数控机床切削加工工艺
数控的加工工艺

数控的加工工艺
数控加工是一种通过数控机床对工件进行加工的工艺。
数控加工工艺的流程一般包括以下几个步骤:
1. 设计产品:根据产品需求和设计要求进行产品设计,包括确定工件的形状、尺寸和加工要求。
2. 编写加工程序:根据设计要求,编写数控加工程序,包括指定切削速度、进给速度、切削深度等参数。
3. 准备机床与刀具:选择适当的数控机床和刀具,并进行准备工作,包括安装刀具、夹紧工件等。
4. 调试加工程序:将编写好的加工程序输入数控机床,并进行调试,包括检查加工路径是否正确、调整加工参数等。
5. 加工工件:根据调试好的加工程序,启动数控机床进行自动加工,通过电脑控制数控机床的运动,实现对工件的切削、钻孔、铣削等加工操作。
6. 检测与修正:加工完成后,对加工后的工件进行检测,包括测量尺寸精度、检查表面质量等,如果有偏差,则需要进行修正。
7. 收尾工作:清洁加工区域,处理加工废料,整理机床和刀具,保养机床设备等。
数控加工工艺具有高精度、高效率、高自动化程度等优点,可以满足复杂形状和高要求的工件加工需求。
它广泛应用于航空航天、汽车、机械制造等领域。
数控加工工艺流程

数控加工工艺流程数控加工是一种通过计算机控制机床进行加工的工艺,它可以实现高精度、高效率的加工,广泛应用于航空航天、汽车制造、电子设备等领域。
数控加工工艺流程是指在数控加工过程中所涉及到的各项工艺步骤和操作流程,下面将详细介绍数控加工的工艺流程。
1. 零件设计与编程。
数控加工的第一步是进行零件设计与编程。
在进行数控加工之前,首先需要对待加工的零件进行设计,确定其尺寸、形状和加工要求。
然后利用专业的CAD/CAM软件进行编程,将设计好的零件转化为数控加工程序,包括刀具路径、加工顺序、切削参数等内容。
2. 材料准备与上机。
在进行数控加工之前,需要准备好待加工零件所需的材料,并进行相应的检验和清洗工作。
然后将材料固定在机床工作台上,并进行工件和刀具的装夹,调整好各个工件的位置和夹紧力,确保加工过程中不会出现移位或松动的情况。
3. 加工工艺参数设置。
在上机之后,需要根据零件的材料、形状和加工要求,设置相应的加工工艺参数。
包括切削速度、进给速度、切削深度、切削宽度等参数,这些参数的设置将直接影响到加工质量和加工效率。
4. 数控加工操作。
经过以上准备工作之后,就可以进行数控加工操作了。
操作人员通过数控系统输入预先编好的加工程序,机床将按照程序中设定的路径和参数进行自动加工,实现对工件的精密加工。
在加工过程中,操作人员需要随时监控加工状态,及时调整加工参数,确保加工质量和安全。
5. 加工质量检验。
在数控加工完成之后,需要对加工零件进行质量检验。
通过测量工件的尺寸、形状和表面粗糙度等指标,判断加工质量是否符合要求。
如果发现有缺陷或不合格的地方,需要及时调整加工参数,重新加工或修复工件。
6. 零件清洗与包装。
经过质量检验合格的零件,需要进行清洗和包装工作。
清洗可以去除加工过程中产生的切屑和油污,保持零件的表面清洁。
然后根据客户要求进行包装,以防止零件在运输和储存过程中受到损坏。
7. 加工记录与数据归档。
在数控加工过程中,需要对加工过程进行记录和数据归档。
数控车削加工工艺课件(共21张PPT)《数控车削编程与操作训练》

1.对刀点 对刀点是在数控机床上加工零件时,
刀具相对于工件运动的起点。
ZO 对刀点X源自2.换刀点换刀点是指刀架转位换刀的位置。 以刀架转位时不碰工件及其他部件 为准。
3.刀位点 刀位点是指在加工程序编制中,用以表
示刀具位置的点
注:每把刀的刀位点在整个加工中只能有一个位置。
1.2.7 数控加工工艺技术文件的编写
确定原则: 粗加工时,选择较大的背吃刀量,
以减少走刀次数,提高生产率;
精加工时,通常选较小的 ap值,以
保证加工精度及表面粗糙度。
2.进给量f 的确定
确定原则: 粗加工时,进给量在保证刀杆、刀具、
机床、工件刚度等条件前提下,选用尽可 能大的f 值;
精加工时,进给量的选择主要受表面粗 糙度要求的限制,当表面粗糙度要求较高 时,应选较小的f 值。
以使总的工序数量减少。 适用于单件小批量生产。
2.工序分散原则 加工零件的过程在较多的工序中进行,
而每道工序的加工内容很少。 适用于大批量生产。
1.2.3 加工路线的确定
加工顺序确定原则:先粗后精、先近后远。
先粗后精
先近后远
1.2.4 刀具的选择
1.机架式可转位车刀
2. 数控车床常用刀具类型及用途
3.主轴转速n的确定
确定原则: 粗车时,选较低的切削速度, 精车时,选较高的切削速度。 由切削速度计算主轴转速的公式如下: n=1000v/(d) 式中:d ——工件直径,mm; v ——切削速度,m/min。
切削用量选择参考表
1.2.6 数控加工中对刀点、换刀 点及刀位点的确定
1.对刀点 2.换刀点 3.刀位点
谢谢观看!
第一章 数控车削编程基础
第二节. 数控车削加工工艺
数控机床的工艺加工及操作编程

数控机床的工艺加工及操作编程数控机床是一种通过数字控制系统来实现自动化工艺加工的机床。
它可以根据预定的程序来进行精密的切削加工,具有高精度、高效率、灵活性强的特点。
在数控机床的工艺加工和操作编程中,需要考虑以下几个方面。
一、工艺加工:1.材料准备:首先需要准备加工所需的原材料,包括金属材料、塑料材料等。
2.工艺规划:根据零件的形状、尺寸和加工要求,制定出合理的工艺路线和加工工艺,包括切削刀具的选择、工件夹紧方式、切削刀具进给和转速等。
3.加工参数设定:根据工艺规划,设置数控机床的加工参数,包括切削速度、进给速度、主轴转速、切削深度和进给深度等。
4.工装夹具设计:设计和选择合适的工装夹具,用于固定工件和切削刀具。
5.数控编程:根据工艺路线和加工参数,编写数控程序,包括刀具路径、切削轨迹、切削方向和切削顺序等。
6.加工过程监控:在加工过程中,及时监控加工状态和加工精度,根据需要进行调整和修正。
7.加工后处理:对加工后的工件进行清洁、检查和检验,并进行必要的后续处理,如调整尺寸、修整表面等。
二、操作编程:1.数控机床的基本操作:包括开机、关机、启动和停止等基本操作。
2.数控系统操作:熟悉数控系统的功能和操作界面,学会使用数控系统的各种功能键和指令。
3.数控编程语言:掌握数控编程语言,如G代码和M代码,了解其语法规则和常用指令。
4.数控程序的编写:根据工艺路线和加工参数,编写数控程序,并进行模拟和调试。
5.数控程序的调整和修改:根据实际加工情况,对数控程序进行调整和修正,以保证加工质量和效率。
6.数控机床的故障排除:熟悉常见故障的排除方法,能够及时发现和解决数控机床的故障问题。
7.加工记录和统计:对每次加工进行记录和统计,包括加工时间、加工数量和加工效率等,以便于评估和改进加工工艺。
通过对数控机床的工艺加工和操作编程的详细了解与掌握,可以充分发挥数控机床的优势,提高加工效率和产品质量,实现机械制造的自动化和数字化。
数控车削加工工艺

数控车削加工工艺1.1数控车削的主要加工对象一:数控车削加工概述1.数控加工过程数控加工与普通机床机械加工有较大的不同。
在数控机床加工前,要把在通用机床上加工是需要操作及动作,工步的划分与顺序、走刀路线、位移量和切削参数等,按规定的数码形式编成加工程序,存储在数控系统存储其器或磁盘上。
加工程序是实现人与机器联系起来的媒介物加工时,控制介质上的加工程序控制机床运动,自动加工出我们所要求的零件形状。
二:数控车削加工的工艺范围数控车削加工主要用于轴类或盘类零件的内、外圆柱面、任意角度的内、外圆锥面、复杂回转内、外和圆柱、圆锥螺纹等的切削加工,并能进行切槽、钻孔、扩孔、铰孔及镗孔等的切削加工三:数控车削的主要加工对象(1)轮廓形状特别复杂或难于控制尺寸的回转体零件因为数控车床装置都具有直线和圆弧差补功能,还有部分有非圆弧差补功能,故能车削有任意平面曲线轮廓所组成的回转体零件。
(2)精度要求较高的零件零件的精度要求主要指尺寸、形状,位置和表面粗糙度值例如,尺寸精度高(达0.001或更小)的零件,圆柱度要求高的圆柱体零件等。
(3)特殊的螺旋零件这些螺旋零件是指特大螺距(或导程)、变(增面现象/减)螺距、高精度的模数螺旋零件(如圆柱圆弧)和端面(盘形)螺纹零件等(4)淬硬工件的加工在大型模具加工中,有不少尺寸大而形状复杂的零件。
这些零件热处理后的变形量较大,模削加工有困难。
因此可以用陶瓷车刀在数控机床上对淬硬后的零件进行车削加工,以车代模,提高加工效率。
1.2 数控车削的刀具与选用一:数控加工对刀具的要求(1)具有良好、稳定的切削性能刀具不仅能进行一般的切削,还能承受高速切削和强力切削,并且切削性能是稳定的。
(2)刀具有教高的寿命刀具大量采用硬质合金材料或高性能材料(如涂层刀片、陶瓷刀片、立方氮化硼刀片)并且有合理的几何参数,切削磨损最少,刀具寿命长。
(3)刀具有较高的精度对于较高精度的工件的加工,刀具应具备相应的形状和尺寸精度,特别对定尺寸型的刀具更是如此;(4)刀具有可靠的卷削、断屑性能数控机床的切削是在封闭的环境下进行的,因此刀具必须能可靠的将切削卷曲、打断,并顺利排削,以避免不必要的停机。
编制数控车削加工工艺的基本步骤

编制数控车削加工工艺的基本步骤数控车削加工是一种高效、精准的加工方式,能够满足工业生产中对复杂零件的加工需求。
编制数控车削加工工艺是实现这种加工方式的基础,下面我们来介绍一下编制数控车削加工工艺的基本步骤。
一、加工零件的几何形状和尺寸计算在编制数控车削加工工艺之前,我们需要首先确定要加工的零件的几何形状和尺寸,这需要进行精确的计算。
对于复杂形状的零件,可以采用CAD软件进行设计和绘制,然后提取出要加工部分的轮廓线和控制点。
通过这些控制点可以确定加工路径,进而设置数控机床的加工方案和程序。
二、编制数控程序编制数控程序是数控车削加工的核心环节。
在编写程序之前,需要根据加工零件的尺寸和形状来确定加工的路径、速度和进给量等参数。
数控程序的编写需要使用特定的数控编程语言,如G代码和M代码等。
这些代码指示数控机床应该采取哪种方法来加工零件,如切削深度、转速、加工刀具的类型和进给速度等。
三、加工方案的制定对于零件的加工方案制定是数控车削加工工艺的关键环节之一。
在制定加工方案的过程中,需要考虑到材质、钻孔和铣削等方面的因素。
加工方案需要明确切削剂量和切削速率,以使工件能够被稳定地加工。
为此,需要注意选择合适的加工刀具、冷却液和工件固定方式等因素。
四、工艺参数的设置数控机床的操作过程中,需要一些必要的工艺参数进行设置。
可以通过数控软件设置相关参数,如切削速度、加工深度、进给速度、刀具切削半径和切削角度等,以实现加工过程中必要的控制。
五、机床装夹及校准在进行数控车削加工之前,需要对数控机床进行装夹和校准。
机床的校准过程包括对数控系统进行校准和机械部件的调整校准。
装夹时需要确保工件与机床夹紧装置紧密接触,并且不会出现移动或震动的情况。
六、切削力和冷却剂的控制数控车削加工中需要控制切削力和冷却剂的使用。
切削力过大会导致刀具的过早磨损和加工表面粗糙,因此需要控制加工的深度和进给速度等参数;而冷却剂的使用可以有效降低加工温度,从而减少刀具的磨损和工件的形变。
CNC车削加工工艺

基本特征
数控车削时,工件做回转运动,刀具 做直线或曲线运动,刀尖相对工件运动的 同时,切除一定的工件材料从而形成相应 的工件表面。其中,工件的回转运动为切 削主运动,刀具的直线或曲线运动为进给 运动。两者共同组成切削成形运动。 数控车床主要用于轴类和盘类回转体 零件的多工序加工,具有高精度、高效率、 高柔性化等综合特点,其加工范围较普通 车削广,不仅可以进行车削还可以铣削, 具体见后。
走刀路线的确定 车 圆 弧 的 加 工 路 线 分 析
应用G02(或G03)指令车圆弧,若用一刀就把圆 弧加工出来,这样吃刀量太大,容易打刀。所以,实际 车圆弧时,需要多刀加工,先将大多余量切除,最后才 车得所需圆弧。 右图为车圆弧的阶梯切削路 线。即先粗车成阶梯,最后一刀精 车出圆弧。此方法在确定了每刀吃 刀量ap后,须精确计算出粗车的终 刀距S,即求圆弧与直线的交点。 此方法刀具切削运动距离较短,但 数值计算较繁。
加工范围
数 控 车 床 的 种 类 和 特 征
数控车床即装备了数控系统的车床。由数控系统通过伺服驱动 系统去控制各运动部件的动作,主要用于轴类和盘类回转体零件 的多工序加工,具有高精度、高效率、高柔性化等综合特点,适 合中小批量形状复杂零件的多品种、多规格生产。 数控车床按车削中心是在普通数控车床基础上发展起来的一种 复合加工机床。除具有一般二轴联动数控车床的各种车削功能外, 车削中心的转塔刀架上有能使刀具旋转的动力刀座,主轴具有按 轮廓成形要求连续(不等速回转)运动和进行连续精确分度的C 轴功能,并能与X轴或Z轴联动,控制轴除X、Z、C轴之外,还可 具有Y轴。可进行端面和圆周上任意部位的钻削、铣削和攻螺纹 等加工,在具有插补功能的条件下,还可以实现各种曲面铣削加 工。
• ● 其他形状复杂的零件
数控机床切削加工工艺

6.1 数控车削加工工艺
2.数控车削加工工艺的主要内容 数控车削加工工艺主要包括以下内容。
(1) 选择适于数控车床加工的零件,确定工序内容。 (2) 对零件图进行分析,明确加工内容及技术要求。 (3) 确定零件的加工方案,拟定加工工艺路线。如划分工序、 安排加工顺序、处理与非数控加工工序的衔接等。
② 在轮廓曲线上,有3处为圆弧,其中两处为既过象限又改 变进给方向的轮廓曲线,因此,在加工时应进行机械间隙补偿, 以保证轮廓曲线的准确性。
③ 为了便于装夹,毛坯件左端应预先粗车夹持部分(零件图 左端双点划线部分),右端面也应先粗车并钻好中心孔。毛坯选
60的棒料。
6.1 数控车削加工工艺
(2) 确定装夹方案。 以毛坯件轴线和左端大端面(设计基准)
为定位基准。左端采用三爪卡盘夹紧,右端采用活动顶尖支撑的 装夹方式。
(3) 确定加工顺序及进给路线。加工顺序按由粗到精、由近到 远(由右到左)的原则确定。即先从右到左进行粗车(留0.25mm 精车余量),然后从右到左进行精车,最后车削螺纹。
(4) 选择刀具。
①
5中心孔钻钻削中心孔。
② 粗车及车削端面选用90°硬质合金右偏刀,副偏角不宜太 小,以免副后刀面与工件轮廓干涉,一般选kr′=35°。
≤
6.1 数控车削加工工艺
6.1 数控车削加工工艺
v (3) 进给速度 f的确定
① 当工件的质量要求能够得到保证时 ,一般在100~ 200mm/min范围内选取。
② 在切断、加工深孔或用高速钢刀具加工时,一般在20~ 50mm/min范围内选取。
③ 当加工精度、表面粗糙度要求较高时,一般在20~ 50mm/min范围内选取。
图6-11 车削外轮廓装夹方案
数控机床的加工工艺及编程步骤

数控机床的加工工艺及编程步骤数控机床是一种通过数字化编程来实现自动化加工的机床。
它具有高精度、高效率、高稳定性等优点,适用于各种复杂形状的工件加工。
下面将介绍数控机床的加工工艺及编程步骤。
一、数控机床的加工工艺1.工件准备:首先需要根据加工需求选择合适的工件,并进行表面清理和定位,以便于后续加工操作。
2.零部件设计:根据产品图纸和加工要求,设计并制作数控机床所需的各个零部件,包括夹具、刀具等。
3.加工参数设置:根据工件的材料、形状和要求,确定加工过程中的各项参数,包括切削速度、切削深度、进给速度等。
4.数控机床的设定:根据工件的形状和要求,设置数控机床的加工程序,包括选择刀具、设定加工路径等。
5.加工过程:将工件加固在数控机床上,并根据设定的加工程序进行加工操作,包括切割、铣削、镗削等。
6.检测与修正:在加工过程中,需要进行质量检测,如测量工件的尺寸精度、表面光洁度等,并根据检测结果进行必要的修正。
7.完成工件:经过上述步骤的加工后,即可得到符合要求的工件,并进行清洁和包装,准备出厂或进行下一步加工。
二、数控机床的编程步骤1.确定坐标系:根据工件的不同形状和加工要求,确定适合的坐标系,包括原点、X、Y、Z轴方向等。
2.编写程序:使用数控机床的操作界面或专业的编程软件,根据工件的形状和要求,编写相应的加工程序。
3.路径设置:根据工件的轮廓和特点,设置刀具的加工路径,包括进给速度、切削深度、进给方向等。
4.刀具选择:根据加工要求和材料特性,选择合适的刀具,并确定刀具的类型、规格和安装位置。
5.加工参数设定:根据工件的材料特性和加工要求,设置切削速度、进给速度、切削深度等加工参数。
6.试切检验:在正式加工之前,进行试切检验,验证程序的正确性和工件的准确性,以确保加工质量。
7.程序调试:将编写好的程序输入数控机床,并进行程序调试,包括路径调整、参数设定等,直至程序运行正常。
8.正式加工:经过上述步骤的准备后,即可进行正式的加工操作,按照编写好的程序,控制数控机床进行加工。
数控加工零件的工艺分析与数控铣削加工工艺

数控加工零件的工艺分析与数控铣削加工工艺数控加工是指利用计算机数控系统,通过编写程序控制机床工作来加工零件的一种加工方式。
在工业生产中,数控加工因其高精度、高效率、高灵活性等优点而被广泛应用。
其中数控铣削是一种常见的数控加工方式,本文将从工艺分析、数控铣削加工工艺等方面进行探讨。
一、数控加工零件的工艺分析工艺分析是数控加工的一项前置工作,它的目的是确定加工工艺,选择合适的加工设备和刀具,制定加工程序等,从而保证加工质量和效率。
具体而言,工艺分析主要包括以下几个方面:1. 零件的材质和形状:不同材质的加工性能不同,加工时需要选择相应的切削参数和刀具;而零件的形状和结构也会影响加工难度和精度,需要对其进行全面分析和评估。
2. 加工精度和表面质量要求:根据零件的要求,确定加工精度和表面质量目标,制定相应的切削参数和工艺措施。
3. 工序分析:对零件进行逐个工序分析,确定加工顺序、加工方向、加工路径和刀具选择等重要内容,同时把握好每个工序的加工质量和效率。
4. 刀具选择:根据加工材料、零件形状和要求,选择合适的刀具和刀具尺寸,保证零件的加工质量和加工效率。
5. 加工程序制定:通过数控编程软件,编写机床加工程序,包括各种切削参数、刀具路径、指令参数等信息,为数控加工提供参考。
二、数控铣削加工工艺数控铣削是一种高速旋转的刀具在工件表面上进行切削的加工方式,它广泛应用于金属、塑料等材料制件的加工中。
数控铣削在工件制作中具有大量价值和应用,且数控铣削加工工艺也是半自动化和自动化制造中的重要工艺之一。
要把好铣削的关,需要具备以下几点:1. 刀具选择:刀具的选择是影响加工效率和加工质量的重要因素之一。
首先需要考虑切削材料,选择高速钢、硬质合金、陶瓷等材质的刀具;其次要考虑刀具尺寸和形状,根据零件的要求选择合适的刀具。
2. 切削参数:切削参数包括切削速度、进给量和切削深度等,这些参数的选定与零件材料、刀具材料、刀具尺寸和表面质量等因素密切相关。
数控机床加工常用工艺流程详解

数控机床加工常用工艺流程详解数控机床是一种高精度、高效率的加工设备,广泛应用于各个行业的生产流程中。
在数控机床的加工过程中,需要进行一系列的工艺流程来保证加工的准确性和质量。
本文将详细介绍数控机床加工常用的工艺流程。
首先,数控机床加工的第一个工艺流程是工件的装夹。
工件的装夹是指将待加工的工件固定在数控机床的工作台上,保证工件的稳定性以及加工的准确性。
装夹方式可以根据工件的形状和大小而定,常用的装夹方式包括夹具装夹、磁性装夹、真空吸附等。
接下来是工艺规划。
在进行数控机床加工之前,需要对加工工艺进行规划和设计。
包括确定切削刀具的选择、刀具切削参数的确定、刀具路径的规划等。
同时,还要根据工件的形状和要求,确定加工的顺序和方式。
工艺规划的好坏直接关系到加工的效率和质量。
然后是程序编制。
数控机床是由计算机来控制的,因此需要编写相应的加工程序。
加工程序是将工艺规划中确定的加工路径、切削参数等输入到数控机床的控制系统中,以便机床能够按照设定的要求进行加工。
程序编制需要掌握相应的编程语言和加工工艺的知识,确保加工过程的准确性和稳定性。
接下来是数控机床的调试与试运行。
在正式进行加工之前,需要对数控机床进行调试,确保各个部件正常工作、各个轴线的行程准确以及加工程序的正确性。
通过试运行,可以检验数控机床的稳定性和加工效果。
调试与试运行的过程中,需要根据实际情况进行相应的调整和优化。
最后是数控机床的加工操作。
在进行加工操作之前,需要将上述工艺流程和步骤合理安排,并确保操作人员具备必要的技能和经验。
加工操作包括开机操作、加载程序、设置切削参数、检查机床状态等。
操作人员应该密切关注加工过程中的各种指标,及时调整和修正,以保证加工的质量和效率。
综上所述,数控机床加工常用的工艺流程包括工件的装夹、工艺规划、程序编制、调试与试运行以及加工操作。
每个环节都需要严格执行,确保加工的准确性和质量。
同时,加工人员还应该持续学习和提升技术,不断改进工艺流程,以适应不断发展的加工需求。
数控铣削加工工艺分析

数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
第六章数控铣削加工工艺

第一节 数控铣削加工工艺的制订
① 在要求工件表面粗糙度值为Ra12.5~25μm时,如果圆 周铣削的加工余量小于5mm,端铣的加工余量小于6mm, 则粗铣一次进给就可以达到要求。但在余量较大,工艺系 统刚性较差或机床动力不足时,可分两次进给完成。 ② 在要求工件表面粗糙度值为Ra3.2~12.5μm时,可分粗 铣和半精铣两步进行。粗铣时背吃刀量或侧吃刀量选取同 前。粗铣后留0.5~1.0mm余量,在半精铣时切除。
图6-13 顺铣与逆铣 a)顺铣 b)逆铣
第一节 数控铣削加工工艺的制订
3)顺铣与逆铣的判断方法。
图6-14 切削外轮廓时顺铣、逆铣与进给的关系 a)顺铣与进给的关系 b)逆铣与进给的关系
第一节 数控铣削加工工艺的制订
图6-15 切削内轮廓时顺铣、逆铣与进给的关系 a)顺铣与进给的关系 b)逆铣与进给的关系
第一节 数控铣削加工工艺的制订
图6-3 通用可调气动台虎钳 a)通用可调气动台虎钳 b) 、c)更换调整件 1、2—可更换调整件 3—活动钳口 4—粗调螺杆 5—活塞杆
6—杠杆 7—活塞ຫໍສະໝຸດ 第一节 数控铣削加工工艺的制订
图6- 4 通用可调夹具系统 1—基础件 2—立式液压缸 3—卧式液压缸 4、5—销
第一节 数控铣削加工工艺的制订
表6-1 面铣刀的前角数值
(2)立铣刀主要参数的选择 立铣刀主切削刃的前角在法剖 面内测量,后角在端剖面内测量,前、后角的标注如图628b所示。
表6-2 立铣刀前角数值
第一节 数控铣削加工工艺的制订
表6-3 立铣刀后角数值
第一节 数控铣削加工工艺的制订
图6-35 立铣刀尺寸参数
第一节 数控铣削加工工艺的制订
图6-31 硬质合金模具铣刀
数控车加工工艺流程

数控车加工工艺流程一、概述。
数控车床是一种通过预先编程的计算机控制系统来控制工具和工件之间的相对运动的机床。
数控车床具有高精度、高效率、稳定性好等优点,被广泛应用于汽车、航空航天、船舶、机械制造等领域。
本文将介绍数控车加工的工艺流程。
二、数控车加工工艺流程。
1. 工件设计与加工方案确定。
在进行数控车加工之前,首先需要进行工件的设计与加工方案的确定。
根据工件的形状、尺寸、材料等特性,确定数控车加工的工艺路线、刀具选择、切削参数等。
2. 数控编程。
数控编程是数控车加工的关键环节,它直接影响到加工质量和效率。
数控编程人员根据工件的加工要求,采用CAM软件编写加工程序,包括刀具路径、切削参数、加工顺序等内容。
3. 材料准备。
在进行数控车加工之前,需要对工件所使用的材料进行准备。
这包括材料的切割、锯割、切割等工艺,以及对材料进行表面处理,确保其符合加工要求。
4. 数控车床设备调试。
在进行数控车加工之前,需要对数控车床进行设备调试。
这包括对数控系统进行参数设置、刀具的安装与调试、工件夹持装夹等工作,确保设备能够正常运行。
5. 加工操作。
一切准备就绪后,即可进行数控车加工操作。
操作人员根据预先编写的加工程序,对数控车床进行操作,进行切削加工。
在加工过程中,需要对加工质量进行监控,确保加工的精度和表面质量。
6. 加工检验。
在数控车加工完成后,需要对加工件进行检验。
这包括对加工件的尺寸、形状、表面质量等进行检测,确保加工件符合要求。
7. 修磨与表面处理。
在数控车加工完成后,可能需要对加工件进行修磨或表面处理。
修磨是为了进一步提高加工件的精度和表面质量,表面处理是为了改善加工件的表面性能。
8. 成品包装。
最后,对加工完成的产品进行包装。
根据产品的特性和要求,选择合适的包装材料和方式,确保产品的安全运输和储存。
三、数控车加工的优点。
1. 高精度,数控车床具有高精度的加工能力,能够满足对工件精度要求较高的加工需求。
2. 高效率,数控车床具有高速切削和自动换刀等功能,能够提高加工效率。
数控机床编程及操作数控车削加工工艺

第5讲 数控车削加工工艺
5.1 数控加工工艺概述 5.2 数控加工工艺分析的一般步骤与方法 5.3 数控车削工艺 5.4 数控车削零件工艺分析举例 5.5 数控加工工艺文件
第5讲 数控车削加工工艺
5.1 数控加工工艺概述
1.数控加工工艺的基本特点
在普通机床上加工零件时,是用工艺规程来规定每道加 工工序的操作顺序的,操作者严格按工艺卡规定的操作顺序 进行加工。而在数控机床上加工零件时,要把加工零件的全 部工艺过程、工艺参数等编制成程序,存储在数控系统的存 储器内,来控制机床进行加工。因此,数控机床加工工艺与 普通机床加工工艺原则基本相同,但数控加工的整个过程是 自动进行的,又有其特点:
② 尽量减少装夹次数,尽可能在一次定位装夹后加工出全部 待加工表面。
③ 避免用占机人工调整加工方案,以便充分发挥数控机床的 效能。
第5讲 数控车削加工工艺
(2)选择夹具的基本原则
数控加工的特点对夹具提出了两点要求:一是要保证夹 具的坐标方向与机床的坐标方向相对固定不变;二是要零件 和机床坐标系的尺寸关系。除此之外还应考虑以下几点: ① 当零件加工批量不大时,应尽量采用组合夹具、可调式夹 具或其他通用夹具,以缩短生产准备时间,节省生产费用。
第5讲 数控车削加工工艺
② 不能在一次安装中完成加工的星形零件或部位,采用数 控车削加工,效果不明显。 2.对零件图进行数控加工工艺分析 (1)结构工艺性分析
1)零件结构工艺性 零件结构工艺性是指在满足使用要求的前提下,零件
加工的可行性和经济性,换言之就是设计的零件结构要求 便于加工且成本低、效率高。
(2)零件各加工部位的结构工艺性应符合数控加工的特点
1)零件的内腔和外形最好采用统一的几何类型和尺寸。这 样可以减少使用刀具的规格和加工中换刀的次数,使得 编程方便,生产效益提高。
数控车削加工工艺与分析

数控加工工艺分析的一般步骤与 方法
10.工艺加工路线的确定
工艺加工路线是指数控加工过程中 刀位点相对于被加工零件的运动轨迹。 编程时,确定工艺加工路线的原则是: (1)保证零件的加工精度和表面粗糙度; (2)方便数值计算,减少编程工作量; (3)缩短加工运行路线,减少空运行行程。
数控车削工艺
1. 选择正确数控车削加工内容
(c)“矩形”进给路
数控加工工艺分析的一般步骤与 方法
5. 零件的安装
1、设计基准、工艺基准和编程计算基准统一。 2、尽量减少装夹次数,尽可能在一次定位装夹 后,加工出全部待加工表面。 3、避免采用占机人工调整加工方案,以便能充 分发挥出数控机床的效能。
数控加工工艺分析的一般步骤与 方法
6. 夹具的选择
3. 加工方法的选择与加工方案的确定 1.加工方法的选择 数控车削内、外回转表面的加工方案的确定,应 注意以下几点。 (1)加工精度为IT8~IT9级、表面粗糙度Ra1.6~3.2 m、 除淬火钢以外的常用金属,可采用普通型数控车床,按粗车、 半精车、精车的方案加工。 (2)加工精度为 IT6~IT7级、表面粗糙度Ra0.2~0.63 m、 除淬火钢以外的常用金属,可采用精密型数控车床,按粗车、 半精车、精车、细车的方案加工。 (3)加工精度为IT5级、表面粗糙度Ra<0.2 m的除淬火 钢以外的常用金属,可采用高档精密型数控车床,按粗车、 半精车、精车、精密车的方案加工。
只需确定每次背吃刀量 也需计算粗车时终刀距S。 ap ,而不需计算终刀距 , 按此种加工路线,刀具切 编程方便。但在每次切 削运动的距离较短,精车 削中背吃刀量 是变化的 , 时背吃刀量相同。 且刀具切削运动的路线 较长。
数控加工工艺分析的一般步骤与 方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安排零件车削加工顺序一般应遵循下列原则。
(1)先粗后精。 按照粗车→半精车→精车的顺序进行,逐 步提高零件的加工精度。
(2)先近后远。 这里所说的先近后远是按加工部位相对(3) 内外交叉。 对既有内表面(内型、内腔),又有外表面 的零件,安排加工顺序时,应先粗加工内、外表面,然后精加工 内、外表面。加工内、外表面时,通常先加工内型和内腔,然后 加工外表面。
6.1 数控车削加工工艺
(2) 主轴转速的确定。 ① 光车。光车时,车削加工主轴转速n应根据允许的切削速 度vc和工件直径d来选择。在实际生产中,主轴转速可用下式计算:
n 1000vc
d
式中,n是主轴转速,r/min;vc是切削速度,m/min;d是零件 待加工表面的直径,mm。
计算时可参考表6-2或切削用量手册选取。
图6-3 巧用起刀点
6.1 数控车削加工工艺
其对刀点A的设定是考虑到精车加工过程中需方便地换刀, 故设在离坯件较远的位置处,同时将起刀点与其对刀点重合,按3 刀粗车的进给路线安排:
第1刀为A→B→C→D→A; 第2刀为A→E→F→G→A; 第3刀为A→H→I→J→A 如图6-3(b)所示则是将起刀点与对刀点分离,并设于图示B点 位置,仍按相同的切削量进行3刀粗车,其进给路线安排如下: 起刀点与对刀点分离的空行程为A→B; 显然,图6-3(b)所示进给路线短。
6.1 数控车削加工工艺
2.数控车削加工工艺的主要内容 数控车削加工工艺主要包括以下内容。
(1) 选择适于数控车床加工的零件,确定工序内容。 (2) 对零件图进行分析,明确加工内容及技术要求。 (3) 确定零件的加工方案,拟定加工工艺路线。如划分工序、 安排加工顺序、处理与非数控加工工序的衔接等。
② 主轴旋转速度的选择。车直线和圆弧时,根据手册选取粗 车切削速度vc=90m/min,精车切削速度vc=120m/min,然后利用公 式计算出主轴转速n即粗车500r/min、精车1200r/min。车螺纹时, 主轴转速n为320r/min。
③ 进给速度的选择。粗车时每转进给量为0.4mm/r,精车时每 转进给量为0.15mm/r;粗车进给速度为200mm/min,精车进给速度 为180mm/min。
≤
6.1 数控车削加工工艺
6.1 数控车削加工工艺
v (3) 进给速度 f的确定
① 当工件的质量要求能够得到保证时 ,一般在100~ 200mm/min范围内选取。
② 在切断、加工深孔或用高速钢刀具加工时,一般在20~ 50mm/min范围内选取。
③ 当加工精度、表面粗糙度要求较高时,一般在20~ 50mm/min范围内选取。
6.1 数控车削加工工艺
根据数控车床加工的特点,还可以放弃常用的阶梯车削法, 改用依次从轴向和径向进刀,顺毛坯轮廓进给的路线,如图6-6所 示。
图6-6 双向进刀的进给路线
6.1 数控车削加工工艺
四、数控车削加工工序设计
1.夹具的选择及装夹方法的确定 (1) 夹具的选择。车床夹具分为两种基本类型,即用于轴类工 件的夹具(如三爪自定心卡盘、心轴等)和用于盘类零件的夹具 (如四爪卡盘等)。车床夹具的具体选择可参考第五章的内容。
(2) 装夹方法的确定。车削加工常用的装夹方法见表6-1。
6.1 数控车削加工工艺
6.1 数控车削加工工艺
3.切削用量的选择
切削用量应结合车削加工的特点,在机床给定点的允许范围 内选取,其选择方法如下。
(1) 背吃刀量ap的确定。在车床工艺系统刚度允许的条件下, 尽可能选取较大的背吃刀量。为了保证加工表面质量,可留少许 精车余量,一般为0.2~0.5mm。
④ 刀具空行程时,当行程距离较长时,可以设定该数控机床 系统设定的最高进给速度。
6.1 数控车削加工工艺
4.数控车削加工中的装刀与对刀 (1) 车刀的安装 如图6-7所示为车刀安装角度。当车刀安装成负角时,增大切 削力;安装成正角时,减小切削力。
图6-7 车刀安装角度
6.1 数控车削加工工艺
(2) 数控车床对刀。数控车床一般采用试切对刀,如图6-8所 示。
图6-8 数控车床常用的试切对刀法
6.1 数控车削加工工艺
五、典型数控车削零件加工工艺分析
1.轴类零件数控车削加工工艺 如图6-9所示的零件,零件材料为45钢,无热处理和硬度要求, 选用TND360数控车床进行加工。
6.1 数控车削加工工艺
图6-9 典型轴类零件
6.1 数控车削加工工艺
其数控车削加工工艺分析如下。
为定位基准。左端采用三爪卡盘夹紧,右端采用活动顶尖支撑的 装夹方式。
(3) 确定加工顺序及进给路线。加工顺序按由粗到精、由近到
远(由右到左)的原则确定。即先从右到左进行粗车(留0.25mm 精车余量),然后从右到左进行精车,最后车削螺纹。
(4) 选择刀具。
①
5中心孔钻钻削中心孔。
② 粗车及车削端面选用90°硬质合金右偏刀,副偏角不宜太 小,以免副后刀面与工件轮廓干涉,一般选kr′=35°。
6.1 数控车削加工工艺
② 车螺纹。车螺纹时,车床的主轴转速将受到螺纹螺距(或 导程)大小、驱动电机的升降特性及螺纹插补运算速度等多种因 素影响,所以对于不同的数控系统,推荐不同的主轴转速选择范 围。车削螺纹时的主轴转速如下:
式中,P是工件螺纹的导程,mm,英制螺纹为相应换算后的 毫米值,K是保险系数,一般取80。
① 对于零件图样中精度要求较高的尺寸,在编程时取其基本 尺寸即可。
② 左右端面为多个尺寸的设计基准,在相应加工前应预先将 左右端面车出。
③ 内孔尺寸较小,镗1∶20 掉头装夹。
32孔及15°斜面时需
6.1 数控车削加工工艺
(2) 确定装夹方案。 加工内孔时以外圆定位,用三爪卡盘夹 紧;加工外轮廓时,为在一次装夹中加工出全部外轮廓,需设一 圆锥心轴装置(图6-11双点划线部分),用三爪卡盘夹紧,心轴右 端留有中心孔并用尾锥顶尖顶紧以提高工艺系统刚性。
(4) 刀具集中。 刀具集中即用一把刀加工完相应各部位,再 换另一把刀加工相应的其他部分,以减少空行程和换刀时间。
6.1 数控车削加工工艺
图6-1 先粗后精示例
图6-2 先近后远示例
6.1 数控车削加工工艺
4.进给路线的确定 下面介绍实际车削加工中走刀路线确定的部分设计方法与思 路。 (1) 最短空行程路线。如图6-3(a)所示为采用矩形循环式进行 粗车的一般情况示例。
数控加工工艺学
第6章 数控机床切削加工工艺
6.1 数控车削加工工艺 6.2 数控铣削加工工艺 6.3 加工中心加工工艺
6.1 数控车削加工工艺
一、数控车削加工的主要加工对象
数控车削是数控加工中最为常用的加工方法之一。数控车床 适于加工以下几种零件。
1.精度要求高的回转体零件 2.表面形状复杂或难于控制尺寸的回转体零件 3.带有特殊螺纹的回转体零件
其数控车削加工工艺(单件小批量生产)如下。
(1) 零件图工艺分析。 该零件由内外圆柱面、内圆锥面、顺 圆弧、逆圆弧以及外螺纹等表面组成,其中多个直径尺寸和轴向
尺寸有较高的尺寸精度和表面粗糙度要求。零件尺寸标注完整, 轮廓描述清晰;零件材料为45钢,无热处理要求。
通过上述工艺分析,可采取以下几点工艺措施。
图6-11 车削外轮廓装夹方案
6.1 数控车削加工工艺
(3) 确定加工顺序及进给路线。 加工顺序按由粗到精、由近 到远、由内到外的原则确定,并尽可能在一次装夹中加工出较多 表面。根据该零件的特征,可先加工内孔各表面,然后加工外轮 廓表面。考虑到该零件为单件小批量生产,走刀路线不必考虑最 短进给路线或最短空行程路线。
图6-4 粗车进给路线示例
6.1 数控车削加工工艺
(3) 大余量毛坯的阶梯切削进给路线。如图6-5所示为车削大 余量工件的两种进给路线。图6-5(a)是错误的阶梯切削路线,图65(b)所示按1→2→3→4→5的顺序切削,每次切削所留余量相等, 是正确的阶梯切削路线。
图6-5大余量毛坯的阶梯切削路线
6.1 数控车削加工工艺
(2) 最短的切削进给路线。
如图6-4所示为粗车图 (先粗后精)时的几种不同 切削进给路线的安排示意图。 其中图6-4(a)表示利用数控系 统具有的封闭式复合循环功 能控制车刀沿着工件轮廓进 行走刀的路线;图6-4(b)表示 “三角形”走刀路线;图64(c)表示“矩形”走刀路线。
6.1 数控车削加工工艺
根据前面分析的各项内容,制成数控加工工艺卡片,见表6-4。
6.1 数控车削加工工艺
2.轴套类零件数控车削加工工艺 以图6-10所示轴承套零件为例,零件材料为45钢,无热处理 要求,选用数控车床CJK6240进行加工。
6.1 数控车削加工工艺
图6-10 轴承套零件
6.1 数控车削加工工艺
1.加工方法的选择
在数控车床上,能够完成内外回转体表面的车削、钻孔、镗 孔、铰孔和攻螺纹等加工操作。实际选择时应根据零件的精度 (包括尺寸精度、形状精度和位置精度以及表面粗糙度)要求、 本车间(或本厂)现有工艺条件及加工精度来选择加工方法。
6.1 数控车削加工工艺
2.工序的划分
在数控机床上加工零件,工序一般比较集中,一次装夹应尽 可能完成全部工序。其工序划分的基本原则可参考第四章相关内 容。
② 在轮廓曲线上,有3处为圆弧,其中两处为既过象限又改 变进给方向的轮廓曲线,因此,在加工时应进行机械间隙补偿, 以保证轮廓曲线的准确性。
③ 为了便于装夹,毛坯件左端应预先粗车夹持部分(零件图 左端双点划线部分),右端面也应先粗车并钻好中心孔。毛坯选
60的棒料。
6.1 数控车削加工工艺
(2) 确定装夹方案。 以毛坯件轴线和左端大端面(设计基准)
③ 为减少刀具数量和换刀次数,精车和车螺纹时应选用硬质