电力电子技术实验报告精编版

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

《电力电子技术》实验报告-1

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制)目录实验报告一晶闸管的控制特性及作为开关的应用 (1)实验报告二单结晶体管触发电路 (3)实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6)实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8)实验报告五直流-直流集成电压变换电路的应用与调试 (10)实验报告一晶闸管的控制特性及作为开关的应用一、实训目的1.掌握晶闸管半控型的控制特点。

2.学会晶闸管作为固体开关在路灯自动控制中的应用。

二、晶闸管工作原理和实训电路1.晶闸管工作原理晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。

当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。

2.晶闸管控制特性测试的实训电路图1.1晶闸管控制特性测试电路3.晶闸管作为固体开关在路灯自动控制电路中的应用电路图1.2路灯自动控制电路三、实训设备(略,看实验指导书)四、实训内容与实训步骤(略,看实验指导书)五、实训报告要求1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。

记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。

2.简述路灯自动控制电路的工作原理。

实验报告二单结晶体管触发电路一、实训目的1.掌握单结晶体管触发电路的工作原理、接线和调试。

2.掌握单结晶体管触发电路各点电压波形的测定与分析。

二、实训电路与工作原理1.晶闸管触发电路的组成图2.1触发电路的组成2.单结晶体管触发电路的组成和工作原理单结晶体管是由两个基极(b1和b2)和一个阴极构成的一种特殊类型的晶体管,其构造示意图和符号如图2.2(a)、(b)所示。

电力电子技术实验报告山交院

电力电子技术实验报告山交院

电力电子技术实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电动势负载时的工作。

3.熟悉触发电路(锯齿波触发电路)。

二.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感负载。

三.实验线路及原理1)电源控制屏位于NMCL -32/MEL-002T等。

2)锯齿触发电路位于NMCL -36C或NMCL -05D等。

3) L 平波电抗器位于NMCL -331。

4) Rd 可调电阻位于NMEL -03/4或NMCL -03等。

5) G 给定(Ug )位于NMCL -31或NMCL -31A或SMCL -01调速系统控制单元中。

6) Uct 位于锯齿触发电路中。

四.实验设备及仪器1.教学实验台主控制屏2.触发电路(锯齿波触发电路)组件3.变压器组件4.双踪示波器(自备)5.万用表(自备)五.实验结果五.注意事项1实验载必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。

2.为保护整流元件不受损坏,品闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。

(2)在控制电压U=0时,接通主电源。

然后逐渐增大Ua,使整流电路投入工作。

(3)断开整流电路时,应先把Ua降到零,使整流电路无输出,然后切断总电源。

3.注意示波器的使用。

六.总结在可控整流电路中,两个整流二极管VD2、VD4既起到整流作用,又起到续流作用。

电阻电感性负载时,无论接或不接续流二极管,输出直流电压Ud的波形均与接电阻性负载时的直流电压波形相同。

实验中,根据VT1.上的电压波形确定移相控制角a的度数,因此误差较大。

从实验波形中可见续流二极管的作用。

在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压Ud失控。

电力电子技术实训课报告

电力电子技术实训课报告

一、实习背景与目的随着科技的飞速发展,电力电子技术在工业、交通、医疗、家电等领域得到了广泛应用。

为了提高学生对电力电子技术的理解和应用能力,我校特开设电力电子技术实训课程。

本次实训旨在通过实际操作,让学生熟悉电力电子器件的基本原理,掌握电力电子技术的基本操作方法,提高学生的动手实践能力,为今后从事相关工作奠定基础。

二、实习时间与地点实习时间:2021年X月X日至2021年X月X日实习地点:XXX学院电力电子实验室三、实习内容与过程1. 实习内容本次实训主要包括以下内容:(1)电力电子器件的认识与操作:学习电力电子器件的基本原理,了解各类电力电子器件的结构、工作原理和应用领域。

(2)电力电子电路的搭建与调试:学习电力电子电路的基本搭建方法,掌握电路调试技巧,培养实际操作能力。

(3)电力电子设备的制作与维护:学习电力电子设备的制作工艺,了解设备的维护方法,提高学生对电力电子设备的实际应用能力。

2. 实习过程(1)第一天:指导老师简要介绍了电力电子技术的基本概念、发展历程和应用领域。

随后,学生分组进行电力电子器件的认识与操作。

(2)第二天:学生根据指导老师提供的电路图,学习搭建电力电子电路,并进行调试。

在此过程中,学生遇到问题,互相讨论、共同解决。

(3)第三天:学生分组制作电力电子设备,如逆变器、变频器等。

在制作过程中,学生严格遵守操作规程,确保安全。

(4)第四天:学生进行电力电子设备的性能测试,了解设备的运行状态。

根据测试结果,对设备进行必要的调整。

(5)第五天:指导老师组织学生进行总结与交流,分享实习心得。

学生针对实习过程中遇到的问题,提出改进措施。

四、实习成果与体会1. 实习成果通过本次实训,学生掌握了以下成果:(1)熟悉了电力电子器件的基本原理和应用领域。

(2)掌握了电力电子电路的搭建与调试方法。

(3)学会了电力电子设备的制作与维护。

(4)提高了实际操作能力和团队合作精神。

2. 实习体会(1)理论知识与实践相结合的重要性:本次实训使我对电力电子技术有了更深刻的理解,认识到理论知识与实践操作密不可分。

电力电子技术实验报告南邮

电力电子技术实验报告南邮

电力电子技术实验报告南邮一、实验目的本次实验旨在使学生深入了解电力电子技术的基本理论,掌握电力电子器件的工作原理及其在实际电路中的应用。

通过实践操作,培养学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是研究利用电子技术对电能进行高效转换和控制的科学。

它涉及到半导体器件、电路设计、控制策略等多个方面。

在本次实验中,我们将重点研究整流器、逆变器等电力电子基本电路的工作原理和设计方法。

三、实验设备与材料1. 整流器模块2. 逆变器模块3. 直流电源4. 交流电源5. 电阻负载6. 示波器7. 万用表8. 连接线及工具四、实验步骤1. 检查实验设备是否完好,确保安全。

2. 根据实验要求,连接整流器和逆变器电路。

3. 调整直流电源,提供稳定的直流电压。

4. 将示波器连接到电路的输入和输出端,观察波形。

5. 改变负载电阻,记录不同负载下的输出电压和电流。

6. 根据实验数据,分析整流器和逆变器的工作特性。

7. 完成实验后,整理实验设备,确保实验室整洁。

五、实验结果在本次实验中,我们观察到了整流器和逆变器在不同负载条件下的输出波形。

通过调整负载电阻,我们发现输出电压和电流随着负载的变化而变化。

实验数据表明,整流器能够有效地将交流电转换为直流电,而逆变器则能够将直流电转换回交流电。

六、实验分析通过本次实验,我们对电力电子技术有了更深入的理解。

整流器和逆变器作为电力电子技术中的基本电路,其性能直接影响到整个系统的稳定性和效率。

在实验过程中,我们注意到了器件的选型、电路设计和控制策略对系统性能的影响。

此外,我们还学习了如何使用示波器和万用表来测量和分析电路参数。

七、实验结论本次电力电子技术实验成功地完成了预定的教学目标。

学生通过实际操作,加深了对电力电子技术的理解,并提高了解决实际问题的能力。

实验结果表明,整流器和逆变器在实际应用中具有良好的性能,能够有效地实现电能的转换和控制。

八、实验心得通过本次实验,我们不仅学习了电力电子技术的基本理论和应用,还锻炼了实际操作能力。

电力电子技术实习报告

电力电子技术实习报告

实习报告课程名称院部名称专业班级学生姓名学号课程设计地点课程设计学时指导教师目录一、实验目的与要求1.1 实习目的 (3)1.2 实习要求 (3)二、常用元器件性能介绍2.1 电阻器2.1.1 电阻器的种类 (3)2.1.2 电阻器的技术参数(阻值、系列、功率) (3)2.1.3电阻器的标识 (5)2.2 电容器2.2.1 电容器的种类 (5)2.2.2 电容器的技术参数(电容值、系列、功率) (5)2.2.3 电容器的标识 (6)2.3 晶体管2.3.1 二极管(图形符号、文字符号、性能、检测方法及其识别) (6)2.3.2 三极管(图形符号、文字符号、性能、检测方法及其识别) (7)2.3.3 单结晶体管(图形符号、文字符号、性能、工作原理) (8)2.4 电力电子器件2.4.1 稳压管 (12)2.4.2 双向可控硅 (13)2.4.3 GTR (13)2.5 脉冲变压器(图形符号、文字符号、同名端检测方法) (13)2.6 变压器 (14)三、调光电路3.1 实习目的 (19)3.2 实习电路工作原理 (19)3.3 元器件明细表 (20)3.4 调试用仪器一览表 (21)3.5 调光电路实物图 (21)3.6 调试 (22)3.7 各点波形记录 (22)四.收获与体会 (25)一、实验目的与要求1.1实习目的电力电子技术实习课程是理论联系实际,对学生进行基本技能训练,培养学生解决工程实际问题的能力,激发学生的主动性和创新意识的重要实践教学环节。

通过实习教学,学生亲自动手装配、调试电路,更易掌握电力电子技术的理论,掌握的知识、技术也更适合于实际应用。

1.2实习要求1. 综合运用电力电子技术课程中所学到的理论知识去独立完成一个实训课题。

2. 通过查阅手册和文献资料,培养学生独立分析问题和解决实际问题的能力。

3. 进一步熟悉电力电子器件的类型和特性,并掌握合理选用的原则。

4. 学会电力电子电路的安装与调试技能。

电力电子技术实验实验报告

电力电子技术实验实验报告

电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。

具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。

2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。

3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。

二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。

2、示波器:用于观测电路中的电压、电流波形。

3、万用表:测量电路中的电压、电流、电阻等参数。

4、电力电子器件模块:如晶闸管、IGBT 等。

三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。

(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。

2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。

(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。

(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。

3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。

(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。

(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。

四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。

(2)预习实验内容,理解实验原理和电路图。

2、进行实验(1)按照实验内容的要求,依次进行各项实验。

(2)在实验过程中,认真观察实验现象,准确记录实验数据。

3、实验结束(1)关闭实验设备的电源。

(2)整理实验仪器和设备,保持实验台的整洁。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。

实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。

通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。

在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。

通过实验,我们进一步理解了直流电源的工作原理和设计方法。

实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。

通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。

实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。

这些结果对于电力系统的稳定运行和节能优化具有重要意义。

实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。

通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。

实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。

这对于提高电力系统的能效和稳定性具有重要意义。

实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。

通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。

实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。

这对于推广和应用太阳能发电技术具有重要意义。

结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。

实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。

我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告一、实验背景电力电子技术作为一个新兴的学科领域,已经逐渐成为电力系统的重要组成部分和关键技术之一。

随着电力电子技术的不断发展和进步,电力电子设备的种类和应用范围也在不断扩大,特别是在实现电力系统的高效、可靠、智能化方面具有至关重要的作用。

因此,掌握电力电子技术的基本原理和实验操作技能,对于打造应用型电力电子专业人才具有十分重要的意义。

本次实验主要涉及了电力电子技术的基础实验内容,包括单相桥式整流电路、单相半控桥整流电路、交流调压电路、直流稳压电源实验等。

通过实验,学生不仅能够加深对电力电子技术的理论知识的深入理解,也能够掌握实际操作技能和实验数据分析方法,培养学生的综合实际应用能力和创新能力。

二、实验原理(1)单相桥式整流电路单相桥式整流电路是电力电子技术最常见的电路之一。

其工作原理是通过控制四个二极管的导通和截止,将单相交流电转化为直流电,然后提供给直流负载使用。

这种电路结构简单、可靠性高、输出电压稳定等特点,被广泛应用于各种电力电子设备中。

(2)单相半控桥整流电路单相半控桥整流电路和单相桥式整流电路类似,不同之处在于只有一个晶闸管是可控的,其余三个二极管均为正向导通二极管。

这种电路可以实现对直流输出电压的连续调节,具有输出电压稳定、反向截止和可靠性高等特点,被广泛应用于变频调速、直流电动机控制等领域。

(3)交流调压电路交流调压电路是将变压器输出的交流电进行调制,通过控制可控硅的导通和截止,实现输出电压可调的电路。

这种电路在电力电子设备中广泛应用于电炉、电化学等领域,具有输出电压稳定、可靠性高、精度高等特点。

(4)直流稳压电源实验直流稳压电源实验是通过对不同的调节电路与稳压电路进行结合,实现直流电源输出电压、电流稳定的实验。

在电子学、通信、电力电子等领域中应用广泛,能够满足各种直流负载的需要。

三、实验步骤(1)单相桥式整流电路1. 将单相电源接入电路,调节电压调节器,使输出电压稳定。

电力电子实验报告

电力电子实验报告

电力电子实验报告一、实验目的本实验旨在通过搭建电力电子电路和测量电路参数,深入理解电力电子的基本原理和应用。

二、实验装置与仪器1. 稳压直流电源2. 功率电子器件(如二极管、晶闸管、MOS管等)3. 示波器4. 变压器5. 整流电路、逆变电路等电力电子实验电路板6. 电阻、电容、电感等元件7. 其他必要的实验器材和配件三、实验内容1. 实验一:整流器的实验a. 搭建并测量单相半波和全波整流电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种整流电路的性能差异,并讨论其应用特点和限制。

2. 实验二:逆变器的实验a. 搭建并测量单相半桥和全桥逆变电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种逆变电路的性能差异,并讨论其应用特点和限制。

3. 实验三:电力电子开关功率调节实验a. 搭建开关转换器或斩波电路实验电路,测量不同调节方式下的输出电压、电流和效率等参数。

b. 讨论开关功率调节的优缺点,以及不同调节方式的适用场景。

4. 实验四:PWM调制电路的实验a. 搭建简单的PWM调制电路,测量输出电压的调节范围、带宽等参数。

b. 分析PWM调制电路的工作原理和调节性能,探讨其在电力电子中的应用前景。

5. 实验五:电力电子控制系统的实验a. 搭建基于微控制器的电力电子控制系统,实现对某一电力电子器件的自动控制。

b. 测试并分析控制系统的稳定性、响应速度等性能指标,并讨论控制系统的设计考虑因素。

四、实验步骤与结果根据实验内容,按照以下步骤进行实验并记录实验结果:1. 记录实验所使用的电路和元件的连接方式和参数设置。

2. 使用示波器等仪器测量电路各个节点的电压和电流,并记录数据。

3. 分析实验结果,计算输出电压的平均值、有效值、波形畸变率等参数。

4. 对比实验数据,进行数据处理和性能比较。

5. 撰写实验结果报告并进行讨论。

五、实验结果分析根据实验结果,对各个实验内容进行数据分析和讨论,包括:1. 整流电路的性能比较:比较半波和全波整流电路的输出电压波形、平均值、有效值等参数,分析其差异和应用场景。

山东大学电力电子技术实验报告

山东大学电力电子技术实验报告

三相桥式全控整流及有源逆变电路实验班级:电气姓名:学号:一、实验目的(1)熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

(2)观察在电阻负载,阻感负载情况下电路的输出电压和电流波形。

(3)研究三相桥式全控整流电路转换到逆变状态的过程,验正有源逆变的条件。

二、实验内容(1)三相桥式全控整流电路研究。

(2)三相桥式有源逆变电路研究。

(3)模拟逆变失败故障。

三、原理说明图2-1-5和图21-6分别是三相桥式全控整流电路、三相桥式有源逆变电路原理图。

图中主电路由三相全控整流电路和三相不控整流桥组成。

图2-1-5 三相桥式全控整流电路原理图图2-1-6 三相桥式有源逆变电路原理图将芯式变压器接成Y/Y型,变压器高压端A,B.C接三相电源,变压器中压端Am、Bm、Cm接主电路。

调节三相电源线电压为200V。

三相桥式全控整流电路正常工作时,必须有两个晶间管同时导通,一个属于共阴极组,一个属于共阳极组。

为了使电路能启动工作或在电流断续时能再次导通,必须同时对两组中应导通的一对晶闸管加触发脉冲。

因此,通常触发电路采用宽脉冲或双窄脉神,这样就可以使电路在任何换相点都有相邻的两个晶闸管同时获得触发脉冲,保证主电路的6个晶闸管轮流导通,使主电路在任何时刻都能构成电流回路。

三相桥式全控整流电路带电阻负载,触发角α≤60时,输出的整流电压ud的波形均连续:α>60时,ud 的波形断续:α角增大至120°时,ud为零。

因此,带电阻负载时三相桥式全控整流电路α角的移相范围是0°—120°。

三相桥式全控整流电路大多用于向电阻、电感负载和反电动势、电阻、电感负载供电(对直流电动机电枢供电)。

负载中有了电感,使得负载电流的波形变得平直,当电感足够大时,负载电流的波形近似为一条水平线。

触发角α≤60°时,ud的波形连续,电路工作与电阻负载时相似:α>60°时,由于电感的作用,ud的波形出现负值,若电感足够大,α=90时,ud平均值近似为零。

电力电子专业技术实验报告

电力电子专业技术实验报告

电⼒电⼦专业技术实验报告实验⼀三相半波可控整流电路实验⼀、实验⽬的了解三相半波可控整流电路的⼯作原理,研究可控整流电路在电阻负载和电阻电感性负载时的⼯作情况。

⼆、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。

三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。

(2)根据所⽤晶闸管的定额,如何确定整流电路的最⼤输出电流?答:晶闸管的额定⼯作电流可作为整流电路的最⼤输出电流。

六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最⼤阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,⽤⽰波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT计算公式:U d=1.17U2cosα(0~30°)U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接⼊主电路,观察不同移相⾓α时Ud 、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90°时七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d 及Id的波形,并进⾏分析讨论。

α=30o时Ud的波形α=30o时Uvt的波形α=60o时Ud的波形α=60o时Uvt的波形α=90o时Ud的波形α=90o时Uvt的波形α=120o时Ud的波形α=120o时Uvt的波形α=150o时Ud的波形α=150o时Uvt的波形α=90o时Ud的波形实验总结:第⼀次去实验的时候,并没有完成第⼀个实验,只是熟悉了实验仪器,加上没有对实验内容进⾏预习,所以没有完成实验内容。

电力电子技术实训报告

电力电子技术实训报告

电力电子技术实训报告
本次实训主要涉及到电力电子方面的实践操作,通过搭建不同的电路,实现不同的电
力电子应用,对电力电子技术有了更深入的理解和应用。

实验一:加法器
通过构建加法器电路,实现两个三位二进制数的相加。

通过实验,我学会了如何构建
加法器电路,并掌握了二进制数的加法运算。

实验二:直流调速控制
本实验主要是学习直流调速运动控制技术的基本原理和方法,实现直流电机速度调节。

我成功地搭建了直流调速控制电路,能够根据不同的输入信号,控制电机的转速。

实验三:交流调压器
通过构建交流调压器电路,实现电压调节的功能。

我学会了交流调压器的基本原理和
组成部分,并能够根据输入信号调节输出电压。

同时,我也对SCR的应用有了更深刻的理解。

实验四:电源开关
通过搭建电源开关电路,实现对电路的正、负半周进行控制。

我掌握了电源开关的基
本原理和工作方式,同时也学会了电源开关电路的组成和设计方法。

实验五:三相全控桥式整流电路
本实验主要是学习三相全控桥式整流电路的工作原理和使用方法。

通过实验,我学习
到了三相全控整流电路的组成和工作原理,以及如何控制输出电压和电流。

实验六:谐振型逆变器
通过构建谐振型逆变器电路,实现将直流电转化为交流电。

我学习了谐振型逆变器的
基本原理和使用方法,掌握了谐振型逆变器电路的组成和工作方式。

通过实践操作,我对电力电子技术有了更深入的理解,同时也提升了自己的实践能力
和技术水平。

期待能够将今后所学的知识应用到实际工作中,开发更多实用、高效的电力
电子应用。

电力电子实训实习报告

电力电子实训实习报告

一、实习背景随着科技的飞速发展,电力电子技术在工农业生产、国防、交通、能源和人民生活的各个领域得到了广泛应用。

为了使同学们更好地了解和掌握电力电子技术,提高动手能力和实际操作技能,我们班级组织了一次电力电子实训实习。

二、实习目的1. 熟悉电力电子技术的基本原理和常用元器件;2. 掌握电力电子电路的设计、安装和调试方法;3. 提高动手能力和实际操作技能;4. 培养团队合作精神和创新意识。

三、实习内容1. 电力电子器件的认识与选用实习过程中,我们首先学习了电力电子器件的基本原理和特点,如二极管、晶闸管、MOSFET、IGBT等。

通过实验,我们掌握了器件的选用方法和注意事项,为后续电路设计奠定了基础。

2. 电力电子电路的设计与安装在老师的指导下,我们学习了电力电子电路的设计方法,包括电路拓扑、元件选择、参数计算等。

然后,我们根据所学知识,设计并安装了以下电路:(1)单相半波整流电路:将交流电转换为直流电,实现电压的初步稳定。

(2)三相半波整流电路:提高整流电路的输出电压和电流,满足更大功率负载的需求。

(3)有源逆变电路:将直流电转换为交流电,实现电能的逆向传输。

(4)交流调压电路:调节交流电压的大小,满足不同负载的需求。

3. 电力电子电路的调试与测试在安装完成后,我们对电路进行了调试和测试,确保电路性能达到预期要求。

主要测试内容包括:(1)输出电压和电流的稳定性:通过调整电路参数,使输出电压和电流保持稳定。

(2)电路的响应速度:测试电路对输入信号的变化的响应速度,确保电路的实时性。

(3)电路的功率损耗:测试电路在工作过程中的功率损耗,提高电路的效率。

四、实习总结1. 通过本次实习,我们掌握了电力电子技术的基本原理和常用元器件,为今后从事相关工作打下了基础。

2. 实践操作能力的提高:在实习过程中,我们学会了电路设计、安装、调试和测试,提高了动手能力和实际操作技能。

3. 团队合作精神的培养:在实习过程中,我们相互协作,共同解决问题,培养了团队合作精神。

电力电子技术实训报告

电力电子技术实训报告

电力电子技术实训报告一、实训目的和背景电力电子技术是现代工业和生活中不可或缺的技术之一,掌握电力电子技术对电力工程专业学生来说是非常重要的。

为了提高学生的电力电子技术实践能力,在电力电子技术的课程中加入了实训环节,让学生亲手制作和调试电子电路原型,深入理解电力电子技术的原理和应用。

二、实训内容本次实训的主题是“交流电压稳压电源的设计和制作”。

实训的步骤如下:1. 熟悉电力电子元件及其特性。

学生通过了解电力电子元件的特性和作用,对设计电路具有更深入的了解。

2. 设计电路原形。

根据要求,学生从头开始设计一台AC 稳压电源,选定电路方案,进行电路仿真设计,绘制电路图纸。

3. 采购和组装元件。

学生根据电路原形设计图纸,采购所需的电力元器件,进行组装。

4. 调试电路。

完成电路组装后,通过调节元器件,如三极管、电晶体、电容器、电感等,让电路工作正常,达到交流电压稳压的效果。

5. 进行实际测量并分析结果。

学生用万用表等测量并分析电路参数,总结调试时出现的问题和解决方法。

三、实训考核方式和效果本次实训考核分为两个部分,视实习结果及时调整实训内容与方法,以期更好地提高学生的技能:1. 实训过程的考核。

教师在讲解理论的同时指导学生进行实践,严格按照实验大纲进行实践操作,对学生实战操作、团队合作和经验积累进行考核。

2. 实训成果报告。

要求每位学生提交实训报告,报告中需包括实验目的、实验步骤、实验结果分析及存在问题和解决方法等,检测学生实践能力和掌握技术的能力。

实习结束后,学生能够熟练掌握电力电子元件及其特性,了解交流电稳压电源的设计和制作原理,能够熟练使用电路仿真软件,掌握实际自主设计和制作交流电压稳压电源的能力,具备电力电子技术项目实践能力。

四、实训中存在的问题和建议1. 实训时间不够充裕,需要再增加一些时间开展实训;2. 对于实习过程中容易出现的故障,建议安装一些实用的仪器设备,让学生能够更直观地了解问题所在,更容易找到解决问题的方法。

南昌大学电力电子技术实验报告

南昌大学电力电子技术实验报告

电力电子技术实验报告目录实验一锯齿波同步移相触发电路实验 (1)实验二正弦波同步移相触发电路实验 (4)实验三单相桥式全控整流电路实验 (7)实验四单相桥式半控整流电路实验 (11)实验五三相桥式全控整流及有源逆变电路实验 (16)实验六直流斩波电路实验 (19)实验七三相半波可控整流电路的研究 (21)实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。

四.实验设备及仪器1.NMCL系列教学实验台主控制屏2.NMCL-32组件和SMCL-组件3.NMCL-05组件4.双踪示波器5.万用表五.实验方法图1-1 锯齿波同步移相触发电路1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。

2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。

3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。

用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

4.调节脉冲移相范围将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压Ub(即调RP2),使=180˚。

调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,=180˚,Uct=Umax时,=30˚,以满足移相范围=30˚~180˚的要求。

电力电子技术实验报告【精编版】

电力电子技术实验报告【精编版】

电力电子技术实验报告【精编版】模拟、数字及电力电子技术(模电数电部分)实验报告2专业:班级:实验一常用电子仪器使用练习和单管放大电路一、实验目的1.了解示波器、信号发生器、直流稳压电源和数字万用表的使用方法。

2.掌握放大器静态工作点的调试方法。

3.学习放大器的动态性能。

4.学会测量放大器Q点,A v,ri,ro的方法。

5.了解射极偏置电路的特性。

6.了解放大器频率特性测试方法。

二、实验仪器示波器、万用表、信号发生器等三、实验内容和步骤1.按图1-1在实验板上接好线路用万用表判断板上三极管V1极性和好坏。

2.静态工作点的测量P PV b(V)Ube(V)Ve(V)Uce(V)测量值 2.7 0.7 2 0.3计算值 2.7 0.7 2 0.3(1)将信号源调到频率为f=1KHZ,波形为正弦波,信号幅值为2mV,接到放大器的输入端观察ui和uo波形,放大器不接负载。

测量值计算值u i(mV)u o(V)Au=u o/u i1 -0.089 -892 -0.178 -893 -0.267 -894 -0.356 -895 -0.445 -89(3)保持f=1KHZ,幅值为2mV,放大器不接负载(R L=∞)和接入负载R L(5.1K),改变Rc数值的情况下测量,测量值、计算值如下表。

给定参数测量值计算值Rc R L u i(mV)u o(V)Au=uo/u i5.1K 5.1K 2 -0.178 -892.5K 5.1K 2 -0.118 -595.1K ∞ 2 -0.356 -1782.5K ∞ 2 -0.174 -874.放大器的输入、输出电阻(1)输入电阻测量在输入端串接5.1K电阻,加入f=1KHZ、20 mV的正弦波信号,用示波器观察输出波形,用毫伏表分别测量对地电位Vs、Vi。

如图1-3所示。

将所测数据及计算结果填入表1-3中。

图1-3 输入电阻测量测量值计算值Vs(mV)Vi(mV)ri=Vi*Rs/(Vs-Vi)20 4 1.275K(2)输出电阻测量在A点加f=1KHZ的正弦波交流信号, 在输出端接入可调电阻作为负载,选择合适的R L值使放大器的输出波形不失真(接示波器观察),用毫伏表分别测量接上负载R L时的电压V L及空载时的电压Vo。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。

实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。

实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。

常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。

实验步骤:1. 实验一,单相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

2. 实验二,单相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

3. 实验三,三相半波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

4. 实验四,三相全波可控整流电路。

a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。

b. 接通电源,观察示波器波形,记录电流和电压的变化。

c. 改变触发脉冲宽度,观察输出波形的变化。

实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。

实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。

结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。

同时,也为今后的学习和科研工作打下了坚实的基础。

总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术实验报告精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路图图三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。

三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。

六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的dUd=[1+cos(a+π/6))](30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH的电抗器与负载电阻R串联后接入主电路,观察不同移相角α时Ud 、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90°时的Ud及七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形及(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的Ud的波形,并进行分析讨论。

Idα=30o时Ud的波形α=30o时Uvt的波形α=60o时Ud的波形α=60o时Uvt的波形α=90o时Ud的波形α=90o时Uvt的波形α=120o时Ud的波形α=120o时Uvt的波形α=150o时Ud的波形α=150o时Uvt的波形α=90o时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。

第二次去实验的时候才开始做第一个实验,在实验中遇到了许多问题,尤其是在使α=170o,必须弄清示波器每一格的分度值。

还有整流电路与三相电源连接时,一定要注意相序,必须一一对应。

实验二三相桥式半控整流电路实验一、实验目的(1)了解三相桥式半控整流电路的工作原理及输出电压,电流波形。

(2)了解晶闸管在带电阻性及电阻电感性负载,在不同控制角α下的工作情况。

二、实验所需挂件及附件三、实验线路图三相桥式半控整流电路实验原理图四、实验内容(1)三相桥式半控整流供电给电阻负载。

(2)三相桥式半控整流供电给电阻电感性负载。

五、思考题(1)为什么说可控整流电路供电给电动机负载与供电给电阻性负载在工作上有很大差别?答:电阻负载的电流和电压是同相位的,电压过零时电流也同时过零,所以=180°-触发角(单相的情况),在整个的度都可以触发并可控;而电机是一个,电流的于电压,电压过零时电流不一定过零,使可控触发的角度大大减小。

(2)实验电路在电阻性负载工作时能否突加一个阶跃控制电压?在电动机负载工作时呢?答:实验电路在电阻性负载工作时能突加一个阶跃控制电压,在电动机负载工作时不能。

电阻负载电压和电流同相位,任意角度都可以触发,突加一个阶跃控制电压相当于加了一个触发信号能达到触发的目的。

而电动机负载是感性负载,可控触发角范围很小,如果阶跃控制电压加入的角度不在范围内就无法实现控制的目的。

六、实验结果(1)三相半控桥式整流电路供电给电阻负载时的特性测试。

按图接线,将给定输出调到零,负载电阻放在最大阻值位置,按下“启动”按钮,缓慢调节给定,观察α在30°、60°、90°、120°等不同移相范围内,整流电路的输出电压Ud ,输出电流Id以及晶闸管端电压UVT的波形,并加以记录。

(2)三相半控桥式整流电路带电阻电感性负载。

将电抗700mH的Ld接入重复(1)步骤。

七、实验报告(1)绘出实验的整流电路供电给电阻负载时的Ud=f(t),Id=f(t)以及晶闸管端电压UVT=f(t)的波形。

(2)绘出整流电路在α=60o与α=90o时带电阻电感性负载时的波形。

α=60°时电阻负载波形α=60°时电阻电感负载波形α=60°时Uvt波形α=90°时电阻负载波形α=90°时电阻电感负载波形α=90°时Uvt波形实验总结:这次实验和第一次实验内容相似,开始出发电路的调试是一样的,不同的是这次实验的触发角等于150o.实验三三相半波有源逆变电路实验一、实验目的研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

二、实验所需挂件及附件三、实验线路图三相半波有源逆变电路实验原理图四、实验内容三相半波整流电路在整流状态工作下带电阻电感性负载的研究。

五、思考题(1)在不同工作状态时可控整流电路的工作波形。

(2)可控整流电路在β=60°和β=90°时输出电压有何差异?答:β=90°时,Ud波形每60°中有30°为0,直到α继续增大至120°,整流输出电压Ud波形将全为0,其平均值为0,移相范围为0°~120°六、实验结果(1)DJK02和DJK02-1上的“触发电路”调试(2)三相半波整流及有源逆变电路①按图接线,将负载电阻放在最大阻值处,使输出给定调到零。

②按下“启动”按钮,此时三相半波处于逆变状态,α=150°,用示波器观察电路输出电压Ud波形,缓慢调节给定电位器,升高输出给定电压。

观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。

在这过程中记录α(1)画出实验所得的各特性曲线与波形图。

(2)对可控整流电路在整流状态与逆变状态的工作特点作比较。

α=30°α=60°α=90°α=120°α=150°实验总结:我觉得这次实验是比较难的,虽然触发电路的调试和以前一样,但后边三相半波整流及有源逆变比较难,在实验接线过程中,注意三相心式变压器高压侧和中压侧的中线不能接在一起。

要认真观看实验指导书后边的注意事项,可以减少很多错误的发生。

实验四单相斩控式交流调压电路实验一、实验目的(1)熟悉斩控式交流调压电路的工作原理。

(2)了解斩控式交流调压控制集成芯片的使用方法与输出波形。

二、实验所需挂件及附件三、实验线路及原理斩控式交流调压主电路原理如图所示。

图斩控式交流调压主电路原理图一般采用全控型器件作为开关器件,其基本原理和直流斩波电路类似,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路输入的是正弦交流电压。

在交流电源ui的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在ui的负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。

设斩波器件V1、V2的导通时间为ton,开关周期为T,则导通比为α=ton/T,和直流斩波。

电路一样,通过对α的调节可以调节输出电压U图给出了电阻负载时负载电压U0和电源电流i1(也就是负载电源)的波形。

可以看出电源电流的基波分量是与电源电压同相位的。

即位移因数为1。

电源电流不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路的功率因数接近于1。

图电阻负载斩控式交流调压电路波形斩控式交流调压控制电路方框图如图所示,PWM占空比产生电路使用美国SiliconGeneral公司生产的专门PWM集成芯片SG3525,其内部电路结构及各引脚功能查阅相关资料。

的正半周,V1进行斩波控制,用V3给负载电流提供续流通道,V4在交流电源ui关断;在u的负半周,V2进行斩波控制,V3关断,用V4给负载电流提供续流通道。

i控制信号与主电路的电源必须保持同步。

图斩控式交流调压控制电路方框图四、实验内容(1)控制电路波形观察。

(2)交流调压性能测试。

五、思考题(1)比较斩控式交流调压电路与相控交流调压电路的调压原理、特征及其功率因数?答:斩控式交流调压电路的基本原理和直流斩波电路有类似之处,只是输入的正玄交流电压。

用V1、V2进行斩波控制,V3、V4给负载电流提供续流通道。

可通过改变导通比调节输出电压,当滤除高次谐波时,电路的功率因数接近1。

相控式交流调压电路通过改变触发延迟角就可实现对输出电压的控制,随着触发延迟角的增大,Uo逐渐减小。

直到触发延迟角等于180°,Uo=0.此外,触发延迟角等于0时。

功率因数等于1,随着触发延迟角的增大,输入电流滞后于电压且发生畸变,功率因数也逐渐降低。

(2)采用何种方式可提高斩控式交流调压电路输出电压的稳定度?答:在输出端串联一个小的平波电抗器,可以起到稳定输出电压的作用。

(3)对斩控式交流调压电路的输出电压波形作谐波分析?答:电源电流中不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路功率因数接近1.六、实验结果由于主电路的电源必须与控制信号保持同步,因此主电路的电源不需要外部接入。

但是为了能同时观察两路控制信号之间的相位关系,主电路的开关K是串接在电源开关之后的。

在观察控制信号时将开关打在断状态。

(1)控制电路波形观察①断开开关K,使主电路不得电,接通电源开关,用双踪示波器观察控制电路的波形,并记录参数。

②测量控制信号V1与V4、V2与V3之间的死区时间。

(2)交流调压性能测试①接入电阻负载(220V/25W的白炽灯),接通开关K,调节PWM占空比调节电位器,改变导通比α,(即改变Ur值)使负载电压由小增大,记录输出电压的波在方格纸上画出控制信号与不同负载下的输出电压波形并分析。

电阻负载:Ur==Ur==Ur==Ur==阻感负载:Ur==Ur==Ur==Ur==实验总结:这次实验是四个实验中最简单的一个,只需要根据直言指导书的步骤来,就可以完成这次实验,但应该注意示波器的调试,必须熟练掌握示波器的调试方法,这样才可以迅速的得到理想的波形。

通过电力电子技术实验,我不仅学到了知识,更重要的是学会了如何跟团队一起合作。

相关文档
最新文档