程方法和应用技巧。
通过实验,我们成功地实现了对外部设备的控制,这为我们进一步研究和应用I/O口扩展技术奠定了基础。
实验中遇到的问题和解决方法:在实验过程中,我们遇到了一些问题,如连接错误、程序错误等。
我们通过仔细检查连接和程序代码,逐一解决了这些问题。
这提醒我们在实验中要认真细致,仔细检查和排除错误,以保证实验的顺利进行。
实验的局限性和改进方向:本次实验只是简单地介绍了I/O口扩展的基本原理和应用,还有很多相关的知识和技术需要进一步学习和探索。
简单io口扩展实验报告
简单IO口扩展实验报告1. 背景在实际应用中,我们经常需要扩展计算机的输入输出(IO)接口,以满足不同的需求。
而简单IO口扩展就是一种常见且重要的扩展方式。
通过简单IO口扩展,我们可以将计算机连接到更多的外部设备,如传感器、执行器等,从而实现更多功能和应用。
2. 分析2.1 简单IO口介绍简单IO口是指通用输入输出接口,它可以通过数字信号来进行数据的输入和输出。
每个简单IO口通常包括一个输入引脚和一个输出引脚。
通过控制这些引脚的电平状态,我们可以实现数据的输入和输出。
2.2 简单IO口扩展方法简单IO口可以通过不同的方法进行扩展,常见的方法包括:•并行接口:使用并行接口可以同时传输多个位的数据。
它通常使用多条数据线和一些控制线来实现高速数据传输。
•串行接口:使用串行接口可以逐位地传输数据。
它通常使用一条数据线和一些控制线来实现较低速率但更简洁的数据传输。
•USB接口:USB(Universal Serial Bus)是一种常见的数字串行总线接口,它可以连接多种设备,并提供高速数据传输和供电功能。
•SPI接口:SPI(Serial Peripheral Interface)是一种常用的串行外设接口,它可以连接多个外设,并以主从模式进行数据传输。
•I2C接口:I2C(Inter-Integrated Circuit)是一种常见的串行通信接口,它可以连接多个外设,并使用两条线路进行数据传输。
2.3 简单IO口扩展实验本次实验旨在通过简单IO口扩展方法,将计算机与外部设备进行连接,并实现数据的输入和输出。
具体步骤如下:1.确定要使用的简单IO口扩展方法,如并行接口、串行接口等。
2.根据选择的扩展方法,准备相应的硬件模块和连接线缆。
3.将硬件模块与计算机进行连接,确保电气连通性。
4.编写相应的驱动程序或使用现有的驱动程序,以实现与硬件模块的通信。
5.运行程序并测试扩展功能。
3. 结果经过实验测试,我们成功地实现了简单IO口扩展,并达到了预期的结果。
实验一简单IO口扩展实验
8255a是比较常用的一种并行接口芯片,其特点在许多教科书中均有介绍。8255a有三个8位的输入输出端口,通常将a端口作为输入用,b端口作为输出用,c端口作为辅助控制用,本实验也是如此。实验中,8255a工作于基本输入输出方式(方式0)
七、实验结果
程序全速运行后,逻辑电平开关的状态改变应能在led上显示出来。例如:
四、实验原理介绍
本实验用到两部分电路:开关量输入输出电路和8255可编程并口电路
五、实验步骤
1.实验接线
cs0 cs8255;pa0~pa7平推开关的输出k1~k8;pb0~pb7发光二极管的输入led1~led8
2.编程并全速或单步运行
3.全速运行时拨动开关,观察发光二极管的变化。当开关某位置于l时,对应的发光二极管点亮,置于h时熄灭。
四、实验原理介绍
本试验用到两部分电路:脉冲产生电路、8253定时器/计数器电路
五、实验步骤
1.试验连线
CS0<->CS8253OUT0<->8253CLK2OUT2<->LED1CLK3<->8253CLK0,
2.编程调试程序
3.全速运行,观察试验结果
六、实验提示
8253是计算机系统中经常使用的可编程定时器/计数器,其内部有三个相互独立的计数器,分别称为T0,T1,T2。8253有多种工作方式,其中方式3为方波方式。当计数器设好初值后,计数器递减计数,在计数值的前一半输出高电平,后一半输出地电平。试验中,T0、T1的时钟由CLK3提供,其频率为750KHz。程序中,T0的初值设为927CH(37500十进制),则OUT0输出的方波周期为(37500*1/750000=0.05s)。T2采用OUT0的输出为时钟,则在T2中设置初值为n时,则OUT2输出方波周期为n*0.05s。n的最大值为FFFFH,所以OUT2输出方波最大周期为3276.75s(=54.6分钟)。可见,采用计数器叠加使用后,输出周期范围可以大幅度提高,这在实际控制中是非常有用的。
简单i o口扩展实验报告
简单i o口扩展实验报告简单I/O口扩展实验报告引言在现代科技发展的浪潮下,电子设备的功能和复杂性不断提升。
然而,对于初学者来说,了解和掌握电子设备的基本原理和操作方法是非常重要的。
本实验旨在通过简单的I/O口扩展实验,帮助初学者更好地理解和应用I/O口扩展技术。
一、实验目的本实验的主要目的是通过使用I/O口扩展技术,实现电子设备与外部设备的交互功能。
具体目标包括:1. 了解I/O口扩展的基本原理和应用场景;2. 学习使用I/O口扩展芯片进行输入输出控制;3. 实现简单的电子设备与外部设备的交互功能。
二、实验器材1. Arduino开发板;2. I/O口扩展芯片;3. 电阻、电容等基本电子元件;4. 连接线、面包板等实验工具。
三、实验步骤1. 连接电路将Arduino开发板与I/O口扩展芯片通过连接线连接起来,按照电路图进行正确的连接。
确保电路连接无误后,将其连接到电源。
2. 编写程序在Arduino开发环境中,编写程序以实现所需的输入输出控制功能。
通过调用相应的库函数,配置I/O口扩展芯片的输入输出模式,并编写相应的逻辑控制代码。
3. 烧录程序将编写好的程序烧录到Arduino开发板中,确保程序能够正确运行。
4. 实验验证运行程序后,通过操作外部设备,如按钮、LED灯等,验证I/O口扩展功能的正确性。
观察外部设备的状态变化,以及Arduino开发板的响应情况。
四、实验结果与分析通过实验,我们成功实现了I/O口扩展技术的应用。
通过编写程序,我们可以根据需要配置I/O口扩展芯片的输入输出模式,并通过控制逻辑实现与外部设备的交互功能。
在实验过程中,我们发现通过I/O口扩展技术,可以实现大量的输入输出控制。
例如,我们可以通过按钮控制LED灯的开关,通过传感器获取环境温度并进行相应的控制,通过继电器控制电机等。
这些功能的实现,不仅提高了电子设备的灵活性和可扩展性,也为我们提供了更多的创造空间。
然而,我们也发现在实际应用中,I/O口扩展技术还存在一些挑战和限制。
输入输出接口扩展ppt课件
2019/18/29
Copyright 2006
一、可编程芯片8155的扩展
Intel 8155是一个具有RAM、I/O和计数器的通用可编程接口 芯片。其具有的资源为
256B的静态RAM;
17 16 29 30 11 10
3 5 7 9
2 Y4 2 Y3 2 Y2 2 Y1
B4 B3 B2 B1 2G
17 15 13 11 19
12 14 16 18
1 Y4 1 Y3 1 Y2 1 Y1
A4 A3 A2 A1 1G
8 6 4 2 1
7 4LS2 44
A 1
3 2
7 4LS3 2
2019/18/29
联络线; CS:片选线,低电平有效。
2019/18/29
Copyright 2006
RESET:复位线,通常与单片机的复位端相连。 ALE:地址锁存线,高电平有效。 IO/M:RAM或I/O口的选择线。当为0时,选中8155的256 B RAM;当为1时,
(仅当p2.7=0且WR=0时,clk才为0,数据被打入。)
所以,当单片机从74LS244输出数据是应该为:
MOV DPTR,#7FFFH ;将74LS244的口地址送入DPTR
MOVX @DPTR,A ;从ACC 向74LS244的端口写数据 ; P2.7=0&WR=0,数据被打入到2732锁 存器
P0. 0 P0. 1 P0. 2 P0. 3 P0. 4 P0. 5 P0. 6 P0. 7
P2. 0
P2. 1
MCS-51
P2. 2 P2. 3
P2. 4
最新实验报告_IO口扩展实验
最新实验报告_IO口扩展实验在本次实验中,我们的目标是通过硬件和软件的结合,扩展微控制器的输入输出(IO)口,以适应更复杂的应用场景。
实验的主要步骤和发现如下:1. 实验目的:- 理解IO口扩展的基本原理。
- 学习如何通过外部硬件设备增加IO口的数量。
- 掌握相应的软件编程技巧以控制扩展的IO口。
2. 实验材料:- 微控制器开发板(如Arduino或Raspberry Pi)。
- 扩展IO模块(例如16路IO扩展板)。
- 跳线和面包板。
- 电阻、LED灯、按键开关等基本电子元件。
3. 实验步骤:- 首先,我们将扩展IO模块通过I2C、SPI或其他通信协议与微控制器连接。
- 确保所有连接正确无误后,对微控制器进行上电测试,检查扩展模块是否被正确识别。
- 编写代码以初始化扩展模块,并为每个新增的IO口分配适当的功能(如输入、输出、PWM等)。
- 通过编写测试程序,验证每个IO口的功能性,例如通过点亮LED 灯或读取按键状态。
4. 实验结果:- 成功实现了IO口的扩展,新增的IO口能够按照程序指令执行相应的输入输出任务。
- 在测试过程中,所有LED灯均能按预期亮起和熄灭,按键状态也能被准确读取。
- 通过对扩展IO口的编程实践,加深了对微控制器IO口配置和电子电路设计的理解。
5. 实验结论:- IO口扩展是提升微控制器应用灵活性的有效手段,可以满足更多复杂的控制需求。
- 通过选择合适的扩展模块和编写正确的程序代码,可以轻松实现IO口的增加和功能的扩展。
- 实验中遇到的问题主要与硬件连接和程序编写有关,通过仔细检查和调试,所有问题均得到解决。
6. 后续改进方向:- 探索更多类型的IO扩展模块,如带有模拟输入的模块,以适应更广泛的应用。
- 优化软件代码,提高IO口的响应速度和稳定性。
- 研究如何通过网络或无线通信实现IO口的远程扩展和控制。
通过本次实验,我们不仅学会了如何物理上扩展微控制器的IO口,还通过实践加深了对相关理论知识的理解。
输出口扩展实验
输出口扩展实验一、实验目的:(1)了解教学实验系统的结构(2)学习单片机系统中扩展简单I/O口的方法。
(3)熟悉并掌握74LS273的数据锁存功能和控制方法。
(4)要求编写控制程序,通过数据总线将要输出的8位数据传送给74LS273八D锁存器,并将74LS273输出引脚与发光二极管通过插座相连,用来显示输出数据的状态。
(5)学习数据输出程序的编程方法。
二、实验原理1.电路连线说明:74LS273的时钟端通过反相器接到IOWR与CS2或非的输出端,D0~D7接8031的AD0~AD7;Q0~Q7接CN2的L1~L8。
2.74LS273是8D触发器,CP是送数触发脉冲输入端,用法与74LS274、74LS74、74LS377、74LS374相同。
三、实验仪器1.计算机2.单片机系统和仿真机3.Keil uVision2调试软件四、实验步骤(1)设置:关闭实验仪电源,MON51K卡上跳线帽分别短接至MON、片内、FOSC;系统设置(JF)→总线(598),JK→系统,KB6→59(单“51”无此项);(2)接线:☞CS2→FF90;Q7~Q0→L1~L8;☞实验箱主板CZ1/USB口→电脑串口/USB口。
五、实验内容:1.用指令向输出锁存电路74LS273输出数据,通过窗口进行观察。
2.实现状态指示灯的驱动用实验机上提供的发光二极管,将发光二极管的L1~L8接入开关量输出锁存电路74LS273的Q0~Q7。
3.按照实验要求编写控制程序,进行在线调试,并进一步修改完善,最终完成可按一定0.1S的时间顺序依次点亮发光二极管的控制程序。
六、实验结果实验结果为在左上角的发光二极管进行循环点亮,且间隔时间是0.1s,实现的程序如下:ORG 0000HLJMP MAINORG 0040HMAIN: MOV DPTR,#0FF90HMOV A,#0FEHLOP: MOVX@DPTR,ARR ALCALL DELAYSJMP LOPDELAY:MOV R0,#10LP1: MOV R1,#200LP2: MOV R2,#248DJNZ R2,$ //DJNZ指令的执行时间为2μsDJNZ R1,LP2 //248*200*10*2μs=992000μs≈1sDJNZ R0,LP1RETEND七、思考题如何修改程序,使发光二极管的移位方向改变;若使发光二极管的延迟时间发生变化,如何修改程序。
实验7:串口方式0扩展并行输出口实验
实验7:串口方式0扩展并行输出口实验一:实验要求利用单片机的串口方式0外接移位寄存器74LS164,从而利用串行口方式0来拓展并行输出口。
74LS164的输出控制8个LED,利用它串行输入并行输出的功能,先进行向上的流水灯操作2次,在实现向下的流水灯操作2次,最后实现跑马灯闪烁2次,然后再重复刚才的过程,如此循环。
二、实验目的1.理解串行通信和并行通信的含义2.了解74LS164的工作原理,理解串行转并行的工作原理3.掌握单片机串行口拓展并行输出口的工作原理三、实验原理图四、实验流程图由于实验有三个现象,原理一样,因此只画出向上做两次流水灯子程序的流程图五、实验程序MOV R1,#2M1:MOV R0,#8MOV A,#0FEHMOV SCON,#00H ;方式0 DD:MOV SBUF,AWAIT1:JNB TI,WAIT1CALL DELAYCLR TIRL ADJNZ R0,DDDJNZ R1,M1 ;向上流水灯2次MOV R1,#2M2:MOV R0,#8MOV A,#7FHMOV SCON,#00HDD1:MOV SBUF,AWAIT2:JNB TI,WAIT2CALL DELAYCLR TIRR ADJNZ R0,DD1DJNZ R1,M2 ;向下流水灯2次MOV R1,#2M3:MOV R0,#8MOV A,#80HMOV SCON,#00HDD2:MOV SBUF,AWAIT3:JNB TI,WAIT3CALL DELAYCLR TIRR ADJNZ R0,DD2DJNZ R1,M3 ;跑马灯2次DELAY:MOV R5,#03 延时子程序DEL1:MOV R6,#250DEL2:MOV R7,#250DJNZ R7,$DJNZ R6,DEL2DJNZ R5,DEL1RET六、实验功能led灯先进行向上的流水灯操作2次,再实现向下的流水灯操作2次,最后实现跑马灯闪烁2次,然后再重复刚才的过程。
i o口扩展实验报告
i o口扩展实验报告I/O口扩展实验报告引言:I/O口扩展是指通过外部设备将计算机的输入输出接口扩展,以满足更多的输入输出需求。
本实验旨在通过实际操作,了解I/O口扩展的原理、应用和实现方法。
一、实验目的本实验的目的是通过使用I/O口扩展模块,实现对计算机的输入输出接口的扩展,掌握I/O口扩展的基本原理和实现方法。
二、实验器材1.计算机2.I/O口扩展模块3.连接线4.外部设备(如LED灯、按钮等)三、实验步骤1.连接I/O口扩展模块与计算机:将I/O口扩展模块通过连接线与计算机的相应接口连接好。
2.编写控制程序:根据实验要求,编写相应的控制程序,以实现对外部设备的控制。
3.运行程序:将编写好的控制程序加载到计算机中,并运行程序。
4.观察实验结果:观察外部设备是否按照预期进行相应的输入输出操作。
四、实验结果与分析通过实验,我们成功地实现了对计算机的输入输出接口的扩展。
通过编写相应的控制程序,我们可以实现对外部设备的控制,例如通过按钮控制LED灯的亮灭。
这样的扩展可以使计算机能够与更多的外部设备进行交互,提供更多的功能和应用。
五、实验原理I/O口扩展的原理是通过外部设备与计算机的输入输出接口进行连接,实现对计算机的输入输出功能的扩展。
通常情况下,计算机的输入输出接口是有限的,而外部设备的种类和数量却是多种多样的。
通过使用I/O口扩展模块,我们可以通过扩展接口的方式,将更多的外部设备与计算机进行连接,实现更多的输入输出功能。
六、实验应用I/O口扩展在实际应用中具有广泛的应用价值。
例如,在工业自动化控制中,通过I/O口扩展可以实现对各种传感器和执行器的控制,从而实现对生产过程的监控和控制。
在智能家居领域,通过I/O口扩展可以实现对家电设备的智能控制,提高生活的便利性和舒适度。
此外,I/O口扩展还可以应用于仓储物流、智能交通等领域,为各种设备和系统的控制提供更多的接口和功能。
七、实验总结通过本次实验,我们对I/O口扩展的原理、应用和实现方法有了更深入的了解。
i o扩展实验报告
i o扩展实验报告I/O扩展实验报告引言:I/O(Input/Output)扩展是指通过外部设备或接口扩展计算机的输入和输出功能,以满足更多的需求。
在本次实验中,我们将探索I/O扩展的原理和应用,并通过实际操作来验证其效果。
1. 实验目的本次实验的目的是通过使用I/O扩展设备,了解其原理和应用,并掌握相关的操作技巧。
2. 实验材料本次实验所需的材料包括:计算机、I/O扩展设备、连接线等。
3. 实验步骤3.1 连接I/O扩展设备首先,将I/O扩展设备与计算机通过连接线连接好。
确保连接的稳固和正确。
3.2 驱动程序安装根据I/O扩展设备的型号和厂商提供的驱动程序,将其安装到计算机中。
确保驱动程序的版本与计算机系统兼容。
3.3 配置I/O扩展设备打开计算机的设备管理器,找到新安装的I/O扩展设备。
根据设备的说明书,进行相应的配置,如设置输入输出端口、中断等。
3.4 编写测试程序根据实验需求,编写相应的测试程序。
程序应能够通过I/O扩展设备实现输入和输出的功能。
3.5 运行测试程序将编写好的测试程序运行起来,观察I/O扩展设备的反应。
检查输入输出是否正常,是否符合预期。
4. 实验结果与分析通过实验,我们可以得到以下结果和分析:4.1 I/O扩展设备的功能验证通过编写的测试程序,我们可以验证I/O扩展设备的输入输出功能是否正常。
如果输入输出正常,说明I/O扩展设备的配置和驱动程序安装都是正确的。
4.2 I/O扩展设备的应用I/O扩展设备可以广泛应用于各个领域,如工业自动化、家庭娱乐等。
通过扩展计算机的输入输出功能,可以实现更多的操作和控制。
4.3 I/O扩展设备的局限性尽管I/O扩展设备可以扩展计算机的输入输出功能,但其也存在一些局限性。
例如,扩展设备的接口类型和计算机的接口类型必须匹配,否则无法正常连接和使用。
5. 实验总结通过本次实验,我们了解了I/O扩展的原理和应用,并通过实际操作验证了其效果。
I/O扩展设备可以为计算机提供更多的输入输出功能,满足不同领域的需求。
IO接口的扩展(8155)
三、用可编程接口芯片扩展
1. 8155 RAM/IO扩展芯片介绍 ⑴8155RAM和I/O口的寻址 8155 共有256个字节RAM ,可以 安排在64k字节外RAM空间的任一区域 中,具体由CE、IO/M与MCS-51单片 机的高位地址线的连接方法确定。单片 机访问时应使CE=0,IO/M=0;片内 单元由AD0~AD7确定。
三、用可编程接口芯片扩展
1. 8155 RAM/IO扩展芯片介绍
⑹PC端口:这是6位端口,可作为输 入口、输出口或作为PA、PB的联络 线。
三、用可编程接口芯片扩展
1. 8155 RAM/IO扩展芯片介绍
⑺定时器/计数器:由两个8位寄存器 构成,其中14位作为计数初值寄存 器和计数器,还有两位用于选择输 出方式;其格式如图4.26所示; 定时器输出波形如图4.27所示。
图4-29 8031和8155接口的键盘、显示电路
开始
置初值:扫描数位初值→R3 显示缓冲器首址→R0
返回主程序
扫描模式→PA口
Y N
所有数位都显 示完否
要显示的数值→A
查找数值的字形代码
修正显示缓冲地址值
相应的字形代码→ PB口字形代码寄存器
显示1ms
图4-30 扫描显示子程序流程图
现设要显示的数据存入地址号为30H~37H的片内RAM作为显示缓冲 区。采用动态扫描显示,每位显示1ms。显示子程序如下: 初始化程序: OGM: MOV DPTR,#0FD00H MOV A,#03H MOVX @DPTR,A ;显示子程序 DIR: MOV R0,#30H MOV R3,#01H LD0: MOV A,R3 MOV DPTR,#0FD01H MOVX @DPTR,A INC DPTR MOV A,@R0 MOV A,#0DH 代 ;控制字→控制寄存器中
实验报告_IO口扩展实验
1.要求设计电路实现一定的功能,并说明其功能;
2.实现功能应能体现并行接口扩展特点
实验仪器
实验仪器:
计算机、Keil编程环境、PROTEUS仿真环境
实验步骤
利用PROTEUS软件提供的仿真元件画出仿真电路图,功能自定。
实验内容
实验电路:
实验数据
程序清单:
实验总结
指导教师意见
签名:年月日
注:各学院可根据教学需要对以上栏木进行增减。表格内容可根据内容扩充。
贵州大学实验报告
学院:职业技术学院专业:电子信息科学与技术班级:电信职081
姓名
学号
实验组
实验时间
指导教师
李国良
成绩
实验项目名称
IO口扩展实验
实验目的实验目Βιβλιοθήκη :1.熟悉IO口扩展的方法;
2.掌握8255或74LS373扩展并行输出口的方法
3.熟悉PROTEUS及KEIL 51软件的使用方法
实验要求
利用8255或74LS373扩展输出口,用LED指示输出数据的状态变化.
实验五:串行接口输入输出实验
实验五串行接口输入/输出实验一、实验目的1、学习TEC-XP+教学计算机I/O接口扩展的方法;2、学习串行通信的基本知识,掌握串行通信接口芯片的设置和使用方法。
二、实验说明1、TEC-XP+教学计算机的I/O结构TEC-XP+教学计算机配置有COM1和COM2两个串行接口,其中COM1是TEC-XP+默认的标准接口,与PC终端相连接,监控程序负责对COM1进行初始化和使用管理。
COM2预留给用户扩展使用,监控程序不能识别COM2,也不对COM2进行任何操作,用户需要对COM2进行初始化和使用管理。
COM1和COM2均由可编程串行通信接口芯片intel8251芯片构成。
2、Intel8251的组成及控制和使用方法可编程串行通信接口芯片Intel8251支持同步和异步两种通信方式。
在异步方式下,波特率为0~19.2Kbps,数据位可为5、6、7或8位,可设1个奇偶校验位,1个起始位,1个、1.5个或2个停止位。
Intel8251内部有7个功能模块负责实现与CPU的数据交换以及与I/O设备的数据通信功能,内部有6个寄存器,其中与异步通信方式的有关的寄存器有5个,即模式寄存器、控制寄存器、状态寄存器、数据发送寄存器和数据接收寄存器。
模式寄存器的功能是设定intel8251的工作模式,控制寄存器的功能是控制intel8251的数据发送和接收等工作过程,状态寄存器的功能是反映intel8251数据发送和接收等工作的状态,各寄存器的格式如图5-1、图5-2和图5-3所示。
当CPU把需发送的数据写入数据发送寄存器后,intel8251将自动把数据组成帧并逐位发送出去。
Intel8251能自动完成数据接收操作,并把接收到的数据存放在数据接收寄存器中,CPU从中读取即可。
图5-1模式寄存器格式图5-2 控制寄存器格式图5-3 状态寄存器格式CPU对模式寄存器、控制寄存器和数据发送寄存器只能写入,不能读出。
对状态寄存器和数据接收寄存器只能读出,不能写入。
io扩展实验报告
io扩展实验报告IO扩展实验报告概述:IO(Input/Output)扩展是一种常见的计算机硬件扩展方式,它可以扩展计算机的输入和输出接口,提供更多的外部设备连接能力。
本文将对IO扩展实验进行详细的介绍和分析。
一、实验背景随着计算机应用的广泛普及,用户对计算机的外部设备需求也越来越高。
然而,传统的计算机硬件接口有限,无法满足用户的需求。
为了解决这一问题,IO扩展技术应运而生。
IO扩展通过增加外部设备的接口数量,使计算机能够连接更多的设备,从而提供更多的功能和灵活性。
二、实验目的本次实验的目的是通过搭建一个IO扩展实验平台,了解IO扩展的原理和工作方式,并通过实际操作来体验IO扩展的功能和效果。
三、实验过程1. 实验准备在进行IO扩展实验之前,我们需要准备一些必要的硬件和软件工具。
硬件方面,我们需要一台计算机、IO扩展板、各种外部设备(如打印机、摄像头、扫描仪等)以及相应的连接线缆。
软件方面,我们需要安装适配IO扩展的驱动程序和相关的应用软件。
2. IO扩展板连接将IO扩展板与计算机通过适当的接口进行连接,确保连接稳定可靠。
根据扩展板的使用说明书,正确连接各个接口,确保外部设备能够正常工作。
3. 驱动程序安装根据IO扩展板的型号和厂商提供的驱动程序,将其安装到计算机上。
驱动程序的安装过程可能会涉及到一些配置和设置,需要仔细阅读相关的文档和说明。
4. 应用软件配置根据实际需求,选择合适的应用软件,并进行相应的配置。
例如,如果需要连接打印机,就需要选择打印机驱动程序,并进行相关的打印设置。
5. 实际操作在完成上述准备工作之后,我们可以开始进行实际的操作了。
通过IO扩展,我们可以连接各种外部设备,如打印机、摄像头、扫描仪等,并使用相应的应用软件进行操作和控制。
四、实验结果通过IO扩展实验,我们可以得到以下几个结果:1. 扩展接口的数量增加:通过IO扩展,我们可以将计算机原有的接口数量扩展到更多,从而能够连接更多的外部设备。
单片机实验报告2
《单片机应用系统设计》实验报告院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:评定成绩:审阅教师:硬件实验一I/O口输入/输出及控制实验Ⅰ、I/O口输入/输出实验一、实验目的1、学习单片机I/O口的使用方法2、学习延时子程序的编写和使用二、实验内容1、I/O口输出:P1口做输出口,接八只发光二极管,编写程序让发光二极管循环点亮。
2、I/O口输入/输出:P1.0、P1.1做输入口接两个拨动开关;P1.2、P1.3做输出口,接两个发光二极管。
编写程序读取开关状态,将此状态在发光二极管上显示出来。
编程时应注意P1.0、P1.1作为输入口时应先置1,才能正确读入值。
三、实验步骤1、I/O口输出硬件连接连线连接孔1 连接孔21 P1.0 L02 P1.1 L13 P1.2 L24 P1.3 L35 P1.4 L46 P1.5 L57 P1.6 L68 P1.7 L7MCS51的P1口循环点灯2、I/O口输入/输出硬件连接连线连接孔1 连接孔21 K4 P1.02 K5 P1.13 P1.2 L44 P1.3 L5MCS51的P1口输入/输出3、实验说明(1)对于MCS51,P1口是准双向口。
它作为输出口时与一般的双向口使用方法想同;但准双向口用作输入口时,因其结构特点必须对它置“1”,否则读入的数据容易产生错误。
(2)8051延时子程序的延时计算问题,对于程序DELAY:MOV R6, #0HMOV R7, #0HDELAYLOOP:DJNZ R6, DELAYLOOPDJNZ R7, DELAYLOOPRET查指令表可知MOV和DJNZ指令均需两个指令周期,在12MHz晶振时,一个机器周期时间为:12/12MHZ=1ms,该延时子程序延时:(256X255+2)X2X1us=130ms。
4、分别连接硬件并执行相关程序,记录结果。
四、提高要求修改I/O口输出程序,先1、3、5、7灯亮,延时后2、4、6、8灯亮,交替点亮。
单片机P1口输入输出实验
单片机P1口输入输出实 验
单片机可靠的复位是保证单片机正常运行的关键因素。 因此,在设计复位电路时,通常要使RST引脚保持10ms以 上的高电平。当RST从高电平变为低电平之后,单片机就从 0000H地址开始执行程序。本电路是上电自动复位。
将8个LED接在单片机P1端口的P1.0-P1.7引脚上,注意 LED有长短两个引脚,分别表示正负极,其中较短的负极接 单片机,较长的为正极,通过限流电阻R与Vcc相连。
单片机P1口输入输出实 验
单片机端口是集数据输入缓冲、数据输出驱动及 锁存等多项功能一体I/O的电路,特别是把握它准 双向、多功能的特点。单片机4个并行端口是P0、 P1、P2、P3。本实验只讨论P1端口。
1、实验目的
通过实验了解P1口作为输入输出方式使用 时,CPU对P1口操作方式。
•1
单片机P1口输入输出实 2、验实验要求(1)、2)为必做,3)为选做)
•11
单片机P1口输入输出实验
图3 P1端口的一位结构
•12
单片机P1口输入输出实验
5、程序设计
P1口输出控制程序的设计主要包括控制输出程序设计与延时程序设计。 (1)输出控制:当P1.5端口输出低电平,即P1.5=0,这时LED亮,反 之,LED灭,可以使用P1.5=0指令使P1.5端口输出低电平,同样利用指 令使P1.5端口输出高电平。
灭;
状态3:8个LED发光二极管
全灭后,从左右两边开始同时点亮LED发光二极管,全亮
后,8个LED发光二极管再明暗一起闪烁2次 ?
•3
单片机P1口输入输出实 验
3、实验设备与仪器 单片机应用与仿真开发实验台,PC机,
E6000/L仿真器+POD-51仿真头、 Wave软硬件仿真软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一简单 I/O口扩展实验
一、实验目的
1、熟悉 74LS273, 74LS244的应用接口方法。
2、掌握用锁存器、三态门扩展简单并行输入、输出口的方法。
二、实验设备
MUT —Ⅲ型实验箱、 8086CPU 模块。
三、实验原理
1. 开关量输入输出电路
(1电路原理:开关量输入电路由 8只开关组成,每只开关有两个位置 H 和 L ,一个位置代表高电平,一个位置代表低电平。
对应的插孔是:K1~K8。
开关量输出电路由 8只 LED 组成,对应的插孔分别为 LED1~LED8,当对应的插孔接低电平时 LED 点亮。
原理图如下图所示。
(2电路测试:开关量输入电路可通过万用表测其插座电压的方法测试,即开关的两种状态分别为低电平和高电平;开关量输出电路可通过在其插孔上接低电平的方法测试,当某插孔接低电平时相应二极管发光。
2. 简单 I/O口扩展电路
(1电路原理:输入缓冲电路由 74LS244组成,输出锁存电路由上升沿锁存器
74LS273组成。
74LS244是一个扩展输入口, 74LS273是一个扩展输出口,同时它们都是一个单向驱动器,以减轻总线的负担。
74LS244的输入信号由插孔 IN0~IN7输入,插孔 CS244是其选通信号,其它信号线已接好; 74LS273的输出信号由插孔
O0~O7输出,插孔 CS273是其选通信号,其它信号线已接好。
其原理图如下:
(2电路测试:当 74LS244的 1、 19脚接低电平时, IN0~IN7与 DD0~DD7对应引脚电平一致;当 74LS273的 11脚接低电平再松开 (给 11脚一上升沿后, O0~O7与
DD0~DD7对应引脚电平一致。
或用简单 I/O口扩展实验测试:程序执行完读开关量后, 74LS244的 IN0~IN7与 DD0~DD7对应引脚电平一致; 程序执行完输出开关量后, 74LS273 的 O0~O7与 DD0~DD7对应引脚电平一致。
3. 程序框图
4. 程序源代码(T244273.ASM
assume cs:code
code segment public
org 100h
start: mov dx,04a0h ;74LS244地址
in al,dx ; 读输入开关量
mov dx,04b0h ;74LS273地址
out dx,al ; 输出至 LED
jmp start
code ends
end start
四、实验内容及步骤
逻辑电平开关的状态输入 74LS244, 然后通过 74LS273锁存输出,利用 LED 显示电路作为输出的状态显示。
1. 将实验箱与电脑相连 , 连接实验箱上的CS0 ↔CS244; CS1↔CS273; 平推开关的输出K1~K8 ↔IN0~IN7(对应连接; O0~O7↔LED1~LED8。
2. 将 CPU-8086芯片固定住,打开“ EL 教学实验箱”电源,实验箱先显示"1996_7",过一会儿显示 "P_"。
3. 打开实验软件, 设置串口如下图。
导入程序 T244273.ASM 。
在“运行”菜单中选择“系统复位”并立即按实验箱上的 PRESET 按钮。
实验箱的数码管显示
"C_"。
桌面显示。
4. 选择“编译”菜单中的“编译与连接” , 然后选择“运行”菜单中的“单步运行” , 调试程序。
5. 调试通过后,全速运行程序,观看实验结果,记录实验数据。
五、实验结果
程序全速运行后,逻辑电平开关的状态改变应能在 LED 上显示出来。
例如:K2置于 L 位置,则对应的 LED2应该点亮。