2019年中学生高一数学竞赛初赛试题(扫描版)

合集下载

2019-2020年高一上学期数学竞赛选拔测试含答案

2019-2020年高一上学期数学竞赛选拔测试含答案

2019-2020年高一上学期数学竞赛选拔测试含答案一、填空题(本大题共12个小题,每小题4分,共48分)1.数列1,- 34 ,59 ,- 716,…的一个通项公式是 . 2.1+2+3+…+100= .3.{a n }是等比数列,a 1=1,a 3= 2 ,则a 5= .4.数列{a n }满足:a 1=1,a n +1= a n -1,则a xx = .5.△ABC 的三边长分别是7、4 3 、13 ,则最小内角大小为 .6.△ABC 中,A=60°,b +c sinB +sinC=2,则a = . 7.△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,下列条件中能确定a =b 的有 . (填序号)① sinA=sinB ② cosA=cosB ③ sin2A=sin2B ④ cos2A=cos2B8.已知 1x>1,则x 的取值范围是 . 9.不等式 (x -2)2 >4的解集是 .10.已知 12 +16 +112 +…+1n (n +1) = 99100,则n = . 11.等差数列{a n }中,若a 1、a 3、a 7是一个等比数列的前三项,则这个等比数列的公比是 .12.S n 是等差数列{a n }的前n 项和,S 1>0,S 10=0,则S n 最大时n 的值是 .二、解答题13.(本题满分12分)等比数列{a n }的前n 项和是S n ,已知S 3=72 ,S 6=632,求a n .14.(本题满分12分)一艘船以60 n mile/h的速度向正北航行. 在A处看灯塔S在船的北偏东30°,30 min后航行到B处,在B处看灯塔S在船的北偏东75°,求灯塔S与B之间的距离.15.(本题满分12分)△ABC中,已知角A、B、C所对的边分别是a、1、c,且A、B、C成等差数列,a、1、c成等比数列,求△ABC的面积.16.(本题满分16分)关于x的不等式x2+bx+c>0的解集是(-∞,1)∪(2,+∞),数列{a n}的前n项和S n=n2+bn+c.(1)写出b、c的值(不要证明);(2)判断{a n}是不是等差数列并说明理由;(3)求数列{2n-1a n}的前n项和T n.第二卷(60分)三、填空题(本大题共6个小题,每小题5分,共30分)17.已知,则 .18.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.19.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = .20.取一个边长为的正方形及其内切圆,随机地向正方形内丢一粒豆子,则豆子落入圆内的概率为 .21.定义在R 上的函数f (x ),满足f (12 +x ) +f (12 -x ) =2,则f (18 )+f (28 )+…+f (78)= .22.定义一个对应法则.现有点与,点是线段上一动点,按定义的对应法则.当点在线段上从点开始运动到点结束时,点的对应点所经过的路线长度为 .四、解答题23.(本题满分15分)已知二次函数 ,满足,对于任意的,都有,并且当时总有.(1)求的值;(2)求的表达式;(3)当时,是单调函数,求m 的取值范围.24.(本题满分15分)已知数列和满足:*121,2,0,)n n a a a b n N ==>=∈,且是以为公比的等比数列.(1)证明:;(2)若,证明数列是等比数列;(3)求和:.1.a n =(-1)n2n-1n 22.50503.24.-xx5.30°6. 37.(1)(2)(4)8.(0,1)9.(-∞,0)∪(4,+ ∞)10.9911.1,212.513.P51,2n-2 14.15 2 n mile 15.a=b=c=1,S=3416.(1)-3,2 (2)a 1=0,n>1,a n =2n-4,(3)2n+1(n-3)+8 17.018.7800019.-12.5 20.π421.7 22. π323.(1)f(1)=1(2)f(x)= (x+12)2(3)m≤0,m≥1 24.(3)q=1,32 n. q ≠1, 32 q 2n -1q 2n-2(q 2-1).。

2019年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2019年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

全国高中数学联赛江苏赛区预赛试卷及详解一、填空题(本题共10小题,每小题7分,共70分)1.已知向量()()1,3,3,1AP PB ==-,则向量AP 与AB 的夹角等于 .解一:由题设(1,3)(3,1)0AP PB ⋅=⋅-=,且||||AP PB =,故APB ∆为等腰直角三角形,从而向量AP 与AB 的夹角等于4π. 解二:因为(13,31)AB AP PB =+=-+,所以2cos ,2AB AP <>=,所以向量AP 与AB 的夹角等于4π. 2.已知集合()(){}|10A x ax a x =-->,且,3a A A ∈∉,则实数a 的取值范围是 .解:有题设,知(21)(2)0(31)(3)0a a a a -->⎧⎨--≤⎩所以:122133a a a ⎧><⎪⎨⎪≤≤⎩或所以1132a ≤<或23a <≤3.已知复数2cossin33z i ππ2=+,其中i 是虚数单位,则32z z += . 解:有题设32664413cosisin cos isin i 333322z z ππππ+=+++=-4.在平面直角坐标系xOy 中,设12,F F 分别是双曲线()222210,0x y a b a b-=>>的左,右焦点,P 是双曲线右支上一点,M 是2PF 的中点,且212,34OM PF PF PF ⊥=,则双曲线的离心率为.答案:5.5.定义区间[]12,x x 的长度为21x x -.若函数2log y x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 的长度的最大值与最小值的差为 .答案:3.6.若关于x 的二次方程()()221200mx m x m m +--+=>的两个互异的根都小于1,则实数m 的取值范围是 .答案:37,.4⎛⎫++∞ ⎪ ⎪⎝⎭7.若3tan 43x =,则sin 4sin 2sin sin cos8cos4cos4cos2cos2cos cos x x x xx x x x x x x+++= .答案: 3.8.棱长为2的正方体ABCD -1111A B C D 在空间坐标系O -xyz 中运动,其中顶点A 保持在z 轴上,顶点1B 保持在平面xOy 上,则OC 长度的最小值是 .答案:6 2.- 9.设数列12321,,,,a a a a 满足:()111,2,3,,20n n a a n +-==,1721,,a a a 成等比数列.若1211,9a a ==,则满足条件的不同的数列的个数为 .答案:15099.10.对于某些正整数n ,分数2237n n ++不是既约分数,则n 的最小值是 .答案:17. 二、解答题:(本大题共4小题,每小题20分,共80分) 11.设数列{}n a 满足:①11a =,②0n a >,③2*11,.1n n n na a n N na ++=∈+ 求证:(1)数列{}n a 是递增数列;(2)对如图任意正整数n ,111.nn k a k=<+∑证明:(1)因为2111111,11n n n n n n n na a a a a na na ++++++-=-=++且0n a >, 所以10n n a a +->.所以*1,.n n a a n N +>∈ 所以数列{}n a 是递增数列.(2)因为111111,1n n n n n n a a a a na na n+++++-=<=+所以当2n ≥时,()()()112211111111122111.n n n n n nk a a a a a a a a n n k ---==-+-++-+<+++++--<+∑又1111,a =<+所以对任意正整数n ,111.nn ka k=<+∑12.在平面直角坐标系xOy中,设椭圆()2222:10x y E a b a b+=>>,直线:30.l x y a +-=若椭圆E ,原点O 到直线l 的距离为 (1)求椭圆E 与直线l 的方程;(2)若椭圆E 上三点()(),0,,,0P A b B a 到直线l 的距离分别为123,,d d d , 求证:123,,d d d 可以是某三角形三条边的边长. 解:(1)由题设条件得222,ca b c a =⎪⎪=⎨⎪⎪+=⎪⎪⎩,从而2,1.ab =⎧⎨=⎩故所求的椭圆22:14x E y +=.直线:60.l x y +-=(2)设()2cos ,sin P θθ,则16d -+==其中tan 2.ϕ=1d ≤≤又23d d === 故21.d d >因为231,d d d +=+>≥ 131.d d d ++=>= 所以123,,d d d 可以是某个三角形的三条边的边长.13.如图,圆O 是四边形ABCD 的内切圆,切点分别为,,,,P Q R S OA 与PS 交于点1,A OB 与PQ 交于点1B ,OC 与QR 交于点1C ,OD 与SR 交于点1D . 求证:四边形1111A B C D 是平行四边形.OD 1C 1B 1A 1SRQPDCBA证明:连接,.PR QSBA因为圆O 是四边形ABCD 的内切圆,所以OA 是SAP ∠的平分线,且.AP AS = 在△ASP 中,由三线合一,点1A 是线段PS 的中点. 同理点1B 是线段PQ 的中点,所以11//A B SQ .同理1111//A D B C .所以四边形1111A B C D 是平行四边形. 14.求满足373x x y y -=-的所有素数x 和.y 解:满足题设条件的素数只有5, 2.x y == 假设5,y ≥则()736365365436543265206706152015611.y y y y y y y y y y y y y y y y y y -≥-≥+-≥++->++++++=+ 所以,()633731,x x x y y y >-=->+即()21.x y >+又因为()()()37332|111x x x y y y y y y -=-=-++,且x 为素数, 而()221111,y y y y y x -<<+<+<+<从而()()()32\|111,x y y y y -++ 这与73|x y y -矛盾.所以 5.y <因为y 是素数,所以2,y =或 3.y =当2y =时,3120x x -=,即()()255240,x x x -++=所以 5.x = 当3y =时,343216023 5.x x -==⋅⋅ 所以2,x =或3x =,或 5.x =经检验,2x =,或3x =,或5x =时,34323 5.x x -≠⋅⋅ 所以满足条件的素数只有5, 2.x y ==。

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

为 0),则产生的不同的 8 位数的个数为

答案: 498 .
解:将 2, 0, 1, 9, 20, 19 的首位不为 0 的排列的全体记为 A .
一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.
1. 已知正实数 a 满足 aa = (9a)8a ,则 loga (3a) 的值为

答案: 9 . 16
1
解:由条件知 9a = a8 ,故 3a =
9a ⋅a
=
9
a 16
,所以 loga (3a)
=
9 16

2. 若实数集合{1, 2, 3, x} 的最大元素与最小元素之差等于该集合的所有元素
所以 EPF
为直角,进而 SDPEF
=
1⋅ 2
PE

PF
=1.
5. 在1, 2, 3, , 10 中随机选出一个数 a ,在-1, - 2, -3, , -10 中随机选出一
个数 b ,则 a2 + b 被 3 整除的概率为

答案:
37 100

解:数组 (a, b) 共有102 =100 种等概率的选法.
台.不妨设正方体棱长为 1,则正方体体积为 1,结合条件知棱台 ABC - KFL 的
体积V = 1 .
4
P

PF
=
h
,则
KF AB
=
FL BC
=
PF PB
=
h
h +1
.注意到
PB,
PF
E
H K
G L
分别是棱锥 P - ABC 与棱锥 P - KFL 的高,于是

2019年度高一数学竞赛试题(含答案)

2019年度高一数学竞赛试题(含答案)

高一数学竞赛试题【本试题满分100分,考试时间120分钟】一.选择题:本大题共5小题,每小题6分,共30分.在每个小题给出的四个选项中,只有一个正确的答案.1.已知集合M =⎭⎬⎫⎩⎨⎧<-+013|x x x ,N ={}3|-≤x x ,则集合{}1|≥x x =( ) A .N M ⋂B .N M ⋂C .C R )(N M ⋂D .C R )(N M ⋃ 2.已知43πβα=+,则)tan 1)(tan 1(βα--等于( ) A .2 B .2- C .1 D .1-3.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--x x f x f 的解集为( )A .)1,0()1,(⋃--∞B .),1()0,1(+∞⋃-C .),1()1,(+∞⋃--∞D .)0,1()0,1(⋃-4.函数()ln |1|3f x x x =--+的零点个数为( )A .3B .2C .1D .05.已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x 则=)(log 32f A .823-B .111C .241D .191 二.填空题:本大题共5小题,每小题6分,共30分.将正确的答案写在题中横线上.6. 已知20π≤≤x ,则函数x x x x f 2cos cos sin 24)(+=的值域是 .7. 已知:a ,b ,c 都不等于0,且abcabc c c b b a a +++的最大值为m ,最小值为n ,则=+n m . 8. 已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则=+++4321x x x x .9.定义集合A ,B 的一种运算:},,{2121B x A x x x x x B A ∈∈+==*,若,则中的所有元素之和为 .10.= 70sin 50sin 30sin 10sin .三.解答题:本大题共4小题,每小题10分,共40分.解答时须写出必要的解题步骤、文字说明和计算结果.11.已知函数2()23cos 2cos 1()f x x x x x R =+-∈(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值.12.设a ,R b ∈,且2≠a ,定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数 (1)求a 的值 (2)求b 的取值范围 (3)讨论)(x f 的单调性.13.已知函数)(x f 的定义域为R ,对任意实数m ,n 都有)()()(n f m f n m f •=+,且当0>x 时,1)(0<<x f .(1)证明1)0(=f ,且0<x 时,1)(>x f .(2)若21)1(=f ,解关于x 的不等式 81)2(2<-x x f .14.已知函数())(22R a a ax x x f ∈+-=,∈x [0,1],求()x f 的最小值)(a g ,并求)(a g 的最大值.参考答案一.选择题:1.D ; 2.A ; 3.B ; 4.A ; 5.C .二.填空题:6.]3,1[-; 7.0; 8.8-; 9.14; 10.161. 三.解答题:11.(本小题满分10分)(1))62sin(2cos 2sin 31cos 2cos sin 32)(2π+=+=-+=x x x x x x x f ,…2分所以函数()f x 的最小正周期π=T . ……………………………………………3分 因为]2,0[π∈x ,所以]67,6[62πππ∈+x , 所以1)62sin(21≤+≤-πx ,所以2)(1≤≤-x f ,所以当262ππ=+x 即6π=x 时,()f x 有最大值为2; 当6762ππ=+x 即2π=x 时,()f x 有最小值为1-. ……………………………6分 (2)由(1)知56)62sin(2)(00=+=πx x f ,所以53)62sin(0=+πx .7分 因为]2,4[0ππ∈x ,所以]67,32[620πππ∈+x ,所以54)62cos(0-=+πx , …8分 所以6sin )62sin(6cos )62cos()662cos(2cos 0000ππππππ+++=-+=x x x x 1034321532354-=⨯+⨯-=.……………………………………………10分12.(本小题满分10分)(1)∵定义在区间),(b b -内的函数)(x f =xax 211lg ++是奇函数, ∴)()(x f x f -+=0411lg 211lg 211lg 2=--=--+++xx a x ax x ax ,…………………… 2分 ∴14112=--xx a ,∴42=a ,又∵2≠a ,∴2-=a .……………………… 3分 (2)由(1)知)(x f =x x 2121lg+-,令02121>+-x x ,解得2121<<-x ,…………… 4分 ∴)21,21(),(-⊆-b b ,∴)21,0()0,21(⋃-∈b .……………………………… 5分 (3)设1x ,)21,21(),(2-⊆-∈b b x ,且21x x <,则 )()(21x f x f -=21212121221122114)(214)(21lg )21212121lg(2121lg 2121lg x x x x x x x x x x x x x x x x --+---=-+⋅+-=+-++-, 7分 ∵1x ,)21,21(),(2-⊆-∈b b x ,∴04)(212121>---x x x x ,04)(212121>--+x x x x ,∵21x x <,∴212121214)(214)(21x x x x x x x x --+>---,……………… 9分∴14)(214)(2121212121>--+---x x x x x x x x ,∴0)()(21>-x f x f ,∴)()(21x f x f >, ∴)(x f 在),(b b -上单调递减.………………………………………………… 10分13.(本小题满分10分)(1)令1=m ,0=n ,则有)0()1()1(f f f =,∵1)1(0<<f ,∴1)0(=f . 2分 当0<x 时,0>-x ,∴1)(0<-<x f ,又∵1)()())(()0(=-=-+=x f x f x x f f ,∴)(1)(x f x f -=,∴1)(>x f .4分 (2)∵)()()(n f m f n m f =+,∴)()()()()(n f m f n f m f n m f =-=-.…………… 5分 设1x ,R x ∈2,且21x x <,则0)(2>x f ,且1)()()(2121>-=x x f x f x f , ∴)()(21x f x f >,∴)(x f 在),(+∞-∞上单调递减. ……………………… 7分 又∵21)1(=f ,∴)3()1()1()1(21212181f f f f =⨯⨯=⨯⨯=, …………… 8分 ∴不等式81)2(2<-x x f 可化为)3()2(2f x x f <-, ∴322<-x x ,∴31<<-x , ……………………………………………… 9分 即不等式 81)2(2<-x x f 的解集为}31{<<-x x .…………………… 10分 14.(本小题满分10分) 二次函数())(22R a a ax x x f ∈+-=的图像开口向上,对称轴为2a x =.……… 1分 ①当02<a ,即0<a 时,()x f 在]1,0[上单调递增, 所以()x f 的最小值为2)0(a f =;………………………………………………… 3分②当120<≤a ,即20<≤a 时,(x f ]1,2(a 上单调递增,所以()x f 的最小值为24)2(2a a a f +-=;………………………………………… 5分 ③当12≥a ,即2≥a 时,()x f 在]1,0[上单调递减, 所以()x f 的最小值为21)1(a f -=.……………………………………………… 6分 综合①②③可得,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<≤+-<=2,2120,240,2)(2a a a a a a a a g .………………………………… 7分 又当0<a 时,02)(<=a a g ;当20<≤a 时,4124)(02≤+-=≤a a a g ;当2≥a 时,021)(≤-=a a g . …………………………………………………………………… 9分 所以当1=a 时,)(a g 有最大值为41.…………………………………………… 10分。

长郡湘府中学2019年上学期高一数学竞赛初赛试卷

长郡湘府中学2019年上学期高一数学竞赛初赛试卷

B.���3���
C.���4���
D.34������
3.已知圆 C 方程为(x-2)2+(y-1)2=9,直线 l 的方程为 3x-4y-12=0,在圆 C 上到直线
l 的距离为 1 的点有几个 ( )
A.4
B.3
C.2
D.1
4.设函数������(������)是定义在 R 上的奇函数,且对任意x ∈ R都有������(������) = ������(������ + 4),当x ∈ (0,2)时,
6
6
2
2
6
答案第 1 页,总 4 页
要使得方程������(������) − ������ = 0恰好有两个不同的实数解,即������ = ������(������)与������ = ������有两个不同的交点,
结合图象,可得实数������的取值范围是1 ≤ ������ < 2,即[1,2).
求出点������的坐标;若不存在,请说明理由.
20.已知 f ( x) = x2 + ax + b (a,b R) . (1)当 a = 2 时,若关于 x 的方程 f ( x) − 2 = 0 有且只有两个不同的实根,求实数 b 的取
值范围;
(2)对任意 x 1,5时,不等式 −2 f ( x) 2 恒成立,求 a + b 的值.
6
62
6
6
令������ ≤ 2������ + ������ ≤ 7������,解得������ ≤ ������ ≤ ������,即函数������(������)在[������ , ������]上单调递减,
2
66

2019年全国高中数学联赛A卷一试试题与解答

2019年全国高中数学联赛A卷一试试题与解答

9
9

y



f
( y)
均可任意大,故②在 æççççè0,
2
3 3
öø÷÷÷÷

æççççè
2
3
3
,
+ ¥ö÷÷÷÷ø 上均有解,与解的
唯一性矛盾.
综上,仅有
r
=
43 9
满足条件(此时 æççççè 13
,
2
3 3
ö÷÷÷÷ø

W

G 的唯一公共点).
…………………20 分
11. (本题满分 20 分)称一个复数数列{zn} 为“有趣的”,若 z1 = 1,且对
x2 a2
+
y2 b2
= 1 (a
>
b>
0) .
根据条件得 2a = AB = 4, a a2 -b2 = AF = 2 + 3 ,可知 a = 2, b =1,且
EF = 2 a2 -b2 = 2 3 .
由椭圆定义知 PE + PF = 2a = 4 ,结合 PE ⋅ PF = 2 得
PE 2 + PF 2 = ( PE + PF )2 - 2 PE ⋅ PF = 12 = EF 2 ,
0
<
M[0, a]
=
sin
a
£
M[a, 2>
p 2
,此时
M[0,
a]
=
1,故
M[a,
2a]
=
1 2
.于是存在非负整数
k
,使得
2kp + 5 p £ a < 2a £ 2kp + 13 p ,

2019年全国高中数学联赛河南省预赛高一试题Word版含答案

2019年全国高中数学联赛河南省预赛高一试题Word版含答案

2019年全国高中数学联赛河南省预赛高一试题一、填空题(共8小题每小题8分,满分64分)1. 集合2{|560}P x x x =-+=,{|10}M x mx =-=,且M P ⊆,则满足条件的实数m 组成的集 合为 .2.函数()f x =的值域是 .3已知函数|2|3||220181()41x x x f x -+=+在R 上的最大值为M ,最小值为m , 则M m += .4.已知四面体ABCD 中, 5AB CD ==,AD BC ==AC BD ==则该四面体的体积 为 .5.已知关于x 的方程32x ax bx ++10a b ---=有两个根分别在(0,1),(1,)+∞内, 则211a b a +++的取值范围是 . 6.在直线3x =上任取一点P ,过点P 向圆22(2)4x y +-=作两条切线,其切点分别为,A B ,则直线AB经过一个定点,该定点的坐标为 .7.已知A ∠为锐角,的最小值为 .8.甲乙两人打乒乓球,甲每局获胜的概率为23,当有一人领先两局的时候比赛终止比赛的总局数为 +()i x i N ∈的概率为i p ,这里要求1()i I x x i N +<∈,则1i i i S x p +∞===∑ .二、(1)证明对于任意的正实数,a b 都有: a b +≥(2)已知正数,x y 满足: 1x y +=,求14x y +的最小值. 三、设锐角ABC ∆边,,BC CA AB 上的垂足分别为,,D E F ,直线EF 与ABC ∆的外接圆的一个交点为P ,直线BP 与DF 交于点Q .证明: AP AQ =.四、已知实数,x y 满足:21cos (1)x y ++-=222(1)(1)1x y x y x y +++--+,求xy 的最小值. 五、设,S T 是两个非空集合若存在一个从S 到T 的函数()y f x =满足:(i) {()|}T f x x S =∈;(ii) 12,x x S ∀∈,当12x x <时,恒有12()()f x f x <.那么称这两个集合“保序同构”.证明: (1)(0,1),A B R ==是保序同构的;(2)判断,A Z B Q ==是不是保序同构的,若是,请给出一个函数的表达式;若不是,请说明理由.2019年全国高中数学联赛河南省预赛高一试题参考答案一、填空题 1. 11{,,0}23 .2. 2].3. 2.4. 20.5. (0,2).6. 4(,2)3.8. 185. 二、(1)由a b +-20=-≥,故a b +≥ (2) 1414()()x y x y x y+=++ 414y x x y =+++59≥+= 等号在12,33x y ==处取到,故最小值为9. 三、如上图所示,由于,,D E F 是垂足,则90BFC BEC ∠=∠=,故,,,C B F E 四点共圆,从而AFE ACB ∠=∠而 =BFD FQB FBQ BCA PCB PCA ∠∠+∠⎧⎨∠=∠+∠⎩FQB ⇒∠=PCB PAF ∠=∠故,,,A F P Q 四点共圆AQP AFE ⇒∠=∠=ACB APQ ∠=∠AP AQ ⇒=四、21cos (1)x y ++-=222(1)(1)1x y x y x y +++--+=22(2)2()111x y xy x y x y +-+-++-+ 2(1)11x y x y -++==-+111x y x y -++-+ 由于201cos <+(1)2x y +-≤,故10x y -+>,从而1121x y x y -++≥-+ 21cos (1)211x y x y ⎧++-=⇒⎨-+=⎩2cos (1)1x y x y⎧+-=⇒⎨=⎩1,x y k k Z x y π+-=∈⎧⇒⎨=⎩ 12k x y π+⇒==,k Z xy ∈⇒=211(),24k k Z π+≥∈ 故min1()4xy =. 五、(1)令()tan[(f x x =-1)]()2x A π∈, 则()f x 单调增,且其值域为R ,因此A 和B 是保序同构的;(2)集合,A Z B Q ==不是保序同构的.事实上上若集合,A Z B Q ==是保序同构的.则存在函数()y f x =,使得(1),(2)f a f b ==,其中,,a b Q a b ∈<. 考察数2a b c Q +=∈,则a c b <<,由于A 和B 是保序同构的,则存在x Z ∈使()f x c =, 结合()y f x =单调递增,则12x <<,矛盾.。

2019年高一数学竞赛初赛试题含答案

2019年高一数学竞赛初赛试题含答案

2019年数学竞赛高一初试试题一、选择题(每题5分,共60分)1.已知集合A ={x||x|≤2,x ∈R },B ={x|x ≤4,x ∈Z },则A ∩B =() A .(0,2) B .[0,2] C .{0,2} D .{0,1,2} 2.若,,,,b a R c b a >Î则下列不等式成立的是() A .b a 11<B .22ba >C .1122+>+c b c a D .cb c a >3.3.下列函数为偶函数,且在下列函数为偶函数,且在)0,(-¥上单调递减的函数是() A .32)(xx f =B .3)(-=x x f C .xx f )21()(=D .xx f ln )(=4. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是() A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊥α,n ⊥β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若m ∥n ,m ⊂α,n ⊂β,则α∥β5. 等比数列{}n a 的前项和为n S ,且321,2,4aa a 依次成等差数列,且11=a , 则10S =() A .512 B. 511 C .1024 D .1023 6.已知f(x)=2tanx -2sin 2x 2-1sin x 2cos x 2,则f(π12)的值为() A. 833B. 8 C .4 D. 43 7.设变量x ,y 满足约束条件îíìy ≥x ,x +3y ≤4,x ≥-2,则z =x -3y 的最大值为() A .10 B .8-C .6 D .4 8.已知0,0>>y x ,且112=+y x ,若m m y x 222+>+恒成立,则实数m 的取值范围是(值范围是( )A .24-£³m m 或 B. 42-£³m m 或 C . 24<<-m D. 42<<-m9. 如图所示,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD.将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BD B .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30°D .四面体A ′-BCD 的体积为1310. 已知定义在R 上的奇函数)(x f 满足当0³x 时,,)2(log )(2b x x x f +++= 则3)(>x f 的解集为( )A .)2,(--¥ ∪ ),2(+¥ B . )4,(--¥∪ ),4(+¥ C .)2,2(- D. )4,4(-11. 若直线45p =x 和49p =x 是函数是函数 )0)(sin(>+=w wx y j 图象的两条相邻对称轴,则j 的一个可能取值为( ) A .43p B. 4p C .3p D. 2p12. 已知定义在R 上的奇函数)(x f 满足当0³x 时,[)[)ïîïíì+¥Î--Î+=,,1,31,1,0),1(log )(21x x x x x f则关于x 的函数)10()()(<<-=a a x f x F 的所有零点之和为(的所有零点之和为( ) A .12-aB .12--aC .a --21D .a 21-二、填空题(每题5分,共20分)分) 13. 已知),1,2(),4,1(),3,(===c b k a且,)32(c b a ^-则实数=k _________。

2019年全国高中数学联赛A卷一试解答(1)

2019年全国高中数学联赛A卷一试解答(1)

因此
N
=
9
+
28
=
37
.于是所求概率为
37 100

6. 对任意闭区间 I ,用 M I 表示函数 y = sin x 在 I 上的最大值.若正数 a 满
足 M[0, a] = 2M[a, 2a] ,则 a 的值为

答案: 5 p 或 13 p . 6 12
解:假如 0
<
a
£
p 2
,则由正弦函数图像性质得
所以 EPF
为直角,进而 SDPEF
=
1⋅ 2
PE

PF
=1.
5. 在1, 2, 3, , 10 中随机选出一个数 a ,在-1, - 2, -3, , -10 中随机选出一
个数 b ,则 a2 + b 被 3 整除的概率为

答案:
37 100

解:数组 (a, b) 共有102 =100 种等概率的选法.
0
<
M[0, a]
=
sin
a
£
M[a, 2a]
,与
条件不符.
因此
a
>
p 2
,此时
M[0,
a]
=
1,故
M[a,
2a]
=
1 2
.于是存在非负整数
k
,使得
2kp + 5 p £ a < 2a £ 2kp + 13 p ,

6
6
且①中两处“£ ”至少有一处取到等号.
当k
=
0 时,得 a
=
5 6
p
或 2a
=

全国高中数学联赛四川省初赛试题及答案word版.doc

全国高中数学联赛四川省初赛试题及答案word版.doc

2019年全国高中数学联赛(四川预赛)试题一、填空题:本大题共8小题,每小题8分,满分64分.1.设正六边形ABCDEF 的边长为1,则()()AB DC AD BE +⋅+=u u u r u u u r u u u r u u u r .2.双曲线22221x y a b -=的右焦点为F ,离心率为e ,过点F 且倾斜角为3π的直线与该双曲线交于点A B 、,若AB 的中点为M ,且FM 等于半焦距,则e = .3.满足6(i)i a b a b +=-(其中2,R,i 1)a b ∈=-的有序数组(,)a b 的组数是 .4.已知正四棱锥Γ的高为3,侧面与底面所成角为3π,先在Γ内放入一个内切球1O ,然后依次放入球2O 、3O 、4O 、L ,使得后放入的各球均与前一个球及Γ的四个侧面均相切,则放入所有球的体积之和为 .5.设一个袋子里有红、黄、蓝色小球各一个,现每次从袋子里取出一个球(取出某色球的概率均相同),确定颜色后放回,直到连续两次均取出红色球时为止.记此时取出球的次数为ξ,则ξ的数学期望为 .6.已知a 为实数,且对任意[1,1]k ∈-,当(0,6]x ∈时,26ln 8x x x a kx +-+≤恒成立,则a 的最大值是 .7.已知数列{}n a满足:*1[(2](N )2n n n a n =++∈,其中[]x 表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有121ni i i C a a =+≤∑.则C 的最小值是 . 8.若正整数n 使得方程33n x y z +=有正整数解(,,)x y z ,称n 为“好数”,则不超过2019的“好数”个数是 .二、解答题:本大题3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设点A 的坐标为(0,3),点,B C 为圆22:25O x y +=上的两动点,满足90BAC ∠=o ,求ABC ∆面积的最大值.10.(本题满分20分)设,,(0,1]a b c ∈,λ为实数,1(1)(1)(1)a b c λ≥+---恒成立,求λ的最大值.11.(本题满分20分)已知函数2()ln ,R f x x x ax a =-∈.(1)证明:当13x <<时,2()21(3)x f x ax x x e e+-+>-; (2)设函数()()([1,])F x f x x e =∈有极小值,求a 的取值范围.。

2019年4月北京市高中数学竞赛高一初赛试题答案

2019年4月北京市高中数学竞赛高一初赛试题答案

4.整数 a,b,c 满足 a+b+c=2,且 S=(2a+bc)(2b+ca)(2c+ab)>200,那么 S 的最小值 是________.
答:256. 解:因为 a+b+c=2,所以 S=(bc−2b−2c+4)(ca−2c−2a+4)(ab−2a−2b+4)
=[(b−2)(c−2)]·[(c−2)(a−2)]·[(a−2)(b−2)] =(a−2)2(b−2)2(c−2)2 是个平方数.
( 1, 2),(3,4,5),(6,7,8,9),(10,11,12,13,14) ,…
第1组 第2组
第3组
第4组
则 2019 在第________组中.
答:63.
解:易知第 n 组的最后一个数为 n(n 1) n ,当 n=62 时,62 63 62 2015.可见,
D
因此,三棱锥 B-AMN 的全表面积等于正方形 BB1C1C 的面积, C M
即为 64 cm2.
3.函数 f (x)满足 f (1)=1,且 f (n)=
f
(n
1)

1 n(n 1)
,其中
n≥2,
C1
nN+,那么 f (2019)= ________. 答: 4037 . 2019
解:因为
外切于点 A.两圆的一条外公切线切⊙B 于点 D,切⊙C 于点 E, −4 过 A 作 DE 的垂线与 BC 的中垂线交于点 F,H 是 BC 的中点.则△AHF 的面积等于
(A) 11 .(B) 13 .(C) 15 .(D) 17 .
E
2
2
2
2
D

高一数学2019年12月竞赛试题附答案

高一数学2019年12月竞赛试题附答案

实验中学2019-2020年上学期高一数学竞赛试题命题人: 审题人:一、选择题(共12小题,每题5分。

每题有且仅有一个正确答案) 1、集合A ={﹣1,1},B ={x|mx =1},且B A ,则实数m 的值为()A.1B.﹣1C.1或﹣1D.1或﹣1或0 2、已知集合,则下列不表示从到的函数的是( )A.B. D.3、用二分法求函数=xx 2ln -的零点时,初始的区间大致可选在( ) A.(1,2)B.(2,3)C.(3,4)D.(e, +∞)4.某几何体的三视图如图所示,当时, 这个几何体的体积为( )A . 1B .C .D .5、已知直线013:1=++y ax l 与直线01)1(2:2=+++y a x l 互相平行,则实数a 的值为( )A .﹣3B .53- C .2 D .﹣3或26、如图,在四面体中,若截面是正方形,则在下列命题中,不一定正确的是( ) A . B .截面 C .D .异面直线与所成的角为7、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若,则; ②若则; ③若则;⊆{}{}04,02A x x B y y =≤≤=≤≤A B 1:2f x y x →=1:3f x y x →=2:3f x y x →=:f x y x→=)(x f 4a b +=124323,m m αβ⊥⊥//αβ,,//,m n m n αβ⊂⊂//αβ,,αγβγ⊥⊥//αβ(2)4,1()4,1a x a xf x axx--<⎧⎪=⎨+≥⎪⎩④若m、n是异面直线,则其中真命题的个数是()A.1 B.2 C.3 D.4是上的增函数,则实数的取值范围是()8、已知函数A. B. C. D.9、函数 ( )A B C D10、过点P(1,1)作直线l,与两坐标轴相交,所得三角形面积为2,则这样的直线可以作条?A.1B.2C.3D.411、已知函数,若,,,则,,的大小关系是()A. B. C. D.12、已知是定义在R上的偶函数,对任意Rx∈,都有)(1)2(xfxf-=+,且当[]0,2-∈x时,1)21()(-=xxf,若在区间[]6,2-内方程)1(0)2(log)(>=+-axxfa有三个不同的实数根,则实数a的取值范围为()A.()2,1 B.),(∞+2 C.()3,41, D.()2,43二、填空题(共4小题,每题5分。

2019年全国高中数学联合竞赛一试试题(A卷)解答

2019年全国高中数学联合竞赛一试试题(A卷)解答

x2

2x
+
1
+
4x

√ 4r x
=
x2
+
2x

√ 4r x
+
1
=
0

r
=
(x
+ 1)2 √,
4x
因为


Γ
只有一个公共点,
即方程
r
=
(x+√1)2 4x
有且仅有一根,

f
(x)
=
(x
+ 1)2 √ ,x
>
0, f ′ (x)
=
1
×
2 (x
√ + 1) x −
√1 2x
(x
+
1)2
=
1√
Åã 1
1
x (x + 1) 3 − = 0 ⇒ x = ,
zn2 = 0, 求最大的常数 C, 使得对一切有趣的数列 {zn} 及任意正整数 m, 均有 |z1 + z2 + · · · + zm| ≥ C.
LATEX
第 II 页
2019 年 9 月 8 号
Zy
2019 年全国高中数学联合竞赛加试试题(A 卷)
一、(本题满分 40 分)如图 1, 在锐角 △ABC 中,M 是 BC 边的中点, 点 P 在 △ABC 内, 使得 AP 平分 ∠BAC. 直
Zy
2019 年全国高中数学联合竞赛一试试题(A 卷)
一、填空题: 本大题共 8 小题, 每小题 8 分, 满分 64 分.
1. 已知正实数 a 满足 aa = (9a)8a, 则 loga3a 的值为

2019年北京市高一数学竞赛(初赛)试题(pdf版,含答案)

2019年北京市高一数学竞赛(初赛)试题(pdf版,含答案)

C
F
二、填空题
1.计算
7142853 7142853
2857143 4285713
=________.
答: 7 . 8

1:原式

(714285 285714)(7142852 (714285 428571)(7142852

714285 285714 714285 428571
则满足条件的子集 A 的个数是
(A)8.
(B)7.
(C)6.
(D)5.
答:B.
解:经枚举,各元素之和为 3 的倍数的子集有{0},{9},{2, 1},{0, 9},{2, 0, 1},
{2, 1, 9},{2, 0, 1, 9}共 7 个.
2.如图,∠BAF =∠FEB =∠EBC =∠ECD = 90°, ∠ABF = 30°, ∠BFE = 45°,
4.在平面直角坐标系中,已知两点 A(cos110°, sin110°),B(cos50°, sin50°),则由
坐标原点 O 到 AB 中点 M 的距离是
y
(A) 1 . 2
答:选 C.
(B) 2 . 2
(C) 3 . 2
(D)1.
A MB
1
1
解:画草图,易知 50 60 .
(A){3, 4, 6, 9}. (B){2, 0, 1, 9}. (C){0, 3, 5, 9}. (D){1, 2, 7, 8}.
2019 年北京市中学生数学竞赛高中一年级初赛试题参考解答 共 5 页 第 1页
答:D. 解:易知 f (n)的值域为{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, f (f (n))的值域为{1, 2, 7, 8}, f (f (f (n)))的值域是{1, 2, 7, 8}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档