高考数学选择、填空题强化训练
选择填空训练4数学高考填空题大全

选择填空训练(四)1、设集合M ={直线},P ={圆},则集合P M 中的元素的个数为( )A 、0B 、1C 、2D 、0或1或22、若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =A .-2B .12- C.21 D .2 3、若函数3()f x x =(x R ∈),则函数()y f x =-在其定义域上是A .单调递减的偶函数 B.单调递减的奇函数C .单调递增的偶函数 D.单调递增的奇函数4、下面各图中,不是正方体表面展开的是()5、在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1126、若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为(A)-2或2 (B)2321或 (C)2或0 (D)-2或07、如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、BC 1的中点,则异面直线EF 与GH 所成的角等于A.45°B.60°C.90°D.120°8、若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a < B.7a ≥ C.57a <≤ D.5a <或7a ≥9、下列说法正确的是( )(A )“x <5”是”x <6”的必要条件. (B )“xy =0”是“x =0”的充分条件。
(C )“x =0”是“x 2+y 2=0”的必要条件. (D )“x 2<1”是“x <1”的充分条件。
A B C D10、定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f(x )=0在闭区[-T ,T ]上的根的个数记为n ,则n 可能为(A)0 (B)1 (C)3 (D)511、若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 .12、已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 13不等式01)3()4)(1(2≤+---x x x x 的解集为 14、在极坐标系中,4sin ρθ=是圆的极坐标方程,则点A (4,)6π到圆心C 的距离是。
高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理

强化训练3 排列、组合、二项式定理一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东泰安模拟](x -1x)22展开式中的常数项为( )A .C 1122 B .-C 1122 C .C 1222D .-C 12222.3名男生2名女生站成一排照相,则2名女生相邻且都不站在最左端的不同的站法共有( )A .72种B .64种C .48种D .36种3.六名志愿者到北京、延庆、张家口三个赛区参加活动,若每个赛区两名志愿者,则安排方式共有( )A .15种B .90种C .540种D .720种4.[2022·湖南益阳一模]为迎接新年到来,某中学2022年“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为( )A .36B .45C .72D .905.[2022·山东德州二模]已知a >0,二项式(x +ax2)6的展开式中所有项的系数和为64,则展开式中的常数项为( )A .36B .30C .15D .106.[2022·山东淄博一模]若(1-x )8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=( )A .-448B .-112C .112D .4487.[2022·河北沧州二模](x -2x-1)5的展开式中的常数项为( )A .-81B .-80C .80D .1618.[2022·湖北十堰三模]甲、乙、丙、丁共4名学生报名参加夏季运动会,每人报名1个项目,目前有100米短跑、3 000米长跑、跳高、跳远、铅球这5个项目可供选择,其中100米短跑只剩下一个参赛名额,若最后这4人共选择了3个项目,则不同的报名情况共有( )A.224种B.288种C.314种D.248种二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·河北唐山二模]已知(x-2x2)n的展开式中第3项与第8项的二项式系数相等,则( )A.n=9B.n=11C.常数项是672D.展开式中所有项的系数和是-110.在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为C24B.若化学必选,选法总数为C12 C13C.若政治和地理至少选一门,选法总数为C12 C12C13D.若物理必选,化学、生物至少选一门,选法总数为C12 C12+111.[2022·广东·华南师大附中三模]已知(a+2b)n的展开式中第5项的二项式系数最大,则n的值可以为( )A.7 B.8C.9 D.1012.[2022·湖北荆州三模]已知二项式(2x-1x)n的展开式中共有8项,则下列说法正确的有( )A.所有项的二项式系数和为128B.所有项的系数和为1C.第4项和第5项的二项式系数最大D .有理项共3项三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东烟台三模]若(1-ax )8展开式中第6项的系数为1792,则实数a 的值为________.14.[2022·辽宁辽阳二模]某话剧社计划在今年7月1日演出一部红色话剧,导演已经选好了该话剧的9个角色的演员,还有4个角色的演员待定,导演要从8名男话剧演员中选3名,从5名女话剧演员中选1名,则导演的不同选择共有________种.15.[2022·浙江卷]已知多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2=______,a 1+a 2+a 3+a 4+a 5=______.16.[2022·河北保定一模]2022年北京冬奥会的某滑雪项目中有三个不同的运动员服务点,现需将10名志愿者分配到这三个运动员服务点处,每处需要至少2名至多4名志愿者,则不同的安排方法一共有________种.强化训练3 排列、组合、二项式定理1.解析:(x -1x)22展开式中的常数项为C 1122 (-1)11=-C 1122 .答案:B2.解析:将2名女生捆绑在一起,故2名女生相邻有A 22 种站法,又2名女生都不站在最左端,故有A 13 种站法,剩下3个位置,站3名男生有A 33 种站法,故不同的站法共有A 22 A 13 A 33 =36种. 答案:D3.解析:先从六名志愿者中选择两名志愿者到北京参加活动,有C 26 =15种方法,再从剩下的4名志愿者中选择2名志愿者到延庆参加活动,有C 24 =6种方法,最后从剩下的2名志愿者中选择2名志愿者到延庆参加活动,有C 22 =1种方法.由分步乘法原理得共有15×6×1=90种方法.答案:B4.解析:采用插空法即可:第1步:原来排好的8个学生节目产生9个空隙,插入1个教师节目有9种排法; 第2步:排好的8个学生节目和1个教师节目产生10个空隙,插入1个教师节目共有10种排法,故共有9×10=90种排法. 答案:D5.解析:令x =1,则可得所有项的系数和为(1+a )6=64且a >0,解得a =1, ∵(x +1x 2)6的展开式中的通项T k +1=C k 6 x 6-k(1x2)k =C k 6 x 6-3k ,k =0,1, (6)∴当k =2时,展开式中的常数项为C 26 =15. 答案:C6.解析:(1-x )8=(x -1)8=[(1+x )-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,a 6=C 28 ·(-2)2=112.答案:C7.解析:(x -2x -1)5=(x -2x -1)(x -2x -1)(x -2x -1)(x -2x -1)(x -2x-1),所以展开式中的常数项为(-1)5+C 15 C 14 ×(-2)×(-1)3+C 25 C 23 ×(-2)2×(-1)=-81.答案:A8.解析:分两种情况讨论:①不选100米短跑,四名学生分成2名、1名、1名三组,参加除100米短跑的四个项目中的三个,有C 24 A 34 =144种;②1人选100米短跑,剩下三名学生分成2名、1名两组,参加剩下四个项目中的两个,有C 14 C 23 A 24 =144种.故他们报名的情况总共有144+144=288种. 答案:B9.解析:由C 2n =C 7n ,可得n =9,则选项A 判断正确;选项B 判断错误; (x -2x2)n 的展开式的通项公式为C k 9 x 9-k (-2)k x -2k =(-2)k C k 9 x 9-3k,令9-3k =0,则k =3,则展开式的常数项是(-2)3C 39 =-672.选项C 判断错误; 展开式中所有项的系数和是(1-212)9=-1.判断正确.答案:AD10.解析:若任意选科,选法总数为C 12 C 24 ,A 错误; 若化学必选,选法总数为C 12 C 13 ,B 正确;若政治和地理至少选一门,选法总数为C 12 (C 12 C 12 +1),C 错误;若物理必选,化学、生物至少选一门,选法总数为C 12 C 12 +1,D 正确. 答案:BD11.解析:当(a +2b )n的展开式中第4项和第5项的二项式系数相等且最大时,n =7; 当(a +2b )n的展开式中第5项和第6项的二项式系数相等且最大时,n =9; 当(a +2b )n的展开式中只有第5项的二项式系数最大时,n =8. 答案:ABC12.解析:由题设n =7,则T k +1=C k 7 (2x )7-k(-1x)k =(-1)k 27-k C k7 x7-3k2,A .所有项的二项式系数和为27=128,正确; B .当x =1,所有项的系数和为(2-1)7=1,正确;C .对于二项式系数C k 7 ,显然第四、五项对应二项式系数C 37 =C 47 最大,正确; D .有理项为7-3k2∈Z ,即k =0,2,4,6共四项,错误.答案:ABC13.解析:因为T 6=T 5+1=C 58 (-ax )5=C 58 (-a )5x 5=C 38 (-a )5x 5, 所以有:C 38 (-a )5=-56a 5=1 792, 所以a 5=-32, 解得a =-2. 答案:-214.解析:依题意,可得导演的不同选择的种数为C 38 ·C 15 =280. 答案:28015.解析:因为(x +2)(x -1)4展开式中x 2的系数为a 2,所以a 2=C 34 (-1)3+2C 24 (-1)2=8.在多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x =0,得a 0=2;令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0.所以a 1+a 2+a 3+a 4+a 5=-a 0=-2.答案:8 -216.解析:根据题意得,这10名志愿者分配到三个运动员服务点处的志愿者数目为2,4,4或3,3,4,所以不同的安排方法共有C 210 C 48 C 44 A 22 A 33 +C 410 C 36 C 33 A 22 A 33 =22 050. 答案:22 050。
2023高考数学专题强化训练(一)

专题强化训练(一)一、单项选择题1.(2022·山东济南二模)函数f(x)=√16-x 2x的定义域是( A )A.[-4,0)∪(0,4]B.[-4,4]C.(-∞,-4]∪[4,+∞)D.[-4,0)∪[4,+∞)解析:由{16-x 2≥0,x ≠0,得-4≤x ≤4,且x ≠0,所以函数y=√16-x 2x 的定义域是[-4,0)∪(0,4].故选A.2.(2022·四川绵阳三模)已知函数f(x)=x x -1,则( D )A.f(x)为奇函数B.f(f(2))=1C.f(x)在(1,+∞)上单调递增D.f(x)的图象关于点(1,1)对称解析:由解析式知函数f(x)的定义域为{x|x ≠1},显然不关于原点对称,所以f(x)不是奇函数,A 错误;f(2)=2,则f(f(2))=f(2)=2,B 错误; 由f(x)=1+1x -1,可知f(x)在(1,+∞)上单调递减且图象关于点(1,1)对称,故C 错误,D 正确.故选D.3.(2022·陕西西安二模)设f(x)={2x+1-1,x ≤3,log 2(x 2-1),x >3,若f(x)=3,则x的值为( B )A.3B.1C.-3D.1或3解析:当x ≤3时,令2x+1-1=3,解得x=1,当x>3时,令log 2(x 2-1)=3,解得x=±3,这与x>3矛盾,所以x=1.故选B. 4.(2022·河北石家庄一模)函数f(x)=x 32x +2-x的部分图象大致是( A )解析:函数f(x)=x 32x +2-x的定义域为R,f(-x)=-f(x),故为奇函数,图象关于原点对称,据此排除B,D 选项;易知当x →+∞时,f(x)=x 32x +2-x>0,2x →+∞,2-x →0,x 3→+∞,因为指数函数y=2x 比幂函数y=x 3增长的速率要快,故f(x)→0,即f(x)在x →+∞时,图象往x 轴无限靠近且在x 轴上方,故A 选项符合.故选A.5.(2022·北京丰台区二模)已知偶函数f(x)在区间[0,+∞)上单调递减.若f(lg x)>f(1),则x 的取值范围是( C ) A.(110,1) B.(0,110)∪(1,+∞)C.(110,10) D.(0,110)∪(10,+∞)解析:因为偶函数f(x)在区间[0,+∞)上单调递减,所以f(x)在区间(-∞,0]上单调递增,则f(lg x)>f(1)等价于|lg x|<1,即-1<lg x<1,即lg 110<lg x<lg 10,解得110<x<10,即原不等式的解集为(110,10).故选C.6.(2022·天津河东区一模)设f(x)是定义域为R 的偶函数,且在(-∞,0)上单调递增,则( B ) A.f(log 314)>f(2-32)>f(2-23)B.f(2-32)>f(2-23)>f(log 314)C.f(log 314)>f(2-23)>f(2-32)D.f(2-23)>f(2-32)>f(log 314)解析:因为f(x)是定义域为R 的偶函数,且在(-∞,0)上单调递增,所以f(x)在(0,+∞)上单调递减,又log 34>1,0<2-32<2-23<1,所以f(2-32)>f(2-23)>f(log 34),即f(2-32)>f(2-23)>f(log 314).故选B.7.(2022·江苏苏州二模)已知f(x)是定义域为R 的偶函数, f(5.5)=2,g(x)=(x-1)f(x).若g(x+1)是偶函数,则g(-0.5)=( D ) A.-3 B.-2 C.2 D.3解析:g(x+1)为偶函数,则g(x)的图象关于直线x=1对称,即g(x)=g(2-x),即(x-1)f(x)=(1-x)f(2-x),即f(x)+f(2-x)=0,所以f(x)的图象关于点(1,0)中心对称,又f(x)是定义域为R 的偶函数,所以f(x)=-f(2-x)=-f(x-2),所以f(x-4)=f[(x-2)-2]=-f(x-2)=- [-f(x)]=f(x),即f(x-4)=f(x),所以f(x)的周期为4,所以f(5.5)=f(1.5)=f(-2.5)=f(2.5)=2,所以g(-0.5)=g(2.5)=1.5f(2.5)=3.故选D.8.(2022·天津市第四十七中学模拟预测)已知函数f (x )= {-12x ,x ≥0,2x -x 2,x <0,若f(2-a 2)>f(-|a|),则实数a 的取值范围是( A ) A.(-2,-√10-23)∪(√10-23,2) B.(-2,-1)∪(1,2)C.(-2,0)∪(0,2)D.(-1,0)∪(0,1)解析:作出函数f(x)={-12x ,x ≥0,2x -x 2,x <0的图象如图,因为-|a|≤0,若2-a 2<0,由f(x)在(-∞,0)上单调递增,且f(2-a 2)>f(-|a|),则2-a 2>-|a|,解得√2<|a|<2; 若2-a 2≥0,则-12(2-a 2)>-2|a|-a 2,解得√10-23<|a|≤√2. 综上,√10-23<|a|<2,解得-2<a<-√10-23或√10-23<a<2.所以实数a 的取值范围是(-2,-√10-23)∪(√10-23,2).故选A.二、多项选择题9.(2022·山东济南一中模拟预测)设函数f(x)={log 2(x -1),x >2,2x -3,x ≤2,则以下结论正确的为( BC ) A.f(x)为R 上的增函数B.f(x)有唯一的零点x 0,且1<x 0<2C.若f(m)=5,则m=33D.f(x)的值域为R解析:作出f(x)的图象如图所示.对于A,取特殊值:f(2)=1,f(3)=1,故A 错误;对于B,由图象可知,f(x)有唯一的零点x 0,f(x)在(-∞,2]上单调递增,且f(1)<0,f(2)>0,故B 正确;对于C,当x ≤2时,2x -3≤1,故log 2(m-1)=5,解得m=33,故C 正确; 对于D,f(x)的值域为(0,+∞)∪(-3,1]=(-3,+∞),故D 错误.故选BC. 10.(2022·重庆模拟预测)定义在(-1,1)上的函数f(x)满足f(x)-f(y)=f(x -y 1-xy),且当x ∈(-1,0)时,f(x)<0,则有( ABC )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)解析:令x=0,y=0,得f(0)-f(0)=f(0),所以f(0)=0;令x=0,y=x,得f(0)-f(x)=f(-x),故-f(x)=f(-x),所以f(x)为奇函数,A 正确;任取-1<x 1<x 2<1,则f(x 1)-f(x 2)=f(x 1-x 21-x 1x 2),因为x 1-x 21-x 1x 2+1=x 1-x 2+1-x 1x 21-x 1x 2=(1+x 1)(1-x 2)1-x 1x 2>0,故-1<x 1-x 21-x 1x 2<0,f(x 1)-f(x 2)=f(x 1-x 21-x 1x 2)<0,f(x 1)<f(x 2),故f(x)为增函数,C 正确; f(12)+f(13)=f(12)-f(-13)=f(12+131+12×13)=f(57)<f(56),D 错误;若f(a)+f(b)=f(a)-f(-b)=f(a+b1+ab )=f(12),则a+b1+ab=12,则2a+2b=1+ab,a=1-2b2-b =2+3b-2,当b∈(-1,1)时,a∈(-1,1),所以存在非零实数a,b,使得f(a)+f(b)=f(12),B正确.故选ABC.11.若函数f(x)满足:对定义域内任意的x1,x2(x1≠x2),有f(x1)+f(x2)>2f(x1+x22),则称函数f(x)具有H性质.则下列函数中具有H性质的是( ACD )A.f(x)=(12)xB.f(x)=ln xC.f(x)=x2(x≥0)D.f(x)=tan x(0≤x<π2)解析:若对定义域内任意的x1,x2(x1≠x2),有f(x1)+f(x2)>2f (x1+x22),则点(x1,f(x1)),(x2,f(x2))连线的中点在点(x1+x22,f(x1+x22))的上方,如图(其中a=f(x1+x22),b=f(x1)+f(x2)2).根据函数f(x)=(12)x,f(x)=ln x,f(x)=x2(x≥0),f(x)=tan x(0≤x<π2)的图象可知,函数f(x)=(12)x,f(x)=x2(x≥0),f(x)=tan x(0≤x<π2)具有H性质,函数f(x)=ln x不具有H性质.故选ACD.12.(2022·福建福州模拟预测)设函数f(x)的定义域为R,f(x-1)为奇函数,f(x+1)为偶函数,当x ∈(-1,1)时,f(x)=-x 2+1,则下列结论正确的是( ABD ) A.f(72)=-34B.f(x+7)为奇函数C.f(x)在(6,8)上单调递减D.方程f(x)+lg x=0仅有6个实数解解析:因为f(x+1)为偶函数,故f(x+1)=f(-x+1),令x=52得f(72)=f(-52+1)=f(-32),因为f(x-1)为奇函数,故f(x-1)=-f(-x-1),令x=-12得f(-32)=-f(12-1)=-f(-12),其中f(-12)=-14+1=34,所以f(72)=f(-32)=-f(-12)=-34,A 正确;因为f(x-1)为奇函数,所以f(x)的图象关于点(-1,0)中心对称,又f(x+1)为偶函数,则f(x)的图象关于直线x=1对称,所以f(x)的周期为4×2=8,故f(x+7)=f(x-1),所以f(-x+7)=f(-x-1)=-f(x-1)= -f(x-1+8)=-f(x+7),从而f(x+7)为奇函数,B 正确;f(x)=-x 2+1在x ∈(-1,0)上单调递增,又f(x)的图象关于点(-1,0)中心对称,所以f(x)在(-2,0)上单调递增,且f(x)的周期为8,故f(x)在(6,8)上单调递增,C 错误;根据题目条件画出函数f(x)与y=-lg x 的图象,如图所示,其中y=-lg x 单调递减且-lg 12<-1,所以两函数图象有6个交点,故方程f(x)+lg x=0仅有6个实数解,D 正确.故选ABD.三、填空题13.(2022·广东深圳二模)已知函数f(x)=ln(e x +1)-kx 是偶函数,则k= .解析:由题意知f(x)=ln(e x +1)-kx 是偶函数,则x ∈R,f(-x)=f(x), 即ln(e -x +1)-k(-x)=ln(e x +1)-kx, 即ln(e x +1)-x+kx=ln(e x +1)-kx, 即(k-1)x=-kx,解得k=12.答案:1214.(2022·山东烟台一模)已知f(x)为R 上的奇函数,且f(x)+ f(2-x)=0,当-1<x<0时,f(x)=2x ,则f(2+log 25)的值为 . 解析:由题设,f(2-x)=-f(x)=f(-x),故f(2+x)=f(x),即f(x)的周期为2,所以f(2+log 25)=f(2×2+log 254)=f(log 254)=-f(log 245),且-1<log 245<0,所以f(2+log 25)=-2log 245=-45.答案:-4515.(2022·湖南湘潭三模)已知a >0,且a ≠1,函数f (x )= {log a (2x 2+1),x ≥0,a x,x <0,若f(f(-1))=2,则a= ,f(x)≤4的解集为 .解析:①由题可知,f(f(-1))=f(a -1)=log a (2a -2+1)=2,则a 2=2a -2+1,即a 4-a 2-2=0,解得a 2=2,故a=√2.②当x ≥0时,f(x)=log √2(2x 2+1)≤4,解得0≤x ≤√62;当x<0时, f(x)=(√2)x≤4恒成立,故不等式的解集为(-∞,√62]. 答案:√2 (-∞,√62]16.(2022·山东菏泽一模)已知奇函数f(x)在区间(-∞,0)上是增函数,且f(-2)=-1,f(1)=0,当x>0,y>0时,都有f(xy)=f(x)+f(y),则不等式log 3|f(x)+1|<0的解集为 .解析:法一 不等式log 3|f(x)+1|<0等价于0<|f(x)+1|<1,即0<f(x)+1<1或-1<f(x)+1<0,即-1<f(x)<0或-2<f(x)<-1,因为f(x)是奇函数,且f(-2)=-1,f(1)=0,所以f(2)=1,f(-1)=0,故f(1)= f(2×12)=f(2)+f(12)=0 ,则f(12)=-1 ,f(14)=f(12×12)=f(12)+f(12)=-2,f(-4)=-f(4)=-f(2)-f(2)=-2.又奇函数f(x)在区间(-∞,0)上是增函数,故f(x)在区间(0,+∞)上也是增函数,故-1<f(x)<0,即f(-2)<f(x)<f(-1)或f(12)<f(x)<f(1),此时x ∈(-2,-1)∪(12,1) ;而-2<f(x)<-1,即f(-4)<f(x)<f(-2) 或f(14)<f(x)<f(12),此时x ∈(-4,-2)∪(14,12),故不等式l o g 3|f (x )+1|<0的解集为(-4,-2)∪(-2,-1)∪(14,12)∪(12,1).法二 因为f(x)为奇函数,且f(-2)=-1,所以f(2)=1,又当x>0,y>0时,都有f(xy)=f(x)+f(y),所以当x>0时,可设f(x)=log a x(a>0,且 a ≠1),由f(2)=1可得a=2,所以f(x)={log 2x (x >0),-log 2(-x )(x <0),由log 3|f(x)+1|<0可得-2<f(x)<0且f(x)≠-1. 作出函数f(x)的图象如图,由图象可知,不等式的解集为(-4,-2)∪(-2,-1)∪(14,12)∪(12,1).答案:(-4,-2)∪(-2,-1)∪(14,12)∪(12,1)。
高考数学选择、填空题专项训练(共40套)[附答案]
![高考数学选择、填空题专项训练(共40套)[附答案]](https://img.taocdn.com/s3/m/6e710a0f31126edb6f1a10b3.png)
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
2023年高考数学复习压轴题专练(选择+填空)专题02 函数的奇偶性与单调性

专题02 函数的奇偶性与单调性【方法点拨】1. 若函数f (x )为偶函数,则f (x )=f (|x |),其作用是将“变量化正”,从而避免分类讨论.2. 以具体的函数为依托,而将奇偶性、单调性内隐于函数解析式去求解参数的取值范围,是函数的奇偶性、单调性的综合题的一种重要命题方式,考查学生运用知识解决问题的能力,综合性强,体现能力立意,具有一定难度.【典型题示例】例1 (2022·江苏新高考基地高三第一次联考·19改编)已知函数f (x )=1-a5x +1为奇函数,且存在m ∈[-1,1],使得不等式f (x 2)+f (mx -2)≤2-x 2-mx 成立,则x 的取值范围是 . 【答案】[-2,2]【解析】求得a =2,且f (x )为R 上的增函数,f (x 2)+f (mx -2)≤2-x 2-mx 可化为f (x 2)+x 2≤2-mx -f (mx -2) 由f (x )为奇函数,得2-mx -f (mx -2)= 2-mx +f (2-mx )令F (x )=f (x )+x ,则F (x 2)≤F (2-mx ),故有x 2≤2-mx ,即x 2+mx -2≤0 令G (x )= x 2+mx -2因为存在m ∈[-1,1],使G (x )= x 2+mx -2≤0 故G (-1)= x 2-x -2≤0或G (1)= x 2+x -2≤0 解之得-2≤x ≤2.例2 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,在f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 【答案】1[1,]2-【分析】直接发现函数的单调性、奇偶性,将2(1)(2)0f a f a -+≤移项,运用奇偶性再将负号移入函数内,逆用单调性脱“f ”.【解析】 ∵f (-x )=(-x )3+2x +e -x -e x =-f (x )且x ∈R , ∴f (x )是奇函数∵函数f (x )=x 3-2x +e x -1ex ,∴f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex ≥0(当且仅当x =0时取等号),∴f (x )在R 上单调递增.,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,解之得-1≤a ≤12.所以实数a 的取值范围是⎣⎡⎦⎤-1,12. 例3 已知函数()e +1e x x f x -=-(e 为自然对数的底数),若2(21)42)(f x f x +->-,则实数x 的取值范围为 . 【答案】()1,3-【分析】本题是例2的进一步的延拓,其要点是需对已知函数适当变形,构造出一个具有奇偶性、单调性的函数,其思维能力要求的更高,难度更大.【解析】令()()1e e x xx F x f -=-=-,易知()F x 是奇函数且在R 上单调递增由2(21)42)(f x f x +->-得[]2(4)11(21)(21)1f x f x f x -->--=--- 即2(4)(21)F x F x ->--由()F x 是奇函数得(21)(12)F x F x ---=,故2(4)(12)F x F x ->-由()F x 在R 上单调递增,得2412x x ->-,即2302x x -<-,解得13x -<<, 故实数x 的取值范围为()1,3-.例4 已知函数()222131x x f x x =-++.若存在()1,4m ∈使得不等式()()2432f ma f m m -++>成立,则实数a 的取值范围是________.【答案】(),8-∞【分析】令()()1F x f x =-,判断函数()F x 的奇偶性与单调性,从而将不等式转化为234m m ma +>-,分离参数可得43a m m<++,令4()3g m m m =++,(1,4)m ∈,利用对勾函数的单调性可得()8g m <,结合题意即可求解a 的取值范围. 【解析】函数222()()131xx f x f x x ==-++,若存在(1,4)m ∈使得不等式2(4)(3)2f ma f m m -++>成立,令2222()()1(31)3131xx x x x F x f x x =-=-=-++,22(31)(13)()()3113x x xxx x F x F x -----===-++, 所以,()F x 为奇函数.不等式2(4)(3)2f ma f m m -++>,即2(4)1(3)10f ma f m m --++->, 即2(4)(3)0F ma F m m -++>,所以2(3)(4)(4)F m m F ma F ma +>--=-, 因为20y x=>在(0,)+∞上为增函数,21031x y =->+在(0,)+∞上为增函数,所以22()(1)31x F x x =-+在(0,)+∞上为增函数, 由奇函数的性质可得()F x 在R 上为增函数,所以不等式等价于234m m ma +>-,分离参数可得43a m m<++, 令4()3g m m m=++,(1,4)m ∈, 由对勾函数的性质可知()g m 在(1,2)上单调递减,在(2,4)上单调递增,g (1)8=,g (4)8=,所以,()8g m <,所以由题意可得8a <, 即实数a 的取值范围是(,8)-∞. 故答案为:(,8)-∞.例5 已知函数112,1()2,1x x x f x x --⎧≥=⎨<⎩,若()2(22)2f x f x x -≥-+,则实数x 的取值范围是( ) A .[2,1]-- B .[1,)+∞C .RD .(,2][1,)-∞-+∞【答案】D【解析】函数1112,1()22,1x x x x f x x ----⎧==⎨<⎩,故()f x 关于直线1x =对称,且在[1,)+∞上单减,函数()f x 的图象如下: 2(22)(2)x f x x --+,且f22172()124x x x -+=-+>恒成立,2|221|21x x x ∴---+-,即2|23|1x x x --+,当32x时,不等式化为:2231x x x --+,即2340x x -+,解得x ∈R ,即32x ;当32x <时,不等式化为:2321x x x --+,即220x x +-,解得2x -或1x ,即2x -或312x <;综上,2(22)(2)f x f x x --+时,实数x 的取值范围是(-∞,2][1-,)+∞. 故选:D .例6 已知函数,,则t 的取值范围是 . 【答案】[1,)+∞【分析】将已知按照“左右形式相当,一边一个变量”的原则,移项变形为3133(3log 1)log (12log )f t t f t -≥--,易知是奇函数,故进一步变为3333(3log 1)(3log 1)(2log 1)(2log 1)f t t f t t -+-≥-+-(#),故下一步需构造函数()()F x f x x =+,转化为研究()()F x f x x =+的单调性,而()()F x f x x =+单增,故(#)可化为3log 0t ≥,即333log 12log 1t t -≥-,解之得1t ≥.例7 (2022·江苏南通期末·8)已知函数()422xf x x =-+,()3log 2a f =,()4log 3b f =,43c f ⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b c a <<C. c a b <<D.c b a <<【答案】B【分析】分析可知函数()f x 在()1,+∞上为增函数,推导出函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数,可得出23c f ⎛⎫= ⎪⎝⎭,利用函数()f x 在(),1-∞上()33x xf x -=-3313(12log )(3log 1)log f t f t t -+-≥3313(12log )(3log 1)log f t f t t -+-≥()33x xf x -=-的单调性可得出a 、b 、c 的大小关系.【解析】令()422xg x x =-+,其中x ∈R ,则()10g =, 因为函数y x =、422x y =-+均为R 上的增函数,故函数()g x 也为R 上的增函数,当1x >时,()()10g x g >=,此时()442222x x f x x x =-=-++,故函数()f x 在()1,+∞上为增函数,因为()()2322222244222222222x xxx x f x x x x -----+--=--=-=-+++ ()()3222442222222xxx x x x x x x f x --⋅=-=-=-=+++故函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数, 所以,4233c f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 3223<,则3lg 22lg3<,即3lg 22log 2lg 33=<, 2343<,则2lg 43lg3<,则4lg 32log 3lg 43=>,即342log 2log 313<<<, 因此,b c a <<. 故选:B.【巩固训练】1.若函数(()=ln f x x x +为偶函数,则实数a = 2.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-3.已知函数1()22x x f x =-,则满足2(5)(6)0f x x f -+>的实数x 的取值范围是 .4. 已知函数()||31f x x x x =⋅++,若()2()22f a f a +-<,则实数a 的取值范围__________.5.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,若()()22f a f a ->,则实数a 的取值范围是__________.6.已知函数()x xg x e e -=-,()()f x xg x =,若1ln 3a f ⎛⎫= ⎪⎝⎭,140.2b f ⎛⎫= ⎪⎝⎭,()1.25c f =,则a 、b 、c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<7. (多选题)关于函数12()11xf x x e ⎛⎫=+ ⎪-⎝⎭下列结论正确的是( ) A .图像关于y 轴对称 B .图像关于原点对称 C .在(),0-∞上单调递增D .()f x 恒大于08.已知函数())20202020log 20201xx f x x -=+-+,则关于x 的不等式()()21120f x f x +++->的解集为( ).A .1,2020⎛⎫-+∞ ⎪⎝⎭B .()2020,-+∞C .2,3⎛⎫-+∞ ⎪⎝⎭D .2,3⎛⎫-∞-⎪⎝⎭9.已知函数222()131x x f x x =-++.若存在m ∈(1,4)使得不等式(4)f ma -+2(3)2f m m +>成立,则实数a 的取值范围是A . (),7-∞B . (],7-∞C . (),8-∞D . (],8-∞ 10. 已知函数()e e 2sin xxf x x -=--,则关于x不等式()()2320f x f x -+<的解集为( ) A. ()3,1-B. ()1,3-C. ()(),31,-∞-⋃+∞D. []1,3-11. 已知()sin xxf x e e x x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围___.12.已知()sin xxf x e ex x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围_ __. 13. 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是( ) A .(]0,eB .[]0,eC .(]0,1D .[]0,114.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x xf f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为( )A .(),1-∞B .(),1-∞-C .()1-D .()1,-+∞【答案或提示】1.【答案】1【解析】(g()=ln x x +奇函数,g(0)=0=,1a =.2. 【答案】B【解析】()f x 偶函数,且在(0,)+∞单增,()()1f x f >转化为1x >,解得1x >或1x <-. 3.【答案】(2,3)【解析】()f x 奇函数,且单减,2(5)(6)0f x x f -+>转化为2560x x -+<,解得23x <<.4. 【答案】(2,1)-【解析】设()||3g x x x x =⋅+,则()g x 奇函数,且单增,而()()1f x g x =+,由()2()22f a f a +-<得()2211()f a f a --<-即()22()()g a g a g a -<-=-,故22a a -<-,解之得21a -<<.5.【答案】(2,1)-【解析】22y x x =+在[0,)+∞上单调递增,22y x x =-在(,0)-∞上单调递增,且220+20=200⨯⨯-,()f x ∴在R 上单调递增,因此由()()22f a f a ->得2221aa a ->∴-<<,,故答案为:()2,1-6. 【答案】A 【解析】()()()x x f x xg x x e e -==-,该函数的定义域为R ,()()()x x x x f x x e e x e e ---=--=-,所以,函数()y f x =为偶函数,当0x >时,()0xxg x e e-=->,任取120x x >>,12x x -<-,则12x xe e >,12x x e e --<,所以,1122x x x x e e e e --->-,()()120g x g x ∴>>,()()1122x g x x g x ∴>,即()()12f x f x >,所以,函数()y f x =在()0,∞+上单调递增,()11ln lnln333a f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 10 1.2400.20.21ln355<<=<<<,则()()1 1.240.2ln 35f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A. 7.【答案】ACD 8. 【答案】C【解析】构造函数()())202012020log 2020xx F x fx x -=-=+-,x>=0x>,所以()F x 的定义域为R .())20202020log 2020x xF x x --=+-20202020log 2020x x xx -⎡⎤=+-20202020log 2020x x-⎡⎤=+-)()20202020log 2020x x x F x -=--=-,所以()F x 为奇函数, ()00F =.当0x >时,)20202020,2020,log x xy y y x -==-=都为增函数,所以当0x >时,()F x 递增,所以()F x 在R 上为增函数.由()()21120f x f x +++->,得()()211110f x f x +-++->, 即()()2110F x F x +++>,所以2110x x +++>,解得23x >-. 所以不等式的解集为2,3⎛⎫-+∞ ⎪⎝⎭.故选:C 9. 【答案】C【解析】22222231()1111313131xx x x x f x x x x -⎛⎫=-+=-+=⋅+ ⎪+++⎝⎭设231()()131x x g x f x x -=-=⋅+,则()g x 为定义在R 的奇函数所以()f x 关于点()0,1对称又2223131312ln 33()231313131x x x xx x x x x g x x x x '⎡⎤---⋅⋅''⎡⎤=⋅+⋅=⋅+⎢⎥⎣⎦++++⎣⎦所以当0x >时,()0g x '>,()g x 在()0,+∞上单增 故()g x 在(),-∞+∞上也单增因为2(4)(3)2f ma f m m -++>可化为2(4)1(3)1f ma f m m -->-++所以2(4)(3)g ma g m m ->-+因为()g x 为R 的奇函数,22(4)(3)(3)g ma g m m g m m ->-+=--所以243ma m m ->--又因为存在m ∈(1,4)使得不等式243ma m m ->--成立,分参得43a m m<++ 易得[)437,8m m++∈,所以8a <,故选C . 10.【答案】A【分析】根据题意可判断函数()e e 2sin xxf x x -=--为奇函数且在R 上单调递增,进而根据奇偶性与单调性解不等式即可.【解析】函数()e e 2sin xxf x x -=--的定义域为R ,()()()e e 2sin e e 2sin x x x x f x x x f x ---=---=-+=-,所以函数()e e 2sin xxf x x -=--为奇函数,因为()'e e 2cos 22cos 0xxf x x x -=+-≥-≥,所以函数()e e 2sin xxf x x -=--在R 上单调递增,所以()()()()()22320322f x f x f x f x f x -+<⇔-<-=-,所以232x x -<-,即2230x x +-<,解得31x -<< 所以不等式()()2320f x f x -+<的解集为()3,1-故选:A11.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解【解析】因为()()sin xx f x ee x xf x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x xf x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x f f ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭,所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥, 因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++, 则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 12.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解 【解析】因为()()sin x x f x e e x x f x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x x f x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x ff ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭, 所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++, 令2()2ln(1)2x g x x =-++,则max ()a g x ≥,因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数,所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++,则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 13.【答案】D【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【解析】()1e e 21x x x f x -=+-+, ()()1111e e e e 121212121x x x x x x x x f x f x ----∴+-=+-+-+=++=+++令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x x x x x x x g x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e x x ≥当且仅当1e ex x =,即0x =时等号成立; ln 2ln 214222x x ≤++当且仅当122x x =,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g ax g ax g ax ≥--=-,即2210ax ax -+≥对x ∀∈R 恒成立. 当0a =时显然成立;当0a ≠时,需20440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.14.【答案】A【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围.【解析】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-,∴()g x 为奇函数,又()2cos 0g x x '=++>,即()g x 为增函数,∴()()39334x x x f f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--, ∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113x x +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈(),1-∞.故选:A。
新高考数学二轮专题复习高频考点强化训练1(附解析)

强化训练1 集合、常用逻辑用语、不等式一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·全国甲卷]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}2.[2022·全国乙卷]设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M3.[2022·湖南常德一模]已知集合A ={x ∈Z |x 2≤1},B ={x |x 2-mx +2=0},若A ∩B ={1},则A ∪B =( )A .{-1,0,1}B .{x |-1≤x ≤1}C .{-1,0,1,2}D .{x |-1≤x ≤2}4.[2022·山东潍坊二模]十七世纪,数学家费马提出猜想:“对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程x n +y n =z n 都没有正整数解B .对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解C.存在正整数n ≤2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解D .存在正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解5.[2022·江苏南京模拟]设a 、b 均为非零实数,且a <b ,则下列结论中正确的是( ) A .1a >1bB .a 2<b 2C .1a 2 <1b 2D .a 3<b 3 6.[2022·山东潍坊一模]已知a >0,则“a a >a 3”是“a >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.[2022·广东汕头三模]下列说法错误的是( )A .命题“∀x ∈R ,cos x ≤1”的否定是“∃x 0∈R ,cos x 0>1”B .在△ABC 中,sin A ≥sin B 是A ≥B 的充要条件C .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“a >0,且b 2-4ac ≤0”D .“若sin α≠12 ,则α≠π6”是真命题 8.[2022·河北保定二模]已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A.2 B .3C .22D .32二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·湖北武汉二模]已知集合A ={1,4,a },B ={1,2,3},若A ∪B ={1,2,3,4},则a 的取值可以是( )A .2B .3C .4D .510.[2022·广东汕头二模]已知a ,b ,c 满足c <a <b ,且ac<0,那么下列各式中一定成立的是( )A .ac (a -c )>0B .c (b -a )<0C .cb 2<ab 2D .ab >ac11.[2022·江苏南京三模]设P =a +2a,a ∈R ,则下列说法正确的是( ) A .P ≥22B .“a >1”是“P ≥22 ”的充分不必要条件C.“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <312.[2022·辽宁葫芦岛二模]已知a >b >0,a +b +1a +1b=5,则下列不等式成立的是( )A.1<a +b <4B .(1a +b )(1b+a )≥4 C .(1a +b )2>(1b+a )2 D .(1a +a )2>(1b+b )2 三、填空题(本题共4小题,每小题5分,共20分)13.[2022·南京师大附中模拟]命题“∀x >1,x 2≥1”的否定是____________.14.[2022·福建三明模拟]已知命题p :∃x ∈R ,x 2-ax +a <0,若命题p 为假命题,则实数a 的取值范围是________.15.[2022·湖南怀化一模]已知a ∈R ,且“x >a ”是“x 2>2x ”的充分不必要条件,则a 的取强化训练1 集合、常用逻辑用语、不等式1.解析:由题意,B ={x|x2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.答案:D2.解析:由题知M ={2,4,5},对比选项知,A 正确,BCD 错误. 答案:A3.解析:解不等式x2≤1得:-1≤x≤1,于是得A ={x ∈Z|-1≤x≤1}={-1,0,1},因A∩B ={1},即1∈B ,解得m =3,则B ={1,2},所以A ∪B ={-1,0,1,2}.答案:C4.解析:命题的否定形式为全称量词命题的否定是存在量词命题.故只有D 满足题意.答案:D5.解析:对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a2=b2,B 错误;对于C ,取a =-1,b =1,则1a2 =1b2 ,C 错误;对于D ,因a<b ,则b3-a3=(b -a )(b2+ab +a2)=(b -a )·⎣⎢⎡⎦⎥⎤(b +12a )2+34a2 >0,即a3<b3,D 正确. 答案:D6.解析:若0<a<1,由aa>a3可得a<3,此时0<a<1; 若a =1,则aa =a3,不合乎题意;若a>1,由aa>a3可得a>3,此时a>3.因此,满足aa>a3的a 的取值范围是{a|0<a<1或a>3},因为{a|0<a<1或a>3}{a|a>3},因此,“aa>a3”是“a>3”的必要不充分条件.答案:B7.解析:A.命题“∀x ∈R ,cos x≤1”的否定是“∃x0∈R ,cos x0>1”,正确;B .在△ABC 中,sin A≥sin B ,由正弦定理可得a 2R ≥b 2R (R 为外接圆半径),a≥b ,由大边对大角可得A≥B ;反之,A≥B 可得a≥b ,由正弦定理可得sin A≥sin B ,即为充要条件,故正确;C.当a =b =0,c≥0时满足ax2+bx +c≥0,但是得不到“a>0,且b2-4ac≤0”,则不是充要条件,故错误;D .若sin α≠12 ,则α≠π6 与α=π6 则sin α=12 的真假相同,故正确.答案:C8.解析:7=(a +2b )2-ab =(a +2b )2-12 a·2b≥(a +2b )2-12 (a +2b 2 )2=7(a +2b )28, 则(a +2b )2≤8,当且仅当a =2b = 2 时,“=”成立,又a ,b ∈(0,+∞),所以0<a +2b≤2 2 ,当且仅当a =2b = 2 时,“=”成立,所以a +2b 的最大值为2 2 . 答案:C9.解析:因为A ∪B ={1,2,3,4},所以{1,4,a}{1,2,3,4},所以a =2或a =3.答案:AB10.解析:因为a ,b ,c 满足c<a<b ,且ac<0,所以c<0,a>0,b>0,a -c>0,b -a>0,所以ac (a -c )<0,c (b -a )<0,cb2<ab2,ab>ac.答案:BCD11.解析:A 错误,当a<0时,显然有P 小于0;B 正确,a>1时,P =a +2a ≥2a·2a =2 2 ,当且仅当a =2a 时,即a = 2 时等号成立.故充分性成立,而P≥2 2 只需a>0即可;C 正确,P =a +2a >3可得0<a<1或a>2,当a>2时P>3成立,故C 正确;D 错误,因为a>3有a +2a >3+23 >3,故D 错误. 答案:BC12.解析:a +b +1a +1b =5,即a +b +a +b ab =5,所以ab =a +b 5-(a +b ),因为a>b>0,所以由基本不等式得:ab<(a +b )24 ,所以a +b 5-(a +b ) <(a +b )24, 解得:1<a +b<4,A 正确;(1a +b )(1b +a )=1ab +ab +2≥21ab ·ab +2≥4,当且仅当1ab =ab 时等号成立,故B 正确;(1a +b )2-(1b +a )2=(1a +b +1b +a )(1a +b -1b -a )=(1a +b +1b +a )(1ab +1)(b -a ),因为a>b>0,所以(1a +b +1b +a )(1ab +1)(b -a )<0,所以(1a +b )2<(1b +a )2,C 错误;(1a +a )2-(1b +b )2=(1a +a +1b +b )(1a +a -1b -b )=(1a +a +1b +b )(1ab -1)(b -a ),因为a>b>0,而1ab 可能比1大,可能比1小,所以(1a +a +1b +b )(1ab -1)(b -a )符号不确定,所以D 错误.答案:AB13.解析:因为命题“∀x>1,x2≥1”是全称量词命题,所以其否定是存在量词命题,即 “∃x>1,x2<1”.答案:“∃x>1,x2<1”14.解析:根据题意,∀x ∈R ,x2-ax +a≥0恒成立,所以Δ=a2-4a≤0⇒a ∈[0,4].答案:[0,4]15.解析:x2>2x 等价于x<0或x>2,而且“x>a”是“x2>2x”的充分不必要条件,则a≥2.答案:[2,+∞)16.解析:因为第一象限的点M (a ,b )在直线x +y -1=0上,所以a +b =1,a>0,b>0,所以1a +2b =(a +b )(1a +2b )=3+b a +2a b ≥3+2 2 ,当且仅当a = 2 -1,b =2- 2 时等号成立.答案:3+2 2。
2023年高考数学复习压轴题专练(选择+填空)专题12 双变量不等式类能成立、恒成立问题

专题12 双变量不等式类能成立、恒成立问题【方法点拨】1.∀x 1∈D , ∀x 2∈E,均有f (x 1) >g (x 2)恒成立,则f (x )min > g (x )ma x ; ∀x 1∈D , ∃x 2∈E, 使得f (x 1) >g (x 2)成立,则f (x )m in > g (x ) m in ; ∃x 1∈D , ∃x 2∈E , 使得f (x 1) >g (x 2)成立,则f (x ) ma x > g (x ) min .记忆方法:都任意,大小小大(即对于两个变量都是“任意”的,不等式中较大者的最小值大于不等式中较小者的最大值),存在换任意,大小应互换.2.双元型不等式恒成立、能成立问题一般应遵循“双元化一元,逐一处理”的策略,即选择主次元的方法,一般应”先独立后分参”,即先处置独立变量(所谓”独立变量”是指与所求参数无关的变量),再处置另一变量,而解题过程中往往采取分参方法.【典型题示例】例1 已知0a >,b R ∈,若()3242||2ax bx ax bx a b x b -+≤+++对任意122x ⎡⎤∈⎢⎥⎣⎦,都成立,则ba的取值范围是______. 【答案】2,5⎡⎫+∞⎪⎢⎣⎭【分析】不等式化为221121b b b b x x a x a a a x -+≤+⋅+⋅+,令1t x x =+,52,2t ⎡⎤∈⎢⎥⎣⎦,可得21b b t t a a +≥-,分别讨论0b a =,0b a <,和0ba>时,求最值可得出. 【解析】不等式两边同时除以2ax 得221121b b b bx x a x a a ax -+≤+⋅+⋅+, 整理得2111b b x x a x x a⎛⎫++≥+- ⎪⎝⎭,令1t x x =+,122x ⎡⎤∈⎢⎥⎣⎦,,则52,2t ⎡⎤∈⎢⎥⎣⎦,则21b b t t a a +≥-, 由于对任意122x ⎡⎤∈⎢⎥⎣⎦,都成立,则有21b b t t a a +≥-对任意52,2t ⎡⎤∈⎢⎥⎣⎦恒成立, (1)当0ba=时,1t ≥不成立,不符合题意; (2)当0b a <时,则当52t =时,不等式左边取到最小,右边取到最大,满足题意, 则255142b b a a ⋅+≥-,解得629b a ≥,与0ba<矛盾,不符合; (3)当0b a >时,①当52b a ≥时,则当2t =时,不等式左边取到最小,右边取到最大,满足题意, 则412b b a a ⋅+≥-,解得1b a ≥-,∴52b a ≥; ②当02b a <≤时,有21b bt t a a⋅+≥-,即2111b t a t t t ≥=++,则当2t =时,11t t +取得最大值为25,则25b a ≥,225ba ∴≤≤; ③当522b a <<时,211b b t t a a ⋅+>>-恒成立,满足题意,综上所述,b a 的取值范围是2,5⎡⎫+∞⎪⎢⎣⎭. 故答案为:2,5⎡⎫+∞⎪⎢⎣⎭. 例 2 已知函数)10)((log )(2≠-=a a x ax x f a ,且>,若对]3,2[1∈∀x ,总]4,3[2∈∃x ,使得)8(log )(21x x f a ->,则实数a 的取值范围是 .【答案】183,,292⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】即[]min min ()log (8)a f x x >-.当1a >时,[]min log (8)log 4a a x -=,故只需()log 4a f x >,所以()2min4ax x ->即24ax x ->对[2,3]x ∀∈恒成立,分参得214a x x >+,令111()32t t x =≤≤,24a t t >+,()()221max23442t a t tt t=>+=+=,故32a >; 当01a <<时,[]min log (8)log 5a a x -=,故只需()log 5a f x >,所以()2max4ax x-<,且()2min0axx->,即205ax x <-<对[2,3]x ∀∈恒成立,分参得2115a x x x<<+,令111()32t t x =≤≤,25t a t t <<+,()()22max 1min3185529t t a t tt t==<<+=+=,故1829a <<; 综上,实数a 的取值范围183,,292⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭.例3 已知函数xx x f 214)(-=,若对任意]21[1,∈x ,都存在]21[2,∈x 使)(22121x f bx x ≥-成立,则实数b 的取值范围是 .【解析】由条件可知min min 2)()2(x f bx x ≥-因为()22x xf x -=-,且2x y =、2x y -=-在[1,2]上单调递增所以函数)(x f 在[1,2]上单调递增,23)1()(min ==f x f , 所以23)2(min 2≥-bx x ,即2322≥-bx x 在]21[,∈x 恒成立, 即x x b 232-≤在]21[,∈x 恒成立,记]2,1[,23)(∈-=x xx x h , 易证)(x h 在[1,2]上单调递增,所以,21)1()(min -==h x h ,从而只需212-≤b ,即41-≤b . 点评:为避免求函数22y x bx =-最小值时的含参讨论,逆向转化为2322x bx -≥在]21[,∈x 上恒成立,再利用分离参数求解.此种处理手段太重要,意味深长!! 例4 已知函数()2xf x =,()()()g x f x f x =+,若1x ∀∈(0,+∞),2x ∃∈[﹣1,0],使得112(2)()2()0g x ag x g x ++>成立,则实数a 的取值范围是 .【解析】双变量问题,逐一突破,这里先处理不含参部分当[1,0]x ∈-时,,,则,即在所以,所以又,当且仅当时取等号,所以实数点评:存在性和恒成立混合问题注意理解题意,不等关系转化为最值的关系.例5 若对任意Rx∈1,存在2(1,2]x∈,使不等式3221222121++≥++mxxxxxx成立,则实数m的取值范围是 .【答案】]21,(-∞【解析一】先视为以“1x”为主元的二次不等式的恒成立,即不等式03)2(2221221≥--+-+mxxxxx在Rx∈1上恒成立,所以0)3(4)2(22222≤----=∆mxxx,即016)44(3222≥---xmx,存在2(1,2]x∈,使不等式016)44(3222≥---xmx成立,再视为以“2x”为元的二次不等式的存在性问题,即能成立,设16)44(3)(2222---=xmxxh,则只需(1)0h>或0)2(≥h,即94m<-或21≤m,所以实数m的取值范围为]21,(-∞.【解析二】先视为以“1x”为主元的二次不等式的恒成立,即不等式03)2(2221221≥--+-+mxxxxx在Rx∈1上恒成立,所以0)3(4)2(22222≤----=∆mxxx,即016)44(3222≥---xmx,存在2(1,2]x∈,使不等式016)44(3222≥---xmx成立,再视为以“2x”为元的二次不等式的存在性问题,即能成立,即016)44(3222≥---xmx在2(1,2]x∈能成立分离变量得2216443m xx-≤-设16()3g x xx=-,则16()3g x xx=-在区间(1,2]上单增,所以max()(2)2g x g==-,故442m-≤-,即12m≤所以实数m的取值范围为]21,(-∞.1.点评:二元存在性、恒成立问题应考虑“主次元”思想;2.解法二用到了“分离参数”构造函数的方法,一般来说,求参变量范围问题,应尽量做到“能分则分”,以避免参数参与运算带来的分类讨论等不必要的麻烦.例6 设a >0,函数f (x )=x +a 2x,g (x )=x -ln x +4,若对任意的x 1∈[1,e],存在x 2∈[1,e],都有f (x 1)≥g (x 2)成立,则实数a 的取值范围为___________. 【答案】⎣⎡⎭⎫52,+∞ 【分析】问题可转化为f (x )min ≥g (x )min ,函数g (x )不含参,易求得g (x )min =g (1)=5,接下来的思路有二,一是直接分类讨论求f (x )min ,二是将f (x )min ≥g (x )mi 转化为f (x )=x +a 2x ≥5恒成立,通过分离参数再解决 【解析】 问题可转化为f (x )min ≥g (x )min .当x ∈[1,e]时,g ′(x )=1-1x ≥0,故g (x )在[1,e]上单调递增,则g (x )min =g (1)=5.思路一:又f ′(x )=1-a 2x 2=x 2-a 2x 2,令f ′(x )=0,易知x =a 是函数f (x )的极小值.当a ≤1时,f (x )min =1+a 2,则1+a 2≥5,不成立; 当1<a ≤e 时,f (x )min =f (a )=2a ,则2a ≥5,得52≤a ≤e ;当a >e 时,f (x )min =f (e)=e +a 2e ≥5显然成立,得a 2>5e -e 2,所以a >e.综上所述,实数a 的取值范围为⎣⎡⎭⎫52,+∞. 思路二:故有f (x )min ≥5,即f (x )=x +a 2x ≥5恒成立,分离参数得a 2≥x (5- x ),易得[x (5- x )]max =254,又a >0,故a ≥52所以实数a 的取值范围为⎣⎡⎭⎫52,+∞.例7 已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意的x ∈[1,2],都有f (x )>g (x )恒成立,求实数a 的取值范围;【解析】由题意知,f (x )-g (x )>0对x ∈[1,2]恒成立,即x 2-2ax +1-ax >0对x ∈[1,2]恒成立,即a <x 3+x 2x 2+1对x ∈[1,2]恒成立,令φ(x )=x 3+x2x 2+1,只需a <φ(x )min (x ∈[1,2]).由于φ′(x )=2x 4+x 2+12x 2+12>0,故φ(x )在x ∈[1,2]上是增函数,φ(x )min =φ(1)=23,所以a 的取值范围是⎝⎛⎭⎫0,23. (2) 对任意的x 1∈[1,2],存在x 2∈[1,2],使得f (x 1)>g (x 2)恒成立,求实数a 的取值范围. 【解析】 由题意知x 2-2ax +1>⎝⎛⎭⎫a x min =a 2,即a <2(x 2+1)4x +1对x ∈[1,2]恒成立.令φ(x )=2(x 2+1)4x +1,则φ′(x )=8(x 2-1)+4x(4x +1)2>0对x ∈[1,2]恒成立,则φ(x )在[1,2]上是增函数,φ(x )min =φ(1)=45,所以a 的取值范围是⎝⎛⎭⎫0,45. 点评:防止误将∀x ∈D ,均有f (x ) >g (x )恒成立,转化为f (x )min > g (x )ma x ,一般应作差构造函数F (x )=f (x )-g (x ),转化为F (x ) min >0恒成立.例8 已知函数()2ln x f x a x x a =+-(0a >且1a ≠),若对任意的12,x x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,则实数a 的取值范围为________.【答案】)2e ,⎡+∞⎣【分析】求导()()1ln 2'=-+xf x a a x ,分01a <<,1a >,求得()()12max -⎡⎤⎣⎦f x f x ,再根据对任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立求解.【解析】因为函数()2ln xf x a x x a =+-(0a >且1a ≠),所以()()1ln 2'=-+xf x a a x ,当01a <<,[]1,2x ∈时,10,ln 0x a a -<<, 则()0f x '>在[]1,2上成立, 所以()f x []1,2上递增,所以()()()()2max min 242ln ,11ln ==+-==+-f x f a a f x f a a ,所以()()212max 3ln -=-+-⎡⎤⎣⎦f x f x a a a ,因为任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,所以2213ln -+≥-+-a a a a a ,即ln 2a ≥, 解得2e a ≥,当1a >,[]1,2x ∈时,10,ln 0xa a ->>,则()0f x '>在[]1,2上成立,所以()f x 在[]1,2上递增,所以()()()()2max min 242ln ,11ln ==+-==+-f x f a a f x f a a ,所以()()212max 3ln -=-+-⎡⎤⎣⎦f x f x a a a ,因为任意的1x ,2x [1,2]∈,不等式122()()1f f a x x a ≤--+恒成立,所以2213ln -+≥-+-a a a a a ,即ln 2a ≥, 解得2e a ≥,综上:实数a 的取值范围为)2e ,⎡+∞⎣, 故答案为:)2e ,⎡+∞⎣【巩固训练】1.已知函数f (x )=x 2-2x +3,g (x )=log 2x +m ,对任意的x 1,x 2∈[1,4]有f (x 1)>g (x 2)恒成立,则实数m 的取值范围是________.2.已知函数f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.3. 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________.4.函数f (x )=x 3-12x +3,g (x )=3x -m ,若对∀x 1∈[-1,5],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的最小值是________.5.已知函数f (x )=x 2-2x +3a ,g (x )=2x -1 .若对任意的x 1∈[0,3],总存在x 2∈[2,3],使得|f (x 1)|≤g (x 2)成立,则实数a 的值为________.6.已知函数f (x )=12x 2+x ,g (x )=ln(x +1)-a ,若存在x 1,x 2∈[0,2],使得f (x 1)>g (x 2) ,则实数a 的取值范围是 .7. 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________.8.若对于[]1,1a ∀∈-,不等式2(4)420x a x a +-+->都成立,则x 的取值范围是_________.9. 若关于x 的不等式2320x mx m -+-≥在区间[]1,2上有解,则实数m 的取值范围是_________.10.关于x 的一元二次方程21+(+1)0()2x m x m Z +=∈有两个根12x x 、,且满足12013x x <<<<,则实数m 的值是( ).A .-2;B .-3;C .-4;D .-5.11.设函数24()x f x x +=,()x g x xe =,若对任意12,(0,]x x e ∈,不等式()()121g x f x k k≤+恒成立,则正数k 的取值范围为( )A .141,e ee +⎛⎤⎥⎝⎦B .(],4eC .10,4e e e +⎛⎤⎥-⎝⎦D .140,4e e +⎛⎤⎥-⎝⎦12.已知大于1的正数a ,b 满足22ln a nb b e a ⎛⎫< ⎪⎝⎭,则正整数n 的最大值为( )A .7B .8C .9D .11【答案或提示】1.【答案】(-∞,0)【解析】f (x )=x 2-2x +3=(x -1)2+2,当x ∈[1,4]时,f (x )min =f (1)=2,g (x )max =g (4)=2+m ,则f (x )min >g (x )max ,即2>2+m ,解得m <0,故实数m 的取值范围是(-∞,0). 2.【答案】⎣⎡⎭⎫14,+∞ 【解析】当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min≥g (x )min ,得0≥14-m ,所以m ≥14.3.【答案】 (-∞,1]【解析】由题意知,f (x )min ⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )=x +4x ,所以f ′(x )=1-4x 2,所以f (x )在⎣⎡⎦⎤12,1上单调递减,所以f (x )min =f (1)=5,又因为g (x )在[2,3]上的最小值为g (2)=4+a ,所以5≥4+a ,即a ≤1. 4.【答案】14【解析】由f ′(x )=3x 2-12,可得f (x )在区间[-1,2]上单调递减,在区间[2,5]上单调递增,∴f (x )min =f (2)=-13,∵g (x )=3x -m 是增函数,∴g (x )min =1-m , 要满足题意,只需f (x )min ≥g (x )min 即可,解得m ≥14, 故实数m 的最小值是14.5.【答案】13-6.【答案】 ⎣⎡⎭⎫12,+∞ 【解析】 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎡⎦⎤12,1上是减函数,∴f (x )max =f ⎝⎛⎭⎫12=172. 又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a , 因此172≤8+a ,则a ≥12.7.【答案】a >-4【分析】问题可转化为f (x )max >g (x )min ,易得f (x )max =4,g (x )min =-a ,由f (x ) ma x > g (x ) min 得:4>-a ,故a >-4即为所求. 点评:理解量词的含义,将原不等式转化为[f (x )]max ≤[g (x )]max ;利用函数的单调性,求f (x )与g (x )的最大值,得关于a 的不等式求得a 的取值范围. 8.【答案】()(),13,-∞⋃+∞ 9.【答案】[)2,-+∞【解析】对不等式2320x mx m -+-≥分离参数得:223x m x -≥- 设22()3x g x x -=-([]1,2x ∈),则min ()m g x ≥令3(12)x t t -=≤≤,则2(3)27()()6t g t t t t--==-++-函数7t t+在区间[]1,2t ∈单减,故max 78t t ⎛⎫+= ⎪⎝⎭,min ()(1)2g t g ==-所以2m ≥-,即实数m 的取值范围是[)2,-+∞. 10.【答案】BC【解析】将方程21+(+1)02x m x +=分离参数得:1(+1)+2m x x-= 设1()+2f x x x =,如图,则319(+1)26m <-<,所以25562m -<<- 选BC.2所以当22x =时,2()f x 取得最小值(2)4f =,因为111()xg x x e =,所以111111()(1)xxxg x e x e x e '=+=+,当1(0,]x e ∈时,1()0g x '>,所以111()xg x x e =在(0,]e 上单调递增,所以1()g x 的最大值为()·eg e e e =, 因为对任意12,(0,]x x e ∈,不等式()()121g x f x k k≤+恒成立, 所以12max min ()()1g x f x k k ⎛⎫⎛⎫≤ ⎪ ⎪+⎝⎭⎝⎭,因为0k >,所以·41ee e k k≤+,解得1404e k e +<≤-.故选:D12.【答案】C【分析】22ln n a n b b e a <等价于22ln a n n b e b a <,令()2ln n x f x x =,()2xn e g x x=,分别求()f x ,()g x 的导数,判断函数的单调性,可求得()f x 有最大值2222n n f e e ⎛⎫⎪⎛⎫⎝⎭= ⎪⎝⎭,()g x 有最小值22n n n e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭,根据题意,即求()()max min f x g x ≤,代入为2222n n e n e n ⎛⎫ ⎪⎝⎭≤⎛⎫ ⎪⎝⎭,等价于2ln 22n n n +≥-,令()2ln 22x x x x ϕ+=--,即求()0x ϕ>的最大的正整数.对()x ϕ求导求单调性,可知()x ϕ单调递减,代入数值计算即可求出结果. 【解析】由题干条件可知:22ln n a n b b e a <等价于22ln an n b e b a<, 令()2ln n x f x x =,()1x >,则()121ln (2ln )ln (2ln )'n n n x x n x x n x f x x x-+⋅--== ()'0f x =,2n x e = ,当()'0f x >时,21,n x e ⎛⎫∈ ⎪⎝⎭,当()'0f x <时,2,n x e ⎛⎫∈+∞ ⎪⎝⎭所以()f x 在21,n e ⎛⎫ ⎪⎝⎭上单调递增,在2,n e ⎛⎫+∞ ⎪⎝⎭上单调递减,则()f x 有最大值 2222n n f e e ⎛⎫⎪⎛⎫⎝⎭= ⎪⎝⎭. 令()2xn e g x x =,()1x >,则()()222'x ne x n g x x -=,当12n ≤时,此题无解,所以12n >, 则()'0,2n g x x ==,当()'0,2n g x x >>,当()'0,12n g x x <<<,所以()g x 在1,2n ⎛⎫ ⎪⎝⎭上单调递减,在,2n ⎛⎫+∞ ⎪⎝⎭上单调递增,则()g x 有最小值22n n n e g n ⎛⎫= ⎪⎝⎭⎛⎫ ⎪⎝⎭. 若22ln a n n b e b a <成立,只需22n n f e g ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,即2222n n e n e n ⎛⎫⎪⎝⎭≤⎛⎫ ⎪⎝⎭,即222n n n e -+⎛⎫≥ ⎪⎝⎭, 两边取对数可得:22)ln 2(n n n +≥-.2n =时,等式成立,当3n ≥时,有2ln 22n n n +≥-,令()2ln 22x x x x ϕ+=--,本题即求()0x ϕ>的最大的正整数. ()241'0(2)x x xϕ-=-<-恒成立,则()x ϕ在[)3,+∞上单调递减, ()58ln 403ϕ=->,()1199ln 1.5714 1.51072ϕ=-≈->,()310ln 502ϕ=-<, 所以()0x ϕ>的最大正整数为9.故选:C.。
高考数学二轮专题升级训练选择、填空组合(三)文(含解析)新人教A版

高考数学二轮专题升级训练选择、填空组合 ( 三) 文(含分析)新人教A版一、选择题1.函数y=的定义域为 ()A. B. ∪( -1, +∞)C. D.∪( -1, +∞)2.已知复数- i 在复平面内对应的点在二、四象限的角均分线上, 则实数a的值为 ()A.- 2B.-1C.0D.23.已知向量a=(1,1),b=(2,x),若 a+b 与4b- 2a 平行,则实数 x 的值为()A.- 2B.0C.1D.24.若点P(cos α ,sinα ) 在直线y=- 2x上, 则 sin2α+2cos 2α=()A. -B. -C.- 2D.5.将边长为 1 的正方形ABCD沿对角线AC折叠 , 其正 ( 主 ) 视图和俯视图以下图. 此时连结极点 B, D 形成三棱锥B-ACD,则其侧(左)视图的面积为()A.1B.C.D.6.已知 {a} 是首项为 1 的等比数列 ,S是 {a} 的前n项和,且9, 则数列的前5项和为()n n n36A. B. C. D.7 .已知x∈ [-1,1],y∈ [0,2], 则点 (,y) 落在地区内的概率为()P xA. B. C. D.8.以下说法 :①将一组数据中的每个数据都加上或减去同一个常数后, 方差恒不变 ;②设有一个回归方程35x , 变量x增添一个单位时 ,y均匀增添5个单位;= -③线性回归方程必过 ();x+④在一个 2 2 列联表中 , 由计算得 2 的观察值13079, 则在出错误的概率不超出0 001 的前提下×K k= ..以为这两个变量间相关系. 此中错误的个数是()A.0B.1C.2D.3此题能够参照独立性查验临界值表(2≥0 50.40 20.1 0.10 00.00 00.00.00P K...k).0550********k0. 4 0.71.3 2.0 2.73. 8 5.06.6 7.810. 85508237206412435792819. 函数 y=的图象大概是 ( )10. 某流程图以下图 , 现输入以下四个函数 , 则能够输出的函数是 ( )A. f ( x ) =x 2B. f ( x ) =C.f ( x ) =D. f ( x ) =| sinx|11. 设圆锥曲线 Γ 的两个焦点分别为 F 1, F 2. 若曲线 Γ 上存在点 P 知足|PF 1| ∶ |F 1F 2| ∶ |PF 2|= 4∶ 3∶2, 则曲线 Γ 的离心率等于 ()A .B .或2C .或 2D .12. 已知函数 f ( x ) =+k 的定义域为 D , 且方程 f ( x ) =x 在 D 上有两个不等实根 , 则 k 的取值范围是()A. - 1 ≤ -B. ≤ 1<kk< C. k>- 1D. 1k< 二、填空题13 . 已知 0, 0, 则 2 的最小值为 .a> b> +14 . 在△ 中, , b , c 分别为角 , , 所对应的三角形的边长 , 若 4 2 3 0, 则 co sABC a A B Ca+ b+ c=B=.15. 以下命题中 , 是真命题的为. ( 写出全部真命题的序号) ①命题“ ?x ≥0, 使x ( 3)≥0 ” 的否认是 “ ? 0, 使 x ( 3) 0;x+ x<x+ < ” ②函数f ( ) lg( 1) 的定义域是 ;x = ax+2 x处获得极大值 ;③函数 f ( x ) =x ·e 在 x=- 2④若 sin( α β ) ,sin( α β) , 则 5+ = - = = .16 . 已知定义在 R 上的奇函数 f ( x ) 知足 f (x- 4)=-f ( ), 且在区间 [0,2] 上是增函数 , 若方程xf ( ) ( 0) 在区间 [-8,8] 上有 4 个不一样的根x 1,x 2, 3, x 4, 则12 3 4.x =m m>xx +x +x +x =##一、选择题1. A 分析 : 由题意知解得 x ∈ .2. A 分析 : 化简复数 -i =-1-(a+1) i , 由题意知 a+1=-1, 解得 a=-2.23. D 分析 : ∵ a+b=(3,1+x) 与 4b-2 a=(6,4 x-2) 平行 , ∴ 3(4x-2)-(1+x)6=0,解得 x=2.4. C 分析:∵点 P 在 y=-2x 上 ,∴ sin α =-2 cos α ,∴ sin 2 α +2cos 2 α =2sin α cos α +2(2 cos 2α -1)=-4 cos 2α +4cos 2α -2=-2.5. C 分析 : 由正 ( 主 ) 视图和俯视图可知 , 平面 ABC ⊥平面 ACD.三棱锥 B-ACD 侧视图为等腰直角三角形 , 直角边长为 , ∴侧视图面积为 .6. B 分析 : ∵ 9S 3=S 6, ∴8(a 1+a 2+a 3)=a 4+a 5+a 6, ∴ 8=q 3, ∴ q=2, ∴ a n =2n-1 . ∴ , ∴前 5 项和为 .7. B 分析 : 不等式组表示的地区以下图 , 暗影部分的面积为 (1+1)=, 则所求概率为 .8. B 分析 : 只有②错误 , 应当是 y 均匀减少 5 个单位 .9. C 分析 : 由题意 , 函数为奇函数, 清除 B ; 当 x>0时 ,y=, y'= , 因此当 0 <x<e 时,y'>0, 函数为增函数 ; 当 x>e 时 ,y'<0, 函数为减函数 . 应选 C .10. C 分析 : 该流程图的功能是挑选出既是奇函数又存在零点的函数. 选项 A , D 不合题意 ;对于选项 B , 由于 f(x)= 不存在零点 , 也不切合题意 .对于选项 C ,f(x)= =1- ,当 x →- ∞时 ,f(x)→ -1;当 x →+∞时 ,f(x)→ 1.又由于该函数在 x ∈ ( - ∞, +∞ ) 上是连续的 ,因此必存 在零点 .又函数 f(-x)=-f(x), 故 C 合题意 .11. A 分析 : 设|F F |=2c(c>0), 由已知 |PF | ∶ |F F | ∶ |PF |=4 ∶ 3∶2, 得 |PF |=c,|PF 2|=c, 且1211 22112|.|PF |>|PF若圆锥曲线 Γ 为椭圆 , 则 2a=|PF |+|PF | =4c, 离心率 e=;12若圆锥曲线 Γ 为双曲线 , 则 2a=|PF |-|PF|=c, 离心率 e=, 应选 .1 212. A 分析 : 依题意 =x-k 在上有两个不等实根 .问题可化为 y=和 y=x-k 在上有两个不一样交点 . 对于临界直线 m,应有 -k ≥, 即 k ≤-. 对 于临界直线 n, 化简方程 =x-k, 得 x 2-(2k+2)x+k 2-1=0, 令 =0, 解得 k=-1, ∴ n ∶ y=x+1, 令 x=0, 得 y=1, ∴ -k<1,即 k>-1.综上知 ,-1<k ≤ -.3二、填空题13.4分析:依题意得+2≥ 2+2≥ 4,当且仅当a=b=1 时等号建立 .14.-分析:由4a+2b+3c=0,得4a+3c=-2b=-2b()=2b+2b,因此4a=3c=2b.由余弦定理得cosB==-.15.①③④分析 : ①正确 . 特称命题的否以为全称命题 .②若 a=0,定义域为R.③f'(x)=2x e x+e x x2=e x x(2+x).当x>-2时,f'(x)<0;当x<-2时,f'(x)>0.故在x=-2处获得极大值.④sin (α+β)=,则 sin α cos β+cos α sin β=.①sin (α-β)=,则 sinα cosβ -cosα sinβ=.②由①②联立解得=5.16.-8分析:函数在[0,2]上是增函数,由函数f(x)为奇函数,可得f(0)=0,函数图象对于坐标原点对称 , 这样就获得了函数在[-2,2]上的特点图象. 由 f(x-4)=-f(x)? f(4-x)=f(x),故函数图象对于直线x=2 对称 , 这样就获得了函数在[2,6]上的特点图象,依据f(x-4)=-f(x)? f(x-8)=-f(x-4)=f(x),函数以8为周期,即获得了函数在一个周期上的特点图象, 依据周期性获得函数在[-8,8]上的特点图象 ( 以下图 ), 依据图象不难看出方程f(x)=m(m>0)的4个根中,有两根对于直线x=2 对称, 另两根对于直线x=-6 对称 , 故 4 个根的和为2×(- 6)+2 ×2= -8. 故填 -8.4。
新高考数学二轮专题复习高频考点强化训练8(附解析)

强化训练8 等差数列与等比数列——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东威海三模]等差数列{a n }的前n 项和为S n ,若a 3=4,S 9=18,则公差d =( )A .1B .-1C .2D .-22.[2022·湖南常德一模]设S n 为等比数列{a n }的前n 项和,若a 4=4,S 3=S 2+2,则a 1=( )A .12B .1C .2D .23.[2022·湖南岳阳一模]已知等差数列{a n }满足a 2=4,a 3+a 5=4(a 4-1),则数列{a n }的前5项和为( )A .10B .15C .20D .304.[2022·湖南师大附中二模]设等比数列{a n }的首项为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意N *都有a n +1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.[2022·辽宁鞍山二模]设等差数列{a n },{b n }的前n 项和分别是S n ,T n ,若S n T n=2n 3n +7,则 a 3b 3 =( ) A .1 B .511C .2217D .386.已知a 1=1,a n =n (a n +1-a n )(n ∈N +),则数列{a n }的通项公式是a n =( )A .2n -1B .(n +1n)n +1 C .n 2 D .n7.[2022·河北邯郸一模]“中国剩余定理”又称“孙子定理”,可见于中国南北朝时期的数学著作《孙子算经》卷下第十六题的“物不知数”问题,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有一个相关的问题:将1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序排成一列,构成一个数列,则该数列的项数为( )A .132B .133C .134D .1358.[2022·北京北大附中三模]已知数列{a n }满足a 1a 2a 3…a n =n 2,其中n =1,2,3,…,则数列{a n }( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.在数列{a n }中,a 1=1,数列⎩⎨⎧⎭⎬⎫1a n +1 是公比为2的等比数列,设S n 为{a n }的前n 项和,则( )A .a n =12n -1B .a n =12n +12C .数列{a n }为递减数列D .S 3>7810.[2022·湖南永州三模]已知等差数列{a n }是递减数列,S n 为其前n 项和,且S 7=S 8,则( )A .d >0B .a 8=0C .S 15>0D .S 7、S 8均为S n 的最大值11.[2022·山东枣庄三模]给出构造数列的一种方法:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现自1,1起进行构造,第1次得到数列1,2,1,第2次得到数列1,3,2,3,1,…,第n (n ∈N *)次得到数列1,x 1,x 2,…,x k ,1,记a n =1+x 1+x 2+…+x k +1,数列{a n }的前n 项和为S n ,则( )A.a 4=81B .a n =3a n -1-1C .a n =3n +1D .S n =12 ×3n +1+n -3212.[2022·河北沧州二模]已知数列{a n }满足a 1=1,a n +2=(-1)n +1(a n -n )+n ,记{a n }的前n 项和为S n ,则( )A .a 48+a 50=100B .a 50-a 46=4C .S 48=600D .S 49=601三、填空题(本题共4小题,每小题5分,共20分)13.[2022·辽宁丹东一模]在等差数列{a n }中,已知a 1+2a 7=15,则a 2+a 8=________.14.[2022·广东潮州二模]记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则a 4=________.15.[2022·山东泰安二模]已知数列{a n }是公差大于0的等差数列,a 1=2,且a 3+2,a 4,a 6-4成等比数列,则a 10=________.16.[2022·河北唐山二模]已知数列{a n }满足a 1=a 5=0,|a n +1-a n |=2,则{a n }前5项和的最大值为________.强化训练8 等差数列与等比数列1.解析:由题可知⎩⎪⎨⎪⎧a1+2d =49a1+9×82·d =18 ⇒⎩⎨⎧a1=6d =-1 . 答案:B2.解析:由已知a3=S3-S2=2,q =a4a3 =42 =2,所以a1=a3q2 =222 =12 .答案:A3.解析:等差数列{an}中,2a4=a3+a5=4(a4-1),解得a4=2,于是得公差d =a4-a24-2=-1,a1=5, 所以数列{an}的前5项和为S5=5a1+5(5-1)2d =15. 答案:B4.解析:若a1<0,且0<q<1,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0,所以an +1>an ,反之,若an +1>an ,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0, 所以a1<0,且0<q<1或a1>0,且q>1,所以“a1<0,且0<q<1”是“对于任意N*,都有an +1>an”的充分不必要条件. 答案:A5.解析:因为等差数列{an},{bn}的前n 项和分别是Sn ,Tn ,所以a3b3 =a1+a52b1+b52 =5(a1+a5)25(b1+b5)2=S5T5 =1015+7=511 . 答案:B6.解析:由an =n (an +1-an ),得(n +1)an =nan +1,即an +1an =n +1n ,则an an -1 =n n -1 ,an -1an -2 =n -1n -2 ,an -2an -3 =n -2n -3,…,a2a1 =21 ,n≥2, 由累乘法可得an a1 =n ,所以an =n ,n≥2,又a1=1,符合上式,所以an =n.答案:D7.解析:因为由1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序所构成的数列是一个首项为14,公差为15的等差数列{an},所以该数列的通项公式为an =14+15(n -1)=15n -1.令an =15n -1≤2 022, 解得n≤134,即该数列的项数为134.答案:C8.解析:依题意,因为a1a2a3…an =n2,其中n =1,2,3,…,当n =1时,a1=12=1,当n≥2时,a1a2a3…an -1=(n -1)2,a1a2a3…an =n2,两式相除有an =n2(n -1)2 =(1+1n -1)2,n≥2,易得an 随着n 的增大而减小,故an≤a2=4,且an>1=a1,故最小项为a1=1,最大项为a2=4.答案:A9.解析:因为a1=1,数列⎩⎨⎧⎭⎬⎫1an +1 是公比为2的等比数列,所以1an +1=2·2n -1=2n ,所以an =12n -1,故A 正确,B 错误; 因为y =2x -1,(x≥1)是单调增函数,故y =12x -1,(x≥1)是单调减函数,故数列{an}是减数列,故C 正确;S3=a1+a2+a3=1+13 +17 >78 ,故D 正确.答案:ACD10.解析:因为等差数列{an}是递减数列,所以an +1-an<0,所以d<0,故A 错误;因为S7=S8,所以a8=S8-S7=0,故B 正确;因为S15=15(a1+a15)2=15a8=0,故C 错误; 因为由题意得,⎩⎨⎧a7>0a8=0a9<0,所以S7=S8≥Sn (n ∈N*),故D 正确. 答案:BD11.解析:由题意得:a1=4,a2=10=3×4-2,a3=28=3×10-2,a4=82=3×28-2,所以有an =3an -1-2,因此选项AB 不正确;an =3an -1-2⇒an -1=3(an -1-1),所以数列{an -1}是以a1-1=3为首项,3为公比的等比数列,因此有an -1=3·3n -1=3n ⇒an =3n +1,因此选项C 正确;Sn =3(1-3n )1-3+n =12 ×3n +1+n -32 ,所以选项D 正确. 答案:CD12.解析:因为a1=1,an +2=(-1)n +1(an -n )+n ,所以当n 为奇数时,an +2=an =a1=1;当n 为偶数时,an +an +2=2n.所以a48+a50=96,选项A 错误;又因为a46+a48=92,所以a50-a46=4,选项B 正确;S48=a1+a3+a5+…+a47+[(a2+a4)+(a6+a8)+…+(a46+a48)]=24×1+2×(2+6+…+46)=24+2×(2+46)×122=600,故C 正确; S49=S48+a49=600+1=601,选项D 正确.答案:BCD13.解析:由题意在等差数列{an}中,设公差为d ,则a1+2a7=3a1+12d =3a5=15,所以a5=5,于是a2+a8=2a5=10.答案:1014.解析:设等比数列{an}的公比为q ,由已知S3=a1+a1q +a1q2=1+q +q2=34 ,即q2+q +14 =0,解得q =-12 ,所以a4=1·(-12 )3=-18 .答案:-1815.解析:设公差为d ,则a 24 =(a3+2)(a6-4),即(2+3d )2=(2+2d +2)(2+5d -4),化简得d2+4d -12=0,解得d =2或d =-6,又d>0,故d =2,则a10=a1+9d =20.答案:2016.解析:∵a1=a5=0,|an +1-an|=2,∴|a2-a1|=|a2|=2,∵求an 前5项和的最大值,∴取a2=2,∵|an +1-an|=2,∴|a3-a2|=|a3-2|=2.∵求an 前5项和的最大值,∴取a3=4,∵|a4-a3|=|a4-4|=2①|a5-a4|=|0-a4|=|a4|=2②结合①和②,∴a4=2时前5项和可有最大值.∴{an}前5项和的最大值为:0+2+4+2+0=8.答案:8。
2023年新高考数学选择填空专项练习题(附答案解析)

则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.
又
2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6
,
x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5
新高考数学二轮专题复习高频考点强化训练11(附解析)

强化训练11 空间几何体的表面积与体积——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东临沂一模]已知圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为( )A .3πB .3π3C .3 πD .2π2.[2022·山东潍坊一模]以边长为2的正方形一边所在直线为轴旋转一周,所得到的几何体的体积为( )A .2πB .8πC .2π3D .8π33.在三棱锥P - ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且P A =AB =2,AC =23 ,则三棱锥P - ABC 外接球的体积等于( )A .2033 πB .203π C .2053π D .20π 4.[2022·湖北黄冈中学模拟]已知某圆台的高为1,上底面半径为1,下底面半径为2,则侧面展开图的面积为( )A .3πB .6πC .62 πD .32 π5.一个正四面体的棱长为2,则这个正四面体的外接球的体积为( )A .6 πB .2πC .3πD .22 π6.[2022·河北唐山二模]如图,圆锥的轴为PO ,其底面直径和高均为2,过PO 的中点O 1作平行底面的截面,以该截面为底面挖去一个圆柱,此圆柱的下底面在圆锥的底面上,则圆锥与所得圆柱的体积之比为( )A .2∶1B .5∶3C .3∶1D .8∶37.已知正方体ABCD - A 1B 1C 1D 1的棱长为1,E 为BC 上一点,则三棱锥B 1 - AC 1E 的体积为( ) A.12 B .13C .14D .168.[2022·山东济宁三模]若一个正六棱柱既有外接球又有内切球,则该正六棱柱的外接球和内切球的表面积的比值为( )A .2∶1B .3∶2C .7∶3D .7∶4二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.用平行于棱锥底面的平面去截棱锥,得到上、下两部分空间图形且上、下两部分的高之比为1∶2,则关于上、下两空间图形的说法正确的是( )A.侧面积之比为1∶4B .侧面积之比为1∶8C .体积之比为1∶27D.体积之比为1∶2610.[2022·湖北武汉模拟]一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,下列结论正确的是()A.圆柱的侧面积为4πR2B.圆锥的侧面积为2πR2C.圆柱的侧面积与球的表面积相等D.球的体积是圆锥体积的两倍11.我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则关于半球的说法正确的是()A.半径是3B.体积为18πC.表面积为27πD.表面积为18π12.[2022·山东滨州二模]在边长为4的正方形ABCD中,如图1所示,E,F,M分别为BC,CD,BE的中点,分别沿AE,AF及EF所在直线把△AEB,△AFD和△EFC折起,使B,C,D三点重合于点P,得到三棱锥P-AEF,如图2所示,则下列结论中正确的是()A.P A⊥EFB.三棱锥M -AEF的体积为4C.三棱锥P -AEF外接球的表面积为24πD.过点M的平面截三棱锥P -AEF的外接球所得截面的面积的取值范围为[π,6π]三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东济南一模]已知圆锥的轴截面是一个顶角为2π3,腰长为2的等腰三角形,则该圆锥的体积为________.14.[2022·广东惠州一模]若一个圆台的侧面展开图是半圆面所在的扇环,且扇环的面积为4π,圆台上、下底面圆的半径分别为r1,r2(r1<r2),则r22-r21=________.15.一个正四棱锥的高为7,底面边长为10,若正四棱锥的五个顶点恰好在一个球面上,则该球的半径为________.16.[2022·山东烟台三模]某学校开展手工艺品展示活动,小明同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为________,三棱柱的顶点到球的表面的最短距离为________.强化训练11 空间几何体的表面积与体积1.解析:设圆锥底面半径为r ,高为h ,母线长为l =2,则l2=r2+h2=4,底面周长2πr =12 ×(2π×2)⇒r =1,所以h =4-12 = 3 ,所以圆锥的体积为13 ×π×12× 3 =3π3 .答案:B2.解析:以边长为2的正方形一边所在直线为轴旋转一周所得几何体是以2为底面圆半径,高为2的圆柱,由圆柱的体积公式得:V =π×22×2=8π,所以所得到的几何体的体积为8π.答案:B3.解析:PA ⊥平面ABC ,AB ⊥AC ,因此以AP ,AB ,AC 为棱构造一个长方体,此长方体的外接球即为三棱锥P - ABC 的外接球,长方体的对角线是外接球的直径,由已知长方体对角线长为22+22+(23)2 =2 5 ,所以外接球半径为R =5 ,外接球体积为V =43 π·( 5 )3=2053 π.答案:C4.解析:由题意知圆台母线长为12+(2-1)2 = 2 ,且上底面圆周为2π,下底面圆周为4π,圆台侧面展开图为圆环的一部分,圆环所在的小圆半径为12+12 = 2 ,则圆环所在的大圆半径为2 2 ,所以侧面展开图的面积S=12×4π×2 2 -12×2π× 2 =3 2 π.答案:D5.解析:如图,四面体BDMN是正四面体,棱长BD=2,将其补形成正方体GBCD - MENF,则正方体GBCD - MENF的棱长GB=22 BD= 2 ,此正方体的体对角线长为6 ,正四面体BDMN与正方体GBCD - MENF有相同的外接球,则正四面体BDMN的外接球半径R=6 2,所以正四面体BDMN的外接球体积为V=43πR3=43π·(62)3= 6 π.答案:A6.解析:圆锥的体积为V1=13π×12×2=2π3,圆柱的体积为V2=π×(12)2×1=π4,所以V1∶V2=2π3∶π4=8∶3.答案:D7.解析:由ABCD - A1B1C1D1为正方体,显然AB为A到平面EB1C1的距离,所以VB1 - AC1E=VA - EB1C1=13 S△EB1C1·AB=13 ×12 ×1×1×1=16 .答案:D8.解析:如图:O1,O2分别为底面中心,O为O1O2的中点,D为AB的中点,设正六棱柱的底面边长为2,若正六棱柱有内切球,则OO1=O1D= 3 ,即内切球的半径r= 3 ,OA2=OO21+O1A2=7,即外接球的半径R=7 ,则该正六棱柱的外接球和内切球的表面积的比值为4πR2∶4πr2=R2∶r2=7∶3. 答案:C9.解析:依题意知,上部分为小棱锥,下部分为棱台,所以小棱锥与原棱锥的底面边长之比为1∶3,高之比为1∶3,所以小棱锥与原棱锥的侧面积之比为1∶9,体积之比为1∶27,即小棱锥与棱台的侧面积之比为1∶8,体积之比为1∶26.答案:BD10.解析:对于A,∵圆柱的底面直径和高都等于2R,∴圆柱的侧面积S1=2πR·2R=4πR2故A正确;对于B,∵圆锥的底面直径和高等于2R,∴圆锥的侧面积为S2=πR·R2+4R2 = 5 πR2,故B错误;对于C,∵圆柱的侧面积为S1=4πR2,球的表面积S3=4πR2,即圆柱的侧面积与球的表面积相等,故C正确;对于D,球的体积为V1=43πR3,圆锥的体积为V2=13πR2·2R=23πR3,即球的体积是圆锥体积的两倍,故D正确.答案:ACD11.解析:如图,△PAC是正四棱锥的对角面,设球半径为r,AC是半圆的直径,则正四棱锥底面边长为 2 r,棱锥体积为V=13 ×( 2 r)2×r=23 r3=18,r=3,半球体积为V =23 πr3=23 π×33=18π,表面积为S =2π×32+π×32=27π.答案:ABC12.解析:由题意,将三棱锥补形为边长为2,2,4的长方体,如图所示:对A :因为AP ⊥PE ,AP ⊥PF ,PE∩PF =P ,所以AP ⊥平面PEF ,所以PA ⊥EF ,故选项A 正确;对B :因为M 为BE 的中点,所以VM - AEF =12 VP - AEF =12 ×13 ×12 ×2×2×4=43 ,故选项B 错误;对C :三棱锥P - AEF 外接球即为补形后长方体的外接球,所以外接球的直径(2R )2=22+22+42=24,所以三棱锥P - AEF 外接球的表面积为S =4πR2=24π,故选项C 正确;对D :过点M 的平面截三棱锥P - AEF 的外接球所得截面为圆,其中最大截面为过球心O 的大圆,此时截面圆的面积为πR2=π( 6 )2=6π,最小截面为过点M 垂直于球心O 与M 连线的圆,此时截面圆半径r =R2-OM2 =6-5 =1,截面圆的面积为πr2=π,所以过点M 的平面截三棱锥P - AEF 的外接球所得截面的面积的取值范围为[π,6π],故选项D 正确.答案:ACD13.解析:因圆锥的轴截面是一个顶角为2π3 ,腰长为2的等腰三角形,则此等腰三角形底边上的高即为圆锥的高h ,因此,h =2cos π3 =1,圆锥底面圆半径r =22-h2 = 3 ,所以圆锥的体积为V =13 πr2h =13 π×( 3 )2×1=π.答案:π14.解析:圆台的侧面展开图是半圆面所在的扇环,所以圆台的母线长为2πr2π -2πr1π =2r2-2r1,圆台的侧面积为2πr1+2πr22×(2r2-2r1)=2π(r 2 -r 21 )=4π, 所以r 22 -r 21 =2.答案:215.解析:设该正四棱锥为P - ABCD ,由正四棱锥和球的性质可知球的球心在高上,设球心为O ,底面中心为E ,因为底面是正方形,所以DE =12 102+102 =5 2 ,在直角三角形ODE 中,OD2=OE2+DE2,设球的半径为r ,所以有r2=(7-r )2+50⇒r =9914 .答案:991416.解析:依题意如图过侧棱的中点作正三棱柱的截面,则球心为△MNG 的中心,因为MN =6,所以△MNG 内切圆的半径r =OH =13 MH =13 MN2-HN2 =3 ,即内切球的半径R = 3 ,所以内切球的表面积S =4πR2=12π,又正三棱柱的高AA1=2R =2 3 ,所以OM =23 OH =2 3 ,所以AO =OM2+AM2 =(23)2+(3)2 =15 ,所以A 到球面上的点的距离最小值为AO -R =15 - 3答案:12π 15 - 3。
高考数学选择填空精选模拟真题(附解析)

高考数学选择填空精选模拟真题(附解析)一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( )A.A=BB.A ∩B={0}C.A ∪B=AD.A ⊆B 2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫佛发现棣莫佛定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼具体有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.现有某大学建筑系学生要重点对这七种主要类型的土楼依次进行调查研究.要求调查顺序中,圆形要排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为边BC 上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y|D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( )A.f (x )的展开式中的常数项是56B.f (x )的展开式中的各项系数之和为0C.f (x )的展开式中的二项式系数最大值是70D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电,若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .参考解答1.B 解析 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1},又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}. 3.B 解析 ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2.∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x ·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系.设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12). 设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意;对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x)r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f (1)=0,即f (x )展开式的各项系数之和为0,B 正确;对于C,f (x )展开式中二项式系数最大值为C 84=70,C 正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析 (x+1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7rx 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ , 所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35. 易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。
新高考数学二轮专题复习高频考点强化训练2(附解析)

强化训练2 复数、平面向量一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·北京卷]若复数z 满足i·z =3-4i ,则|z |=( )A .1B .5C .7D .252.[2022·山东潍坊三模]已知复数z 满足(i -1)z =1+i ,其中i 是虚数单位,则z 的虚部为( )A.-1 B .1 C .0 D .23.[2022·山东淄博一模]若复数z =2+i a +i的实部与虚部相等,则实数a 的值为( ) A .-3 B .-1 C .1 D .34.[2022·河北保定二模]已知向量AB → =(2,-1),BC → =(1,-3),则|AC → |=( )A .3B .4C .5D .65.[2022·山东临沂三模]向量a =(1,1),b =(-1,0),则a 与b 的夹角为( ) A .π6 B .π4C .3π4D .2π36.[2022·福建福州三模]已知向量a ,b 为单位向量,且a ⊥b ,则b ·(4a -3b )=( )A .-3B .3C .-5D .57.如图,在▱ABCD 中,M 为BC 的中点,AC → =mAM → +nBD → ,则m +n =( )A .1B .43C .53D .2 8.[2022·湖南师大附中一模]在△ABC 中,已知∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB → ·PC → 的最大值为( )A .165B .365C .465D .565二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·山东日照二模]已知向量m =(2,0),n =(1,1),则( )A .m ∥nB .(m -n )⊥nC .m ⊥nD .|m |=2 |n |10.[2022·广东广州三模]若z +|z |=8-4i ,其中i 为虚数单位,则下列关于复数z 的说法正确的是( )A .|z |=5B .z 的虚部为-4iC .z̅=-3+4iD .z 在复平面内对应的点位于第四象限11.[2022·山东淄博三模]已知复数z 1,z 2,满足|z 1|·|z 2|≠0,下列说法正确的是( )A .若|z 1|=|z 2|,则z 21 =z 22B .|z 1+z 2|≤|z 1|+|z 2|C .若z 1z 2∈R ,则z 1z 2∈R D .|z 1z 2|=|z 1||z 2|12.[2022·山东聊城三模]在平面四边形ABCD 中,|AB → |=|BC → |=|CD → |=DA → ·DC → =1,BA → ·BC → =12,则( ) A.|AC → |=1B .|CA → +CD → |=|CA → -CD → |C .AD → =2BC →D .BD → ·CD → =2+32三、填空题(本题共4小题,每小题5分,共20分)13.[2022·辽宁鞍山二模]已知i 为虚数单位,则3+i 1-i=________(写成最简形式). 14.[2022·河北张家口一模]已知向量a =(-1,-2),b =(-x ,3),若a ∥b ,则x =________.15.[2022·广东茂名二模]已知向量a =(t ,2t ),b =(-t ,1),若(a -b )⊥(a +b ),则t =________.16.[2022·山东师范大学附中模拟]边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM → ·PN→ 的取值范围是________.强化训练2 复数、平面向量1.解析:方法一 由i·z =3-4i ,得z =3-4i i =(3-4i )·(-i )i·(-i )=-3i +4i2-i2=-4-3i ,所以|z|=(-4)2+(-3)2 =5.故选B. 方法二 由i·z =3-4i ,得z =3-4i i ,所以|z|=|3-4i i |=|3-4i||i| =32+(-4)202+12=5.故选B. 答案:B2.解析:∵(i -1)z =1+i , ∴z =1+i -1+i =(1+i )(-1-i )(-1+i )(-1-i )=-2i 2 =-i , ∴z =i ,即z 的虚部为1.答案:B 3.解析:z =2+i a +i =(2+i )(a -i )(a +i )(a -i ) =2a +1+(a -2)i a2+1, 因为复数z =2+i a +i的实部与虚部相等, 所以2a +1=a -2,解得a =-3,故实数a 的值为-3.答案:A4.解析:由题意可得AC→ =AB → +BC → =(3,-4),所以|AC → |=32+(-4)2 =5.答案:C5.解析:由题意得:cos 〈a ,b 〉=a·b |a||b| =-12=-22 ,则a 与b 的夹角为3π4 . 答案:C6.解析:由题意可得,|a|=1,|b|=1,a·b =0,则b·(4a -3b )=4a·b -3b2=-3b2=-3.答案:A7.解析:AM → =AB → +12 BC → =AB → +12AD → ,而BD → =AD → -AB → , 故AC → =m (AB → +12 AD → )+n (AD → -AB → )=(m -n )AB → +(m 2+n )AD → ,而AC → =AB → +AD → 且AB → ,AD → 不共线,故⎩⎪⎨⎪⎧m -n =1m 2+n =1 ⇒⎩⎪⎨⎪⎧m =43n =13⇒m +n =53 . 答案:C8.解析:设AD 为斜边BC 上的高,则圆A 的半径r =AP =2×44+16=455 , 设E 为斜边BC 的中点,〈PA → ,AE → 〉=θ,因为|PA → |=455,|AE → |= 5 , 则PB → ·PC → =(PA → +AB → )·(PA→ +AC → ) =PA → 2+PA → ·(AB→ +AC → ) =165 +PA → ·2AE →=165 +2×455 ×5 cos θ=165 +8cos θ,所以PB → ·PC → 的最大值为165 +8=565 .答案:D9.解析:由m =(2,0),n =(1,1),m -n =(1,-1),对于A ,若m ∥n ,由2×1≠0×1,故A 错误;对于B ,若(m -n )⊥n ,则1×1+(-1)×1=0,符合题意,故B 正确; 对于C ,若m ⊥n ,由m·n =2×1+0×1=2≠0,故C 错误;对于D ,|m|=2,|n|=12+12 = 2 ,故D 正确.答案:BD10.解析:设z =a +bi ,则|z|=a2+b2 ,z +|z|=a +bi +a2+b2 =8-4i ,则⎩⎨⎧a +a2+b2=8b =-4,即得⎩⎨⎧a =3b =-4 ,即z =3-4i , |z|=9+16 =5,A 正确;z 的虚部为-4,B 错误;z ̅=3+4i ,C 错误;z 在复平面内对应的点为(3,-4),位于第四象限,D 正确.答案:AD11.解析:对选项A ,设z1=1+i ,z2= 2 i ,则|z1|=|z2|= 2 ,z 21 =(1+i )2=2i ,z 2 =( 2 i )2=-2,不满足z 21 =z 2 ,故A 错误. 对选项B ,设z1,z2在复平面内表示的向量分别为z1,z2,且z1,z2≠0, 当z1,z2方向相同时,|z1+z2|=|z1|+|z2|,当z1,z2方向不相同时,|z1+z2|<|z1|+|z2|,综上|z1+z2|≤|z1|+|z2|,故B 正确.对选项C ,设z1=1+i ,z2=1-i ,z1z2=(1+i )(1-i )=2∈R ,z1z2 =1+i 1-i =(1+i )2(1-i )(1+i ) =i ∉R ,故C 错误.对选项D ,设z1=a +bi ,z2=c +di ,a ,b ,c ,d≠0,z1z2=(a +bi )(c +di )=(ac -bd )+(ad +bc )i ,则|z1z2|=(ac -bd )2+(ad +bc )2 =(ac )2+(bd )2+(ad )2+(bc )2 ,|z1||z2|=a2+b2 ·c2+d2 =(ac )2+(bd )2+(ad )2+(bc )2 =|z1z2|,故D 正确.答案:BD12.解析:因为|AB → |=|BC → |=|CD → |=1,BA → ·BC → =|BA → ||BC → |cos B =12,可得B =π3 ,所以△ABC 为等边三角形,则|AC→ |=1 ,故A 正确; 因为|CD → |=1,所以CD → 2=1,又DA → ·DC → =1,所以CD → 2=DA → ·DC→ , 得DC → 2-DA → ·DC → =DC → ·(DC → -DA → )=DC → ·AC→ =0, 所以AC ⊥CD ,则|CA→ +CD → |=|CA → -CD → |,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误;建立如上图所示的平面直角坐标系,则B (-12 ,0),C (12 ,0),D (1+32 ,12 ),BD → =(2+32 ,12 ),CD → =(32 ,12), 所以BD → ·CD → =2+32,故D 正确. 答案:ABD13.解析:3+i 1-i =(3+i )(1+i )(1-i )(1+i )=3+3i +i +i22 =1+2i. 答案:1+2i14.解析:因为a ∥b ,所以2x =-3,解得x =-32. 答案:-3215.解析:因为(a -b )⊥(a +b ),所以(a -b )·(a +b )=0,所以a2-b2=0,则|a|=|b|,所以t2+4t2=t2+1,所以t =±12 .答案:±1216.解析:如图所示:设正方形ABCD 的内切圆为圆O ,当弦MN 的长度最大时,MN 为圆O 的一条直径,PM → ·PN → =(PO → +OM → )·(PO → -OM → )=|PO → |2-|OM → |2=|PO → |2-14, 当P 为正方形ABCD 的某边的中点时,|OP → |min =12 ,当P 与正方形ABCD 的顶点重合时,|OP → |max =22, 即12 ≤|OP → |≤22 ,因此,PM → ·PN → =|PO → |2-14 ∈⎣⎢⎡⎦⎥⎤0,14 . 答案:⎣⎢⎡⎦⎥⎤0,14。
2024高考题分类训练(数学)专题五 数列

专题五数列考点17 等差数列题组一、选择题1. [2023全国卷甲,5分]记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5= ( C )A. 25B. 22C. 20D. 15[解析]解法一由a2+a6=10,可得2a4=10,所以a4=5,又a4a8=45,所以a8=9.设等差数列{a n}的公差为d,则d=a8−a48−4=9−54=1,又a4=5,所以a1=2,所以S5=5a1+5×42×d=20,故选C.解法二设等差数列{a n}的公差为d,则由a2+a6=10,可得a1+3d=5①,由a4a8=45,可得(a1+3d)(a1+7d)=45②,由①②可得a1=2,d=1,所以S5=5a1+5×42×d=20,故选C.2. (2023全国卷乙,5分)已知等差数列{a n}的公差为2π3,集合S={cosa n|n∈N∗},若S={a,b},则ab= ( B )A. −1B. −12C. 0 D. 12[解析]由题意得a n=a1+2π3(n−1),cosa n+3=cos(a1+2π3(n+2))=cos(a1+2π3n+4π3)=cos(a1+2π3n+2π−2π3)=cos(a1+2π3n−2π3)=cosa n,所以数列{cosa n}是以3为周期的周期数列,又cosa2=cos(a1+2π3)=−12cosa1−√32sina1,cosa3=cos(a1+4π3)=−12cosa1+√32sina1,因为集合S中只有两个元素,所以有三种情况:cosa1=cosa2≠cosa3,cosa1=cosa3≠cosa2,cosa2=cosa3≠cosa1.下面逐一讨论:①当cosa1=cosa2≠cosa3时,有cosa1=−12cosa1−√32sina1,得tana1=−√3,所以ab=cosa1(−12cosa1+√32sina1)=−12cos2a1+√32sina1cosa1=−1 2cos2a1+√32sina1cosa1sin2a1+cos2a1=−12+√32tana1tan2a1+1=−12−323+1=−12.②当cosa1=cosa3≠cosa2时,有cosa1=−12cosa1+√32sina1,得tana1=√3,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1−√32sina1cosa1=−1 2cos2a1−√32sina1cosa1sin2a1+cos2a1=−12−√32tana1tan2a1+1=−12−323+1=−12.③当cosa2=cosa3≠cosa1时,有−12cosa1−√32sina1=−12cosa1+√32sina1,得sina1=0,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1=−12(1−sin2a1)=−12.综上,ab=−12,故选B.【速解】取a1=−π3,则cosa1=12,cosa2=cos(a1+2π3)=12,cosa3=cos(a1+4π3)=−1,所以S={12,−1},ab=−12,故选B.3. [2021北京,4分]已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288 ,a5=96 ,b1=192,则b3的值为( C )A. 64B. 100C. 128D. 132[解析]因为{a n}和{b n}是两个等差数列,所以2a3=a1+a5=288+96=384,所以a3=192.因为当1≤k≤5时,a kb k 是常值,所以a3b3=a1b1=288192=192b3,从而b3=128.故选C.4. [2020全国卷Ⅱ,5分]如图,北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A. 3 699块B. 3 474块C. 3 402块D. 3 339块[解析]由题意知,由天心石开始向外的每环的扇面形石板块数构成一个等差数列,记为{a n},设数列{a n}的公差为d,前n项和为S n,易知其首项a1=9,d=9,所以a n=a1+(n−1)d=9n.由等差数列的性质知S n,S2n−S n,S3n−S2n也成等差数列,所以2(S2n−S n)=S n+S3n−S2n,所以(S3n−S2n)−(S2n−S n)=S2n−2S n=2n(9+18n)2−2×n(9+9n)2=9n2=729,得n=9,所以三层共有扇面形石板的块数为S3n=3n(9+27n)2=3×9×(9+27×9)2=3402,故选C.5. [2020浙江,4分]已知等差数列{a n}的前n项和为S n ,公差d≠0,且a1d≤1 .记b1=S2,b n+1=S2n+2−S2n ,n∈N∗ ,下列等式不可能成立的是( D )A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8 [解析]由b n+1=S2n+2−S2n,得b2=a3+a4=2a1+5d,b4=a7+a8=2a1+13d,b6=a11+a12,b8=a15+a16=2a1+29d.由等差数列的性质易知A成立;若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=2a7+2a8,故B成立;若a42=a2a8,即(a1+3d)2=(a1+d)(a1+7d),则a1=d,故C可能成立;若b42=b2b8,即(2a1+13d)2=(2a1+5d)(2a1+29d),则a1d =32,与已知矛盾,故D不可能成立.6. [2020北京,4分]在等差数列{a n}中,a1=−9 ,a5=−1 .记T n=a1a2…a n(n=1,2,…) ,则数列{T n} ( B )A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项[解析]设等差数列{a n}的公差为d,∵a1=−9,a5=−1,∴a5=−9+4d=−1,∴d=2,∴a n=−9+(n−1)×2=2n−11.令a n=2n−11≤0,则n≤5.5,∴n≤5时,a n<0;n≥6时,a n>0.∴T1=−9<0,T2=(−9)×(−7)= 63>0,T3=(−9)×(−7)×(−5)=−315<0,T4=(−9)×(−7)×(−5)×(−3)=945>0,T5=(−9)×(−7)×(−5)×(−3)×(−1)=−945<0,当n≥6时,a n>0,且a n≥1,∴T n+1<T n<0,∴T n=a1a2…a n(n=1,2,…)有最大项T4,无最小项,故选B.7. [2019全国卷Ⅰ,5分]记S n为等差数列{a n}的前n项和.已知S4=0,a5= 5,则( A )A. a n =2n −5B. a n =3n −10C. S n =2n 2−8nD. S n =12n 2−2n[解析]解法一 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2,∴a n =a 1+(n −1)d =−3+2(n −1)=2n −5 ,S n =na 1+n (n−1)2d =n 2−4n .故选A .解法二 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2.选项A ,a 1=2×1−5=−3 ;选项B ,a 1=3×1−10=−7 ,排除B ;选项C ,S 1=2−8=−6 ,排除C ;选项D ,S 1=12−2=−32 ,排除D .故选A .【方法技巧】 等差数列基本运算的常见类型及解题策略 (1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1 和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解.二、填空题8. [2022全国卷乙,5分]记S n 为等差数列{a n } 的前n 项和.若2S 3=3S 2+6 ,则公差d = 2.[解析]因为2S 3=3S 2+6 ,所以2(a 1+a 2+a 3)=3(a 1+a 2)+6 ,化简得3d =6 ,得d =2 .9. [2020新高考卷Ⅰ,5分]将数列{2n −1} 与{3n −2} 的公共项从小到大排列得到数列{a n } ,则{a n } 的前n 项和为3n 2−2n .[解析]设b n =2n −1 ,c n =3n −2 ,b n =c m ,则2n −1=3m −2 ,得n =3m−12=3m−3+22=3(m−1)2+1 ,于是m −1=2k ,k ∈N ,所以m =2k +1 ,k ∈N ,则a k =3(2k +1)−2=6k +1 ,k ∈N ,得a n =6n −5 ,n ∈N ∗.故S n =1+6n−52×n =3n 2−2n .10. (2019全国卷Ⅲ,5分)记S n为等差数列{a n}的前n项和.若a1≠0,a2= 3a1,则S10S5=4.[解析]设等差数列{a n}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1,所以S10S5=10a1+10×92d5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.11. [2019北京,5分]设等差数列{a n}的前n项和为S n .若a2=−3,S5=−10,则a5=0,S n的最小值为−10 .[解析]设等差数列{a n}的公差为d,∵{a2=−3,S5=−10,即{a1+d=−3,5a1+10d=−10,∴可得{a1=−4,d=1,∴a5=a1+4d=0.∵S n=na1+n(n−1)2d=12(n2−9n),∴当n=4或n=5时,S n取得最小值,最小值为−10.12. [2019江苏,5分]已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.[解析]解法一设等差数列{a n}的公差为d,则a2a5+a8=(a1+d)(a1+4d)+ a1+7d=a12+4d2+5a1d+a1+7d=0,S9=9a1+36d=27,解得a1=−5,d=2,则S8=8a1+28d=−40+56=16.解法二设等差数列{a n}的公差为d.S9=9(a1+a9)2=9a5=27,a5=3,又a2a5+a8=0,则3(3−3d)+3+3d=0,得d=2,则S8=8(a1+a8)2=4(a4+a5)= 4(1+3)=16.【方法技巧】在等差数列{a n}中,若m+n=p+q ,m ,n ,p ,q∈N∗,则a m+a n=a p+a q .三、解答题13. [2023全国卷乙,12分]记S n为等差数列{a n}的前n项和,已知a2=11 ,S10=40 .(1)求{a n}的通项公式;[答案]设{a n}的公差为d,则{a2=a1+d=11,S10=10a1+45d=40,解得a1=13,d=−2.所以{a n}的通项公式为a n=13+(n−1)⋅(−2)=15−2n.(2)求数列{|a n|}的前n项和T n .[答案]由(1)得∣a n∣={15−2n,n≤7, 2n−15,n≥8.当n≤7时,T n=S n=13n+n(n−1)2×(−2)=14n−n2,当n≥8时,T n=−S n+2S7=−(14n−n2)+2(14×7−72)=98−14n+ n2.综上,T n={14n−n2,n≤7,98−14n+n2,n≥8.14. [2023新高考卷Ⅰ,12分]设等差数列{a n}的公差为d,且d>1 .令b n=n2+na n,记S n ,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3 ,S3+T3=21 ,求{a n}的通项公式;[答案]因为3a2=3a1+a3,所以3(a2−a1)=a1+2d,所以3d=a1+2d,所以a1=d,所以a n=nd.因为b n=n2+na n ,所以b n=n2+nnd=n+1d,所以S3=3(a1+a3)2=3(d+3d)2=6d,T3=b1+b2+b3=2d+3d+4d=9d.因为S3+T3=21,所以6d+9d =21,解得d=3或d=12,因为d>1,所以d=3.所以{a n}的通项公式为a n=3n.(2)若{b n}为等差数列,且S99−T99=99,求d . [答案]因为b n=n2+na n,且{b n}为等差数列,所以2b2=b1+b3,即2×6a2=2a1+12a3,所以6a1+d −1a1=6a1+2d,所以a12−3a1d+2d2=0,解得a1=d或a1=2d.①当a1=d时,a n=nd,所以b n=n2+na n =n2+nnd=n+1d,S99=99(a1+a99)2=99(d+99d)2=99×50d,T99=99(b1+b99)2=99(2d+100d)2=99×51d.因为S99−T99=99,所以99×50d−99×51d=99,即50d2−d−51=0,解得d=5150或d=−1(舍去).②当a1=2d时,a n=(n+1)d,所以b n=n2+na n =n2+n(n+1)d=nd,S99=99(a1+a99)2=99(2d+100d)2=99×51d,T99=99(b1+b99)2=99(1d+99d)2=99×50d.因为S99−T99=99,所以99×51d−99×50d=99,即51d2−d−50=0,解得d=−5051(舍去)或d=1(舍去).综上,d=5150.15. [2022全国卷甲,12分]记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1 . (1)证明:{a n}是等差数列;[答案]由2S nn+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②−①,得2a n+1+2n+1=2a n+1(n+1)−2a n n+1,化简得a n+1−a n=1,所以数列{a n}是公差为1的等差数列.(2)若a4 ,a7 ,a9成等比数列,求S n的最小值.[答案]由(1)知数列{a n}的公差为1.由a72=a4a9,得(a1+6)2=(a1+3)(a1+8),解得a1=−12.所以S n=−12n+n(n−1)2=n2−25n2=12(n−252)2−6258,所以当n=12或13时,S n取得最小值,最小值为−78.16. [2021新高考卷Ⅱ,10分]记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5 ,a2a4=S4 .(1)求数列{a n}的通项公式;[答案]设等差数列{a n}的公差为d(d≠0),则由题意,得{a1+2d=5a1+10d,(a1+d)(a1+3d)=4a1+6d得{a1=−4,d=2所以a n=a1+(n−1)d=2n−6.(2)求使S n>a n成立的n的最小值.[答案]S n=n(a1+a n)2=n(2n−10)2=n2−5n,则由n2−5n>2n−6,整理得n2−7n+6>0,解得n<1或n>6.因为n∈N∗,所以使S n>a n成立的n的最小值为7.17. [2021全国卷甲,12分]已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n }是等差数列;③a2=3a1 .注:若选择不同的组合分别解答,则按第一个解答计分.[答案]①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n−1)2d=n2a1.因为数列{a n}的各项均为正数,所以√S n=n√a1,所以√S n+1−√S n=(n+1)√a1−n√a1=√a1(常数),所以数列{√S n}是等差数列.①②⇒③.已知{a n}是等差数列,{√S n}是等差数列.解法一易得√S3+√S1=2√S2,即√3a2+√a1=2√a1+a2,两边同时平方得3a2+a1+2√3a1a2=4(a1+a2),整理得(√3a1−√a2)2=0,所以a2=3a1.解法二设数列{a n}的公差为d,则S n=na1+n(n−1)2d=12n2d+(a1−d2)n.因为数列{√S n}是等差数列,所以数列{√S n}的通项公式是关于n的一次函数,则a1−d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{√S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{√S n}的公差为d,d>0,则√S2−√S1=√4a1−√a1=d,得a1= d2,所以√S n=√S1+(n−1)d=nd,所以S n=n2d2,所以a n=S n−S n−1=n2d2−(n−1)2d2=2d2n−d2(n≥2),所以a n−a n−1=2d2(n≥2),所以数列{a n}是等差数列.考点18 等比数列题组一、选择题1. [2023全国卷甲,5分]设等比数列{a n}的各项均为正数,前n项和为S n ,若a1=1,S5=5S3−4,则S4= ( C )A. 158B. 658C. 15D. 40[解析]解法一若该数列的公比q=1,代入S5=5S3−4中,有5=5×3−4,不成立,所以q≠1.由1−q 51−q =5×1−q31−q−4,化简得q4−5q2+4=0,所以q2=1(舍)或q2=4,由于此数列各项均为正数,所以q=2,所以S4=1−q41−q= 15.故选C.解法二由已知得1+q+q2+q3+q4=5(1+q+q2)−4,整理得(1+q)(q3−4q)=0,由于此数列各项均为正数,所以q=2,所以S4=1+q+q2+q3=1+2+4+8=15.故选C.2. [2023天津,5分]已知{a n}为等比数列,S n为数列{a n}的前n项和,a n+1= 2S n+2 ,则a4的值为( C )A. 3B. 18C. 54D. 152[解析]解法一因为a n+1=2S n+2,所以当n≥2时,a n=2S n−1+2,两式相减得a n+1−a n=2a n,即a n+1=3a n,所以数列{a n}是公比q=a n+1a n=3的等比数列.当n=1时,a2=2S1+2=2a1+2,又a2=3a1,所以3a1=2a1+ 2,解得a1=2,所以a4=a1q3=2×33=54,故选C.解法二设等比数列{a n}的公比为q,因为a n+1=2S n+2,所以公比q≠1,且a1q n=2a1(1−q n)1−q +2=−2a11−qq n+2a11−q+2,所以{a1=−2a11−q,0=2a11−q+2,又a1≠0,所以q=3,a1=2,所以a4=a1q3=2×33=54,故选C.3. [2023新高考卷Ⅱ,5分]记S n 为等比数列{a n } 的前n 项和,若S 4=−5 ,S 6=21S 2 ,则S 8= ( C ) A. 120B. 85C. −85D. −120[解析]解法一 设等比数列{a n } 的公比为q (q ≠0) ,由题意易知q ≠1 ,则{a 1(1−q 4)1−q=−5,a1(1−q6)1−q=21×a 1(1−q 2)1−q,化简整理得{q 2=4,a 11−q =13. 所以S 8=a 1(1−q 8)1−q=13×(1−44)=−85 .故选C . 解法二 易知S 2 ,S 4−S 2 ,S 6−S 4 ,S 8−S 6 ,…… 为等比数列,所以(S 4−S 2)2=S 2⋅(S 6−S 4) ,解得S 2=−1 或S 2=54.当S 2=−1 时,由(S 6−S 4)2=(S 4−S 2)⋅(S 8−S 6) ,解得S 8=−85 ;当S 2=54 时,结合S 4=−5得{a 1(1−q 4)1−q =−5a 1(1−q 2)1−q =54,化简可得q 2=−5 ,不成立,舍去.所以S 8=−85 ,故选C .4. [2022全国卷乙,5分]已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( D ) A. 14B. 12C. 6D. 3[解析]解法一 设等比数列{a n } 的公比为q ,由题意可得{a 1+a 2+a 3=168,a 2−a 5=42,即{a 1(1+q +q 2)=168,a 1q (1−q 3)=a 1q (1−q )(1+q +q 2)=42, 解得{a 1=96,q =12, 所以a 6=a 1q 5=3 ,故选D .解法二 设等比数列{a n } 的公比为q ,易知q ≠1 ,由题意可得{a 1(1−q 3)1−q=168,a 1q (1−q3)=42,解得{a 1=96,q =12,所以a 6=a 1q 5=3 ,故选D .5. [2021全国卷甲,5分]记S n 为等比数列{a n } 的前n 项和.若S 2=4 ,S 4=6 ,则S 6= ( A ) A. 7B. 8C. 9D. 10[解析]解法一因为S2=4,S4=6,所以公比q≠1,所以由等比数列的前n项和公式,得{S2=a1(1−q2)1−q=a1(1+q)=4,S4=a1(1−q4)1−q =a1(1+q)(1+q2)=6,两式相除,(技巧点拨:与等比数列有关的方程组,求解时通常利用两式相除,达到消元、降次的目的)得q2=12,所以{a1=4(2−√2),q=√22或{a1=4(2+√2),q=−√22,所以S6=a1(1−q6)1−q=7.故选A.解法二易知公比q≠−1,则S2,S4−S2,S6−S4构成等比数列,所以S2(S6−S4)=(S4−S2)2,即4(S6−6)=22,所以S6=7.故选A.6. [2020全国卷Ⅰ,5分]设{a n}是等比数列,且a1+a2+a3=1 ,a2+a3+ a4=2 ,则a6+a7+a8= ( D )A. 12B. 24C. 30D. 32[解析]解法一设等比数列{a n}的公比为q,所以a2+a3+a4a1+a2+a3=(a1+a2+a3)qa1+a2+a3=q=2,由a1+a2+a3=a1(1+q+q2)=a1(1+2+22)=1,解得a1=17,所以a6+a7+a8=a1(q5+q6+q7)=17×(25+26+27)=17×25×(1+2+22)=32,故选D.解法二令b n=a n+a n+1+a n+2(n∈N∗),则b n+1=a n+1+a n+2+a n+3.设数列{a n}的公比为q,则b n+1b n =a n+1+a n+2+a n+3a n+a n+1+a n+2=(a n+a n+1+a n+2)qa n+a n+1+a n+2=q,所以数列{b n}为等比数列,由题意知b1=1,b2=2,所以等比数列{b n}的公比q=2,所以b n=2n−1,所以b6=a6+a7+a8=25=32,故选D.7. [2020全国卷Ⅱ,5分]数列{a n}中,a1=2 ,a m+n=a m a n .若a k+1+a k+2+⋯+a k+10=215−25 ,则k= ( C )A. 2B. 3C. 4D. 5[解析]令m=1,则由a m+n=a m a n,得a n+1=a1a n,即a n+1a n=a1=2,所以数列{a n}是首项为2、公比为2的等比数列,所以a n=2n,所以a k+1+a k+2+⋯+a k+10=a k(a1+a2+⋯+a10)=2k×2×(1−210)1−2=2k+1×(210−1)=215−25=25×(210−1),解得k=4,故选C.8. [2019全国卷Ⅲ,5分]已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ( C )A. 16B. 8C. 4D. 2[解析]设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2= 4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2= 4.二、填空题9. [2023全国卷乙,5分]已知{a n}为等比数列,a2a4a5=a3a6 ,a9a10=−8 ,则a7=−2 .[解析]解法一设数列{a n}的公比为q,则由a2a4a5=a3a6,得a1q⋅a1q3⋅a1q4=a1q2⋅a1q5.又a1≠0,且q≠0,所以可得a1q=1①.又a9a10=a1q8⋅a1q9=a12q17=−8②,所以由①②可得q15=−8,q5=−2,所以a7=a1q6=a1q⋅q5=−2.解法二设数列{a n}的公比为q.因为a4a5=a3a6≠0,所以a2=1.又a9a10= a2q7⋅a2q8=q15=−8,于是q5=−2,所以a7=a2q5=−2.10. [2019全国卷Ⅰ,5分]记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=1213.[解析]解法一设等比数列{a n}的公比为q,因为a42=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.解法二设等比数列{a n}的公比为q,因为a42=a6,所以a2a6=a6,所以a2=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.三、解答题11. [2020全国卷Ⅰ,12分]设{a n}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{a n}的公比;[答案]设{a n}的公比为q,由题设得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q−2=0,解得q=1(舍去)或q=−2.故{a n}的公比为−2.(2)若a1=1,求数列{na n}的前n项和.[答案]记S n为{na n}的前n项和.由(1)及题设可得,a n=(−2)n−1.所以S n=1+2×(−2)+⋯+n×(−2)n−1,−2S n=−2+2×(−2)2+⋯+(n−1)×(−2)n−1+n×(−2)n.可得3S n=1+(−2)+(−2)2+⋯+(−2)n−1−n×(−2)n=1−(−2)n3−n×(−2)n.所以S n=19−(3n+1)(−2)n9.12. [2020新高考卷Ⅰ,12分]已知公比大于1的等比数列{a n}满足a2+a4= 20 ,a3=8 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去)或q=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100 .[答案]由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+⋯+(b32+b33+⋯+b63)+ (b64+b65+⋯+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100−63)=480.【方法技巧】求解本题第(2)问的关键在于找准m的取值和a n的联系,可从小到大进行列举,找规律,从而可得结果.13. [2019全国卷Ⅱ,12分]已知{a n}是各项均为正数的等比数列,a1=2 ,a3= 2a2+16 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q,由题设得2q2=4q+16,即q2−2q−8=0.解得q=−2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n−1=22n−1.(2)设b n=log2a n ,求数列{b n}的前n项和.[答案]由(1)得b n =(2n −1)log 22=2n −1 ,因此数列{b n } 的前n 项和为1+3+⋯+2n −1=n 2 .考点19 递推数列与数列求和题组一一、选择题1. [2021浙江,4分]已知数列{a n } 满足a 1=1 ,a n+1=n 1+√a n ∈N ∗) ,记数列{a n } 的前n 项和为S n ,则( A ) A. 32<S 100<3B. 3<S 100<4C. 4<S 100<92D. 92<S 100<5[解析]因为a 1=1 ,a n+1=n 1+√a ,所以a n >0 ,a 2=12 ,所以S 100>32.1an+1=1+√a n a n =1a n+√a =(√a +12)2−14 .所以1a n+1<(√a +12)2,两边同时开方可得√a <√a +12 ,则√a <√a +12 ,… ,√a <√a 12 ,由累加法可得√a <√a +n2=1+n2 ,所以√a ≤1+n−12=n+12,所以√a n ≥2n+1 ,所以a n+1=n 1+√a ≤a n1+2n+1=n+1n+3a n ,即a n+1a n≤n+1n+3 ,则a nan−1≤n n+2 ,… ,a 2a 1≤24 ,由累乘法可得当n ≥2 时,a n =a n a 1≤nn+2×n−1n+1×n−2n ×…×35×24=6(n+2)(n+1)=6(1n+1−1n+2) ,所以S 100<1+6(13−14+14−15+⋯+1101−1102)=1+6(13−1102)<1+2=3 ,故选A .【方法技巧】利用放缩法,结合累加法与累乘法求得a n ≤6(1n+1−1n+2) ,从而利用裂项相消法计算S 100 的取值范围.二、填空题2. [2021新高考卷Ⅰ,5分]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2 ,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2 ,以此类推.则对折4次共可以得到不同规格图形的种数为5;如果对折n 次,那么∑nk=1S k = 240(3−n+32n) dm 2 .[解析]依题意得,S 1=120×2=240 ;S 2=60×3=180 ;当n =3 时,共可以得到5dm ×6dm ,52dm ×12dm ,10dm ×3dm ,20dm ×32dm 四种规格的图形,且5×6=30 ,52×12=30 ,10×3=30 ,20×32=30 ,所以S 3=30×4=120 ;当n =4 时,共可以得到5dm ×3dm ,52dm ×6dm ,54dm ×12dm ,10dm ×32dm ,20dm ×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15 ,52×6=15 ,54×12=15 ,10×32=15 ,20×34=15 ,所以S 4=15×5=75 ; ……所以可归纳S k =2402k×(k +1)=240(k+1)2k.所以∑n k=1S k =240(1+322+423+⋯+n2n−1+n+12n) ①,所以12×∑nk=1S k =240(222+323+424+⋯+n2n +n+12n+1) ②,由①−② 得,12×∑nk=1S k =240(1+122+123+124+⋯+12n −n+12n+1)=240(1+122−12n ×121−12−n+12n+1)=240(32−n+32n+1) ,(提示:用等比数列的前n 项和公式S n =a 1−a n q 1−q(q ≠1) ,可避免计算数列项数时出错)所以∑nk=1S k =240(3−n+32n)dm 2 .3. [2020全国卷Ⅰ,5分]数列{a n } 满足a n+2+(−1)n a n =3n −1 ,前16项和为540,则a 1= 7.[解析]因为数列{a n } 满足a n+2+(−1)n a n =3n −1 ,所以当n =2k(k ∈N ∗) 时,a 2k+2+a 2k =6k −1(k ∈N ∗) ,所以(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92 .当n =2k −1(k ∈N ∗) 时,a 2k+1−a 2k−1=6k −4(k ∈N ∗) ,所以当k ≥2 时,a 2k−1=a 1+(a 3−a 1)+(a 5−a 3)+(a 7−a 5)+⋯+(a 2k−1−a 2k−3)=a 1+2+8+14+⋯+[6(k −1)−4]=a 1+(2+6k−10)(k−1)2=a 1+(3k −4)(k −1) ,当k =1 时上式也成立,所以a 2k−1=a 1+(3k −4)(k −1)(k ∈N ∗) ,即a 2k−1=a 1+3k 2−7k +4(k ∈N ∗) .解法一所以a1+a3+a5+a7+⋯+a15=8a1+3×(12+22+32+⋯+82)−7×(1+2+3+⋯+8)+4×8=8a1+3×8×(8+1)×(2×8+1)6−7×(1+8)×82+32=8a1+612−252+32=8a1+392.又前16项和为540,所以92+8a1+ 392=540,解得a1=7.解法二所以a2k−1=a1+(3k2+3k+1)−10k+3=a1+[(k+1)3−k3]−10k+3,所以a1+a3+a5+a7+⋯+a15=8a1+(23−13)+(33−23)+⋯+(93−83)−10×(1+8)×82+3×8=8a1+93−13−360+24=8a1+392.又前16项和为540,所以92+8a1+392=540,解得a1=7.【拓展结论】12+22+32+42+⋯+n2=n(n+1)(2n+1)6.三、解答题4. [2023全国卷甲,12分]记S n为数列{a n}的前n项和,已知a2=1,2S n= na n .(1)求{a n}的通项公式;[答案]当n=1时,2S1=a1,即2a1=a1,所以a1=0.当n≥2时,由2S n=na n,得2S n−1=(n−1)a n−1,两式相减得2a n=na n−(n−1)a n−1,即(n−1)a n−1=(n−2)a n,当n=2时,可得a1=0,故当n≥3时,a na n−1=n−1n−2,则a na n−1⋅a n−1a n−2⋅…⋅a3a2=n−1n−2⋅n−2n−3⋅…⋅21,整理得a na2=n−1,因为a2=1,所以a n=n−1(n≥3).当n=1,n=2时,均满足上式,所以a n=n−1.(2)求数列{a n+12n}的前n项和T n .[答案]令b n=a n+12n =n2n,则T n=b1+b2+⋯+b n−1+b n=12+222+⋯+n−12n−1+n2n①,1 2T n=122+223+⋯+n−12n+n2n+1②,由①−②得12T n=12+122+123+⋯+12n−n2n+1=12(1−12n)1−12−n2n+1=1−2+n2n+1,即T n=2−2+n2n.5. [2019全国卷Ⅱ,12分]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1= 3a n−b n+4,4b n+1=3b n−a n−4 .(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;[答案]由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1−b1=1,所以{a n−b n}是首项为1,公差为2的等差数列.(2)求{a n}和{b n}的通项公式.[答案]由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.【方法技巧】破解此类题的关键:一是用定义,即根据所给的等式的特征,将其转化为数列相邻两项的差(比)的关系,利用等差(比)数列的定义,即可证明数列为等差(比)数列;二是用公式,即会利用等差(比)数列的通项公式,得到各个数列的通项所满足的方程(组),解方程(组),即可求出数列的通项公式.【易错警示】在利用等差(比)数列的定义时,既需注意是从第二项起,又需注意是后项与前项的差(比),在运用等比数列的通项公式时,注意不要与等比数列的前n项和公式搞混.题组二解答题1. [2023新高考卷Ⅱ,12分]已知{a n}为等差数列,b n={a n−6,n为奇数2a n,n为偶数.记S n,T n分别为数列{a n} ,{b n}的前n项和,S4=32,T3=16 . (1)求{a n}的通项公式;[答案]设等差数列{a n}的公差为d.因为b n={a n−6,n为奇数, 2a n,n为偶数,所以b1=a1−6,b2=2a2=2a1+2d,b3=a3−6=a1+2d−6.(提示:由于数列{b n}是一个奇偶项数列,因此求项时需“对号入座”)因为S4=32,T3=16,所以{4a1+6d=32,(a1−6)+(2a1+2d)+(a1+2d−6)=16,(方法技巧:求等差数列的基本量时,常根据已知条件建立方程组求解)解得{a1=5,d=2,所以{a n}的通项公式为a n=2n+3.(提示:等差数列的通项公式为a n=a1+(n−1)d)(2)证明:当n>5时,T n>S n . [答案]由(1)知a n=2n+3,所以S n=n[5+(2n+3)〗2=n2+4n,b n={2n−3,n为奇数,4n+6,n为偶数,当n为奇数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−7)+(4n+2)]+2n−3= [−1+3+7+⋯+(2n−7)+(2n−3)]+[14+22+30+⋯+(4n+2)]=n+12(−1+2n−3)2+n−12(14+4n+2)2=3n2+5n−102.(方法技巧:如果数列的奇数项、偶数项构成等差或等比数列,则求其前n项和时可以使用分组求和方法,使具有相同结构的部分求和,然后将结果相加、化简即可)当n>5时,T n−S n=3n2+5n−102−(n2+4n)=n2−3n−102=(n−5)(n+2)2>0,所以T n>S n.当n为偶数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−5)+ (4n+6)]=[−1+3+7+⋯+(2n−5)]+[14+22+30+⋯+(4n+6)]= n2(−1+2n−5)2+n2(14+4n+6)2=3n2+7n2.当n>5时,T n−S n=3n2+7n2−(n2+4n)=n2−n2=n(n−1)2>0,所以T n>S n.综上可知,当n>5时,T n>S n.2. [2022新高考卷Ⅰ,10分]记S n为数列{a n}的前n项和,已知a1=1 ,{S na n}是公差为13的等差数列.(1)求{a n}的通项公式;[答案]因为a1=1,所以S1a1=1,又{S na n }是公差为13的等差数列,所以S na n =1+(n−1)×13=n+23.所以S n=n+23a n.因为当n≥2时,a n=S n−S n−1=n+23a n−n+13a n−1,所以n+13a n−1=n−13a n(n≥2),所以a na n−1=n+1n−1(n≥2),所以a2a1×a3a2×…×a n−1a n−2×a na n−1=31×42×53×…×nn−2×n+1n−1=n(n+1)2(n≥2),所以a n=n(n+1)2(n≥2),又a1=1也满足上式,所以a n=n(n+1)2(n∈N∗).(2)证明:1a1+1a2+⋯+1a n<2 .[答案]因为a n=n(n+1)2,所以1a n=2n(n+1)=2(1n−1n+1),所以1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯+(1n−1−1n)+(1n−1n+1)]=2(1−1n+1)<2.3. [2021全国卷乙,12分]记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n +1b n=2 .(1)证明:数列{b n}是等差数列. [答案]因为b n是数列{S n}的前n项积,所以n≥2时,S n=b nb n−1,代入2S n +1b n=2可得,2b n−1b n+1b n=2,整理可得2b n−1+1=2b n,即b n−b n−1=12(n≥2).又2S1+1b1=3b1=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)求{a n}的通项公式.[答案]由(1)可知,b n=n+22,则2S n+2n+2=2,所以S n=n+2n+1,当n=1时,a1=S1=32,当n≥2时,a n=S n−S n−1=n+2n+1−n+1n=−1n(n+1).故a n={32,n=1,−1n(n+1),n≥2.【易错警示】研究数列{a n}的通项与前n项和S n的关系时,一定要检验n=1的情况.4. [2021新高考卷Ⅰ,10分]已知数列{a n}满足a1=1 ,a n+1={a n+1,n为奇数, a n+2,n为偶数.(1)记b n=a2n ,写出b1 ,b2 ,并求数列{b n}的通项公式;[答案]因为b n=a2n,且a1=1,a n+1={a n+1,n为奇数, a n+2,n为偶数,所以b1=a2=a1+1=2,b2=a4=a3+1=a2+2+1=5.因为b n=a2n,所以b n+1=a2n+2=a2n+1+1=a2n+1+1=a2n+2+1=a2n+3,所以b n+1−b n=a2n+3−a2n=3,所以数列{b n}是以2为首项,3为公差的等差数列,b n=2+3(n−1)=3n−1,n∈N∗.(2)求{a n}的前20项和.[答案]因为a n+1={a n+1,n为奇数, a n+2,n为偶数,所以k∈N∗时,a2k=a2k−1+1=a2k−1+1,即a2k=a2k−1+1①,a2k+1=a2k+2②,a2k+2=a2k+1+1=a2k+1+1,即a2k+2=a2k+1+1③,所以①+②得a2k+1=a2k−1+3,即a2k+1−a2k−1=3,所以数列{a n}的奇数项是以1为首项,3为公差的等差数列;②+③得a2k+2=a2k+3,即a2k+2−a2k=3,又a2=2,所以数列{a n}的偶数项是以2为首项,3为公差的等差数列.所以数列{a n } 的前20项和S 20=(a 1+a 3+a 5+⋯+a 19)+(a 2+a 4+a 6+⋯+a 20)=10+10×92×3+20+10×92×3=300 .5. [2020全国卷Ⅲ,12分]设数列{a n } 满足a 1=3 ,a n+1=3a n −4n . (1) 计算a 2 ,a 3 ,猜想{a n } 的通项公式并加以证明; [答案]a 2=5 ,a 3=7 . 猜想a n =2n +1 .由已知可得 a n+1−(2n +3)=3[a n −(2n +1)] , a n −(2n +1)=3[a n−1−(2n −1)] , …a 2−5=3(a 1−3) .因为a 1=3 ,所以a n =2n +1 . (2) 求数列{2n a n } 的前n 项和S n . [答案]由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+⋯+(2n +1)×2n ①. 从而2S n =3×22+5×23+7×24+⋯+(2n +1)×2n+1 ②.①−② 得−S n =3×2+2×22+2×23+⋯+2×2n −(2n +1)×2n+1 . 所以S n =(2n −1)2n+1+2 .6. [2019天津,14分]设{a n } 是等差数列,{b n } 是等比数列.已知a 1=4 ,b 1=6 ,b 2=2a 2−2 ,b 3=2a 3+4 . (Ⅰ) 求{a n } 和{b n } 的通项公式;[答案]设等差数列{a n } 的公差为d ,等比数列{b n } 的公比为q .依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2, 故a n =4+(n −1)×3=3n +1 ,b n =6×2n−1=3×2n .所以{a n } 的通项公式为a n =3n +1 ,{b n } 的通项公式为b n =3×2n . (Ⅱ) 设数列{c n } 满足c 1=1 ,c n ={1,2k <n <2k+1,b k ,n =2k, 其中k ∈N ∗ . (ⅰ) 求数列{a 2n (c 2n −1)} 的通项公式;[答案]a 2n (c 2n −1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1 . 所以数列{a 2n (c 2n −1)} 的通项公式为a 2n (c 2n −1)=9×4n −1 .(ⅱ) 求∑2ni=1a i c i (n ∈N ∗) .[答案]∑2n i=1a i c i =∑2ni=1[a i +a i (c i −1)]=∑2ni=1a i +∑ni=1a 2i (c 2i −1)=[2n×4+2n (2n −1)2×3]+∑ni=1(9×4i −1)=(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n=27×22n−1+5×2n−1−n −12(n ∈N ∗) .考点20 数列的综合应用题组一一、选择题1. [2021北京,4分]数列{a n } 是递增的整数数列,且a 1≥3 ,a 1+a 2+a 3+⋯+a n =100 ,则n 的最大值为( C ) A. 9B. 10C. 11D. 12[解析]因为数列{a n } 满足三个特征,整数数列,递增,前n 项和为100,所以欲求n 的最大值,需要保证a k+1−a k (k ≤n −1) 的值取最小的正整数.又a 1≥3 ,故可取a 1=3 ,a k+1−a k =1 ,则数列{a n } 的前10项为3,4,5,6,7,8,9,10,11,12,第11项a 11=100−(3+4+5+6+7+8+9+10+11+12)=25 ,满足题意,取数列{a n } 的前11项为3,4,5,6,7,8,9,10,11,12,13,则第12项a 12=100−(3+4+5+6+7+8+9+10+11+12+13)=12 ,不满足题意,故n 的最大值为11.二、填空题2. [2020江苏,5分]设{a n } 是公差为d 的等差数列,{b n } 是公比为q 的等比数列.已知数列{a n +b n } 的前n 项和S n =n 2−n +2n −1(n ∈N ∗) ,则d +q 的值是4.[解析]解法一 当n =1 时,S 1=a 1+b 1=1 ①,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,则a 2+b 2=4 ②,a 3+b 3=8 ③,a 4+b 4=14 ④,②−① 得d +b 1(q −1)=3 ⑤,③−② 得d +b 2(q −1)=4 ⑥,④−③ 得d +b 3(q −1)=6 ⑦,⑥−⑤ 得b 1(q −1)2=1 ,⑦−⑥ 得b 2(q −1)2=2 ,则q =2 ,b 1=1 ,d =2 ,所以d +q =4 .解法二 由题意可得S 1=a 1+b 1=1 ,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,易知当n =1 时也成立,则a 1+(n −1)d +b 1q n−1=dn +a 1−d +b 1q n−1=2n −2+2n−1 对任意正整数n 恒成立,则d =2 ,q =2 ,d +q =4 . 【速解】 由等差数列和等比数列的前n 项和的特征可得等差数列{a n } 的前n 项和H n =n 2−n ,等比数列{b n } 的前n 项和T n =2n −1 ,则d =2 ,q =2 ,d +q =4 .【方法技巧】 公差为d 的等差数列{a n } 的前n 项和S n =An 2+Bn ,其中A =d2 ,B =a 1−d 2 ;公比为q 的等比数列{b n } 的前n 项和T n =C −Cq n,其中C =b11−q(公比q 不等于1).三、解答题3. [2023天津,15分]已知数列{a n } 是等差数列,a 2+a 5=16 ,a 5−a 3=4 . (1) 求{a n } 的通项公式和∑2n −1i=2n−1a i .[答案]设{a n } 的公差为d , 由{a 2+a 5=16,a 5−a 3=4, 得{a 1+d +a 1+4d =16,a 1+4d −(a 1+2d )=4,解得{a 1=3,d =2,所以{a n } 的通项公式为a n =3+2(n −1)=2n +1 .a 2n−1=2⋅2n−1+1=2n +1 ,a 2n −1=2(2n −1)+1=2n+1−1 .(易错:不要把a 2n−1 和a 2n −1 的表达式理解成等比数列的通项公式)从a 2n−1 到a 2n −1 共有2n −1−2n−1+1=2n−1 (项).(提醒:下标相减算项数时要加1) 所以∑2n −1i=2n−1a i =(2n +1+2n+1−1)⋅2n−12=(2n +2⋅2n )⋅2n−12=3⋅2n ⋅2n−12=3⋅22n−2 .( 或∑2n −1i=2n−1a i =2n−1⋅(2n+1)+2n−1(2n−1−1)2⋅2=3⋅22n−2)(2) 已知{b n } 为等比数列,对于任意k ∈N ∗,若2k−1≤n ≤2k −1 ,则b k <a n <b k+1 .(ⅰ) 当k ≥2 时,求证:2k −1<b k <2k +1 ; [答案]因为当2k−1≤n ≤2k −1 时,b k <a n <b k+1 , 所以当2k ≤n +1≤2k+1−1 时,b k+1<a n+1<b k+2 , 可得a n <b k+1<a n+1 .因为{a n}为递增数列,所以若2k−1≤n≤2k−1,则a2k−1≤a n≤a2k−1,得2k+ 1≤a n≤2k+1−1.同理可得2k+1+1≤a n+1≤2k+2−1.故可得2k+1−1<b k+1<2k+1+1,(提醒:大于大的,小于小的)所以2k−1<b k<2k+1.综上,当k≥2时,2k−1<b k<2k+1.(ⅱ)求{b n}的通项公式及其前n项和.[答案]由题意知{b n}是q≠1的正项等比数列,(若q=1,则{b n}为常数列,与(i)矛盾)设{b n}的通项公式为b n=p⋅q n(p>0,q>0且q≠1),(点拨:若设成b n= b1⋅q n−1,不利于下一步的化简)由(i)知,2n−1<b n<2n+1,即2n−1<p⋅q n<2n+1,则有1−12n <p⋅(q2)n<1+12n.①当q2>1,即q>2时,∃n0∈N∗,使得p⋅(q2)n0>2,与p⋅(q2)n0<1+12n0矛盾;②当0<q2<1,q≠1,即0<q<2且q≠1时,∃n1∈N∗,使得p⋅(q2)n1<12,与p⋅(q2)n1>1−12n1矛盾.故q=2.(思路引导:从(i)的结论可以观察出b n=2n,通过反证法证明q>2和0<q<2且q≠1时不等式不成立,从而得到q=2)因为2n−1<b n<2n+1,所以b n=2n.设{b n}的前n项和为S n,则S n=2(1−2n)1−2=2n+1−2.4. [2022新高考卷Ⅱ,10分]已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4 .(1)证明:a1=b1 ;[答案]设等差数列{a n}的公差为d,由a2−b2=a3−b3得a1+d−2b1=a1+2d−4b1,即d=2b1,由a2−b2=b4−a4得a1+d−2b1=8b1−(a1+3d),即a1=5b1−2d,将d=2b1代入,得a1=5b1−2×2b1=b1,即a1=b1.。
高考数学选择、填空题专项汇编题(共40套)[附答案]
![高考数学选择、填空题专项汇编题(共40套)[附答案]](https://img.taocdn.com/s3/m/7e1b7458227916888586d706.png)
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
2023年新高考数学选择填空专项练习题六(附答案解析)

∴1= an
1- 1 an an-1
+
1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,
新高考数学二轮专题复习高频考点强化训练4(附解析)

强化训练4 三角函数的图象与性质——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知角α的顶点与原点θ重合,始边与x 轴的非负半轴重合,终边过点P (m ,4)(m ≠0),且cos α=m5,则tan α=( )A .±43B .43C .±34D .342.[2022·湖南宁乡模拟]将函数f (x )=sin ⎝⎛⎭⎫x -π4 图象上的所有点向左平移π4个单位长度,则所得图象的函数解析式是( )A .y =sin xB .y =cos xC .y =-sin xD .y =-cos x3.[2022·河北张家口三模]已知tan α2 =5 -2,则cos αcos 2αsin α-cos α=( )A .-65B .-35C .35D .654.[2022·湖南师大附中三模]某智能主动降噪耳机工作的原理是利用芯片生成与噪音的相位相反的声波,通过两者叠加完全抵消掉噪音(如图),已知噪音的声波曲线y =A sin (ωx+φ)(其中A >0,ω>0,0≤φ<2π)的振幅为1,周期为2,初相位为π2,则用来降噪的声波曲线的解析式是( )A .y =sin πxB .y =cos πxC .y =-sin πxD .y =-cos πx5.[2022·全国甲卷]将函数f (x )=sin (ωx +π3 )(ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .126.[2022·湖北襄阳二模]函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的图象可以由y =2 sin ωx 的图象( )A .向左平移π3 个单位长度得到B .向左平移5π6 个单位长度得到C .向右平移5π3 个单位长度得到D .向右平移5π6个单位长度得到7.[2022·山东潍坊三模]设函数f (x )=|sin x |,若a =f (ln 2),b =f (log 132),c =f (312),则( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c8.[2022·山东泰安二模]已知函数f ()x =sin ()ωx +φ ⎝⎛⎭⎫ω>0,||φ<π2 的图象,如图所示,则( )A .函数f (x )的最小正周期是2πB .函数f (x )在(π2 ,π)上单调递减C .曲线y =f (x +π12 )关于直线x =-π2 对称D .函数f (x )在⎣⎡⎦⎤3π4,4π3 上的最小值是-1二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.下列四个函数中,以π为周期且在(0,π2)上单调递增的偶函数有( )A .y =cos |2x |B .y =sin 2xC .y =|tan x |D .y =lg |sin x |10.[2022·河北秦皇岛二模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴方程为x =π6 ,与其相邻对称中心的距离为π4,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .φ=π6D .φ=π311.要得到函数y =sin x 的图象,只需将y =sin (2x +π4)的图象( )A .先将图象向右平移π8 ,再将图象上各点的纵坐标不变,横坐标变为原来的2倍B .先将图象向右平移π2,再将图象上各点的纵坐标不变,横坐标变为原来的2倍C .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π4D .先将图象上各点的纵坐标不变,横坐标变为原来的2倍,再将图象向右平移π812.[2022·山东济南三模]将函数f (x )=cos (2x -π3 )图象上所有的点向右平移π6个单位长度,得到函数g (x )的图象,则下列说法正确的是( )A .g (x )的最小正周期为πB .g (x )图象的一个对称中心为(7π12 ,0)C .g (x )的单调递减区间为⎣⎡⎦⎤π3+k π,5π6+k π (k ∈Z ) D .g (x )的图象与函数y =-sin (2x -π6)的图象重合三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东枣庄三模]已知α为锐角,且sin α=34,则cos (π-α)的值为________.14.[2022·山东日照三模]已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则φ=________.15.[2022·辽宁沈阳一模]函数f (x )=2cos x -cos 2x 的最大值为________.16.[2022·北京海淀二模]已知f (x )=sin x +cos x 的图象向右平移a (a >0)个单位后得到g (x )的图象,则函数g (x )的最大值为________;若f (x )+g (x )的值域为{0},则a 的最小值为________.强化训练4 三角函数的图象与性质 1.解析:cos α=m m2+42=m 5 ,解得:m =±3,故tan α=4m =±43 .答案:A2.解析:将函数f (x )=sin (x -π4 )图象上的所有点向左平移π4 个单位长度,则所得图象的函数解析式是f (x )=sin (x -π4 +π4 )=sin x. 答案:A3.解析:tan α=2(5-2)1-(5-2)2 =12 ,所以cos αcos 2αsin α-cos α =cos α(cos2α-sin2α)sinα-cos α=cos α(cos α-sin α)(cos α+sin α)sin α-cos α =-cos α(cos α+sin α)=-cos2α+sinαcos αsin2α+cos2α =-1+tanα1+tan2α =-65 .答案:A4.解析:由题意,A =1,φ=π2 且T =2πω =2,则ω=π, 所以y =sin (πx +π2 )=cos πx ,则降噪的声波曲线为y =-cos πx. 答案:D5.解析:通解 将函数f (x )=sin (ωx +π3 )的图象向左平移π2 个单位长度得到y =sin (ωx +π2 ω+π3 )的图象.由所得图象关于y 轴对称,得π2 ω+π3 =kπ+π2 (k ∈Z ),所以ω=2k +13 (k ∈Z ).因为ω>0,所以令k =0,得ω的最小值为13.故选C.快解 由曲线C 关于y 轴对称,可得函数f (x )=sin (ωx +π3 )的图象关于直线x =π2 对称,所以f (π2 )=sin (πω2 +π3 )=±1,然后依次代入各选项验证,确定选C. 答案:C6.解析:由图可知A = 2 ,T =π,则ω=2,所以f (x )= 2 sin (2x +φ).由2×7π12 +φ=3π2 +2kπ(k ∈Z ),|φ|<π2 ,得φ=π3 ,所以f (x )= 2 sin (2x +π3 ).函数y = 2 sin 2x 的图象向右平移5π6 个单位长度,所得图象对应的函数解析式为y = 2 sin ⎣⎢⎡⎦⎥⎤2(x -5π6) = 2 sin (2x -5π3 )= 2 sin (2x +π3 )=f (x ),所以D 正确. 答案:D7.解析:函数f (x )=|sin x|为偶函数且x =π2 为其一条对称轴,故b =f (log 132)=f (log32),显然0<log32=ln 2ln 3 <ln 2<1,故b<a.因为1.7<312 <1.8,1.5<π2 <1.6,ln 2<1<π2 ,所以a<c ,所以b<a<c. 答案:D8.解析:由图可知,14 T =5π12 -π6 =π4 ,∴T =π ,ω=2πT =2 , sin (2×π6 +φ)=0 ,φ=-π3 , ∴f (x )=sin (2x -π3 ) ,对于A ,T =π ,故错误;对于B ,当x ∈(π2 ,π) 时,2x -π3 ∈(2π3 ,5π3 ) ,由函数y =sin x 的性质可知当x ∈(π2 ,3π2 ) 时,单调递减,当x ∈⎣⎢⎡⎦⎥⎤3π2,2π 时单调递增,2π3 ∈(π2 ,3π2 ),5π3 ∈⎣⎢⎡⎦⎥⎤3π2,2π ,故B 错误;对于C ,f (x +π12 )=sin (2x +π6 -π3 )=sin (2x -π6 ) ,将x =-π2 带入上式得f (-π2 +π12 )=sin (-π-π6 )=sin π6≠±1,故C 错误;对于D ,当x ∈⎣⎢⎡⎦⎥⎤3π4,4π3 时,2x -π3 ∈⎣⎢⎡⎦⎥⎤7π6,7π3 ,∴当2x -π3 =3π2 ,即x =11π12 时,f (x ) 取最小值-1,故D 正确. 答案:D9.解析:y =cos |2x|在(0,π2 )上不单调,故A 错误;y =sin 2x 为奇函数,故B 错误; y =|tan x|图象如图:故最小正周期为π,在(0,π2 )上单调递增,且为偶函数,故C 正确; y =|sin x|最小正周期为π,在(0,π2 )上单调递增,且为偶函数,则y =lg |sin x|也是以π为周期且在(0,π2 )上单调递增的偶函数,故D 正确. 答案:CD10.解析:因为f (x )图象相邻的对称中心与对称轴的距离为π4 ,所以最小正周期T =π,故A 正确,B 不正确;因为ω=2πT =2,且2×π6 +φ=π2 +kπ(k ∈Z ),|φ|<π2 ,所以φ=π6 ,故C 正确,D 不正确. 答案:AC11.解析:y =sin (2x +π4 )=sin [2(x +π8 )]向右平移π8 个单位长度,得y =sin 2x ,再将横坐标扩大2倍得到y =sin x ,故A 正确,B 错误;y =sin (2x +π4 )横坐标扩大2倍,得到sin (x +π4 )再向右平移π4 个单位长度得到y =sin x ,故C 正确,D 错误. 答案:AC12.解析:根据题意,g (x )=cos ⎣⎢⎡⎦⎥⎤2(x -π6)-π3 =cos (2x -2π3 ),则周期T =2π2 =π,A 正确;对B ,令2x -2π3 =π2 +kπ(k ∈Z )⇒x =7π12 +kπ2(k ∈Z ),B 正确;对C ,令2kπ≤2x -2π3 ≤π+2kπ(k ∈Z )⇒π3 +kπ≤x≤5π6 +kπ(k ∈Z ),即函数的减区间为⎣⎢⎡⎦⎥⎤π3+kπ,5π6+kπ (k ∈Z ),C 正确;对D ,因为y =-sin (2x -π6 )=-sin (2x -2π3 +π2 )=-cos (2x -2π3 ),D 错误. 答案:ABC13.解析:因为α为锐角,且sin α=34 ,则cos α=1-sin2α =74 ,因此,cos (π-α)=-cos α=-74 .答案:-7414.解析:由T 2 =5π12 -(-π12 )=π2 知,T =π,ω=2ππ =2,由五点法可知,2(-π12 )+φ=0+2kπ(k ∈Z ),即φ=π6 +2kπ(k ∈Z ),又|φ|<π,所以φ=π6 .答案:π615.解析:因为f (x )=2cos x -cos 2x ,所以f (x )=-2cos2x +2cosx +1,令t =cos x ,t ∈[-1,1],所以函数f (x )=2cos x -cos 2x 等价于y =-2t2+2t +1,t ∈[-1,1],又y =-2t2+2t +1=-2(t -12 )2+32 ,t ∈[-1,1],当t =12 时,ymax =32 ,即函数f (x )=2cos x -cos 2x 的最大值为32 .答案:3216.解析:第一空:由f (x )=sin x +cos x = 2 sin (x +π4 )可得g (x )=2 sin (x -a +π4 ),易得g (x )的最大值为 2 ;第二空:若f (x )+g (x )的值域为{0},则f (x )+g (x )= 2 sin (x +π4 )+ 2 sin (x -a +π4 )=0恒成立,即sin (x +π4 )=-sin (x -a +π4 ),又sin (x +π4 )=-sin (x +π4 +π+2kπ),k ∈Z ,故x -a +π4 =x +π4 +π+2kπ,解得a =-π-2kπ,又a>0,故当k =-1时,a 的最小值为π. 答案: 2 π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择、填空题强化训练————————————————————————————————作者:————————————————————————————————日期:2016届高考选择题和填空题专项训练(1)一. 选择题:(1)25(4)(2)i i i +=+( )(A )5(1-38i ) (B )5(1+38i ) (C )1+38i (D)1-38i (2)不等式|2x2-1|≤1的解集为( )(A ){|11}x x -≤≤ (B ){|22}x x -≤≤ (C ){|02}x x ≤≤ (D ){|20}x x -≤≤(3)已知F 1、F 2为椭圆22221x y a b +=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1M F2=600,则椭圆的离心率为( )(A)12(B )22 (C )33 (D)32(4)235(2)(23)lim(1)n n n n →∞-+=-( ) (A)0 (B )32 (C )-27 (D )27(5)等边三角形ABC 的边长为4,M 、N分别为AB 、AC 的中点,沿M N将△A MN折起,使得面A MN与面MNCB 所处的二面角为300,则四棱锥A -MNC B的体积为( ) (A )32(B )32 (C)3 (D)3(6)已知数列{}n a 满足01a =,011n n a a a a -=+++(1n ≥),则当1n ≥时,n a =( )(A )2n (B )(1)2n n + (C )2n-1 (D )2n -1 (7)若二面角l αβ--为1200,直线m α⊥,则β所在平面内的直线与m所成角的取值范围是( ) (A )00(0,90] (B )[300,600] (C )[600,900] (D)[300,900] (8)若(sin )2cos2f x x =-,则(cos )f x =( )(A )2-si n2x (B )2+si n2x (C )2-c os 2x (D )2+cos 2x (9)直角坐标xOy 平面上,平行直线x =n (n =0,1,2,……,5)与平行直线y =n(n=0,1,2,……,5)组成的图形中,矩形共有( )(A )25个 (B)36个 (C )100个 (D )225个(10)已知直线l :x―y ―1=0,l 1:2x ―y―2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ) (A )x ―2y +1=0 (B )x ―2y―1=0 (C)x +y―1=0 (D)x +2y ―1=0 二. 填空题:(11)已知向量集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,2)(4,5),}N a a R λλ==--+∈,则M N =____________.(12)抛物线26y x =的准线方程为 .(13)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是 . (14)函数y x x =-(0x ≥)的最大值为 . (15)若1(2)n x x+-的展开式中常数项为-20,则自然数n= .2016届高考选择题和填空题专项训练(2)一、选择题: 1.复数10)11(ii +-的值是 ( ) A.-1 B.1 C .-32 D.32 2.t an15°+cot15°的值是( ) A .2 B .2+3 C.4 D .334 3.命题p:若a 、b ∈R,则|a|+|b|>1是|a +b|>1的充分而不必要条件;命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则ﻩ( )A.“p或q ”为假 B.“p 且q ”为真 C.p 真q 假 D.p假q 真4.已知F1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B.32C .22D.23 5.已知m 、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m∥n;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是( ) A .0 B.1 C.2 D.36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )ﻩA.2426C AB.242621C A C.2426A A ﻩD.262A 7.已知函数y=log 2x的反函数是y =f —1(x),则函数y = f —1(1-x )的图象是ﻩ( )11(A)xOy11(B)xOy11( C )x_ O_y11(D)xOy8.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是ﻩ( ) A .6πB.3π C.32π D .65π 9.若(1-2x )9展开式的第3项为288,则2111lim()nn x xx →∞+++的值是ﻩ( )A.2 B .1 C .21 D .52 10.如图,A 、B、C 是表面积为48π的球面上三点,A B=2,BC =4,∠ABC=60°,O 为球心,则直线 O A与截面A BC 所成的角是( ) A .arcsin 63B.arcco s63 C.ar csi n33 D.arccos33二、填空题:11.如图,B 地在A 地的正东方向4 km 处,C地在B地的北偏东30°方向2 km 处,河流 的沿岸PQ(曲线)上任意一点到A 的距离 比到B 的距离远2 k m.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运 货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a万元/km 、2a万元/k m,那么修建这两条公路的总费用最低是:________________.12.直线x +2y=0被曲线x2+y 2-6x -2y-15=0所截得的弦长等于 . 13.设函数11()x f x xa⎧+-⎪=⎨⎪⎩(0)(0)x x ≠= 在x =0处连续,则实数a 的值为 . 14.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正确结论的序号).15.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为 时,其容积最大.2016届高考选择题和填空题专项训练(3)一.选择题1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A. –3 B. –1 C. 1 D . 32.已知{}213|||,|6,22A x x B x x x ⎧⎫=+>=+≤⎨⎬⎩⎭则A B = ( )A.[)(]3,21,2-- B.(]()3,21,--+∞ C. (][)3,21,2-- D.(](],31,2-∞-3.设函数 2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x =2处连续,则a= ( )A.12-B.14-C.14 D .134.123212lim 11111n n nn n n n n →∞--+-+-+++++()的值为 ( ) A. –1 B.0 C.12D.1 5.函数22sin sin 44f x x x ππ=+--()()()是 ( ) A .周期为π的偶函数 B.周期为π的奇函数C. 周期为2π的偶函数 D..周期为2π的奇函数6.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( )A.0.1536 B. 0.1808 C. 0.5632 D. 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( )A. 23B. 76C. 45D. 568. 若双曲线2220)x y k k -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A. 6 B. 8 C. 1 D. 49.当04x π<<时,函数22cos ()cos sin sin x f x x x x =-的最小值是 ( )A. 4 B. 12 C.2 D. 1410. 变量x、y满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y)是 A. ( 4.5 ,3 ) B. ( 3,6 ) C . ( 9, 2 ) D. ( 6, 4 ) 二.填空题11. 如右下图,定圆半径为a,圆心为 ( b ,c ), 则直线ax+by+c=0与直线 x–y+1=0的交点在第______象限.12. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)____________.13. 已知复数z 与 (z +2)2-8i 均是纯虚数,则 z = .O yx14. 由图(1)有面积关系: PA B PAB S PA PB S PA PB''∆∆''⋅=⋅,则由(2) 有体积关系: .P A B C P ABCV V '''--=15. 函数110)f x In x x =+->()()(的反函数1().f x -=16、不等式log sin 2(01)a x x a a >>≠且对任意(0,)4x π∈都成立,则a 的取值范围为 .2016届高考选择题和填空题专项训练(4)一、选择题:1.与直线240x y -+=的平行的抛物线2y x =的切线方程是 ( )A .230x y -+=ﻩB.230x y --=C.210x y -+=D.210x y --=2.复数5(13)13i i-++的值是 ( )ﻩA.-16B.16ﻩC.14-ﻩD.1344i -3.已知2211(),()11x x f f x x x --=++的解析式可取为 ( )ﻩA .21x x + B.221x x -+ C .221x x +ﻩD .21xx -+ 4.已知,,a b c 为非零的平面向量. 甲:,:,a b a c b c ⋅=⋅=乙ﻩ( ) A.甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 5.若110a b <<,则下列不等式①a b ab +<;②||||;a b >③a b <;④2b aa b +>中,正确的不等式有( ) A .1个ﻩB .2个ﻩC.3个 D .4个6.已知椭圆221169x y +=的左、右焦点分别为F1、F 2,点P 在椭圆上,若P、F 1、F 2是一个直角三图(2)C 'A 'B'PABC图(1)B'A 'PAB角形的三个顶点,则点P到x 轴的距离为 ( ) ﻩA .95ﻩB .3C .977 D.947.函数()log (1)[0,1]x a f x a x =++在上的最大值和最小值之和为a ,则a 的值为( )A .14ﻩB.12ﻩC .2 D .48.已知数列{n a }的前n项和1111[2()][2(1)()](1,2,),22n n n S a b n n --=---+=其中a 、b是非零常数,则存在数列{n x }、{n y }使得( )ﻩA.,{}n n n n a x y x =+其中为等差数列,{n y }为等比数列 ﻩB .,{}n n n n a x y x =+其中和{n y }都为等差数列ﻩC.,{}n n n n a x y x =⋅其中为等差数列,{n y }都为等比数列 ﻩD.,{}n n n n a x y x =⋅其中和{n y }都为等比数列9.函数3()1f x ax x =++有极值的充要条件是 ( ) ﻩA.0a >ﻩB.0a ≥ﻩC.0a <D.0a ≤10.设集合2{|10},{|440P m m Q m R mx mx =-<<=∈+-<对任意实数x 恒成立},则下列关系中成立的是( )ﻩ A.P QB.Q P ﻩC.P=QD.PQ=二、填空题:11.已知平面αβ与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有____________条.12设随机变量ξ的概率分布为(),,1,2,,5k aP k a k a ξ====常 .13.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)14.设A、B 为两个集合,下列四个命题:①A ⊄B ⇔对任意,x A x B ∈∉有 ②A ⊄ B⇔AB =φﻩ③A ⊄B ⇔A B ④A ⊄ B ⇔存在,x A x B ∈∉使得ﻩ其中真命题的序号是 .(把符合要求的命题序号都填上)15.某日中午12时整,甲船自A 处以16k m/h 的速度向正东行驶,乙船自A 的正北18km 处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距离对时间的变化率是 _________________k m/h.16.若函数f (x )=2cos (312kx π-)的周期为T ,且T ∈(23, 34),则正整数k 的值为 .2016届高考选择题和填空题专项训练(5)一、选择题:1.复数41(1)i +的值是ﻩ ( ) ﻩA.4i ﻩB .-4iC.4D.-42.如果双曲线2211312x y -=上一点P 到右焦点的距离等于13,那么点P 到右准线的距离是ﻩ ﻩ( )ﻩA .135ﻩB.13ﻩC .5 D.5133.设1()f x -是函数2()log (1)f x x =+的反函数,若11[1()][1()]8f a f b --++=,则()f a b +的值为 ﻩ( ) A.1ﻩB .2C .3ﻩD.2log 34.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .90°B.60°C .45°ﻩD.30°5.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是 ( ) ﻩA.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法6.设函数2,0,()(4)(0),(2)2,2,0.x bx c x f x f f f x ⎧++≤=-=-=-⎨>⎩若则关于x 的方程()f x x =解的个数为 ( ) A.1B.2ﻩC.3D .47.设0,0,a b >>则以下不等式中不恒成立....的是 ( )ﻩA .11()()4a b a b ++≥ﻩB .3322a b ab +≥C.22222a b a b ++≥+ﻩD.||a b a b -≥-8.数列{}1112116,,,*,lim()55n n n n n n a a a a n N a a a ++→∞=+=∈+++=中则( )A.25 B.27 C .14 D.4259.设集合{(,)|,},{(,)|20},{(,)|0}U x y x R y R A x y x y m B x y x y n =∈∈=-+>=+-≤,那么 点P (2,3)(U C B )的充要条件是 ( )A .1,5m n >-<ﻩB .1,5m n <-< ﻩC .1,5m n >->ﻩD.1,5m n <->10.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( ) ﻩA.56ﻩB .52ﻩC.48ﻩD.40 二、填空题:11.设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0,f x g x f x g x ''+>且(3)0,g -=则不等式()()0f x g x <的解集是________________________.ﻩﻩ12.已知向量a=(cos ,sin )θθ,向量b =(3,1)-,则|2a-b |的最大值是 . 13.同时抛两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则E ξ= . 14.若31()n x x x+的展开式中的常数项为84,则n= .15.设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为 . 16.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,有如下四个结论:①AC BD ⊥ ②ACD ∆是等边三角形 ③AB 与平面BCD 成60的角 ④AB 与CD 所成的角为60其中真命题的编号是 (写出所有真命题的编号)2016届高考选择题和填空题专项训练(6)一、选择题:1.设集合P={1,2,3,4},Q={2,x x x R ≤∈},则P∩Q等于 ( ) (A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2} 2.函数y =2cos 2x+1(x ∈R )的最小正周期为( ) (A)2π(B)π (C)2π (D)4π 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( ) (A)140种 (B)120种 (C)35种 (D )34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4c m,则该球的体积是 ( )0.人数(人) 时间(小时)20 10 50 1. 1. 2.15 (A)31003cm π (B) 32083cm π (C ) 35003cm π (D)341633cm π 5.若双曲线22218x y b-=的一条准线与抛物线28y x =的准线重合,则双曲线离心率为 ( )(A )2 (B)22 (C) 4 (D)42 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) (A )0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时 7.4(2)x x +的展开式中x3的系数是( )(A)6 (B)12 (C)24 (D)488.若函数log ()(0,1)a y x b a a =+>≠的图象过两点(-1,0)和(0,1),则 ( )(A)a =2,b =2 (B)a=2,b=2 (C )a=2,b=1 (D)a =2,b =2 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数3()31f x x x =-+在闭区间[-3,0]上的最大值、最小值分别是 ( ) (A)1,-1 (B)1,-17 (C)3,-17 (D )9,-19 二、填空题:11.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x )的图象与x 轴交于A 点,它的反函数y=f -1(x )的图象与y 轴交于B点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于____________________.12.二次函数y=ax 2+bx+c(x ∈R)的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.13.以点(1,2)为圆心,与直线4x +3y-35=0相切的圆的方程是________________.14.设数列{an }的前n 项和为S n ,Sn =1(31)2n a -(对于所有n ≥1),且a 4=54,则a 1的数值是_______.15.平面向量,a b 中,已知a =(4,-3),b =1,且a b ⋅=5,则向量b =__________. 16.有下列命题:① G=ab (G≠0)是a,G ,b 成等比数列的充分非必要条件;②若角α,β满足x -3 -2 -1 0 1 2 3 4 y6-4-6 -6-4 06cos αcos β=1,则si n(α+β)=0;③若不等式|x -4|+|x -3|<a 的解集非空,则必有a ≥1;④函数y =si nx +sin |x|的值域是[-2,2].其中错误命题的序号是 .(把你认为错误的命题的序号都填上)2016届高考选择题和填空题专项训练(7)一、选择题:1.若cos 0,sin 20,θθθ><且则角的终边所在象限是( ) A.第一象限ﻩB .第二象限C .第三象限D.第四象限2.对于01a <<,给出下列四个不等式①1log (1)log (1)a a a a +<+;②1log (1)log (1)a a a a+>+;③111a a a a ++<;④111a a a a ++>其中成立的是( ) A.①与③ B.①与④ C.②与③ﻩD.②与④3.已知α、β是不同的两个平面,直线,a b αβ⊂⊂直线,命题:p a b 与无公共点;命题 ://q αβ. 则p q 是的( )A.充分而不必要的条件 B .必要而不充分的条件C.充要条件D.既不充分也不必要的条件4.设复数z 满足1,|1|1zi z z -=+=+则( )A.0 B.1 C.2D.25.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A.12p p B .1221(1)(1)p p p p -+- C.121p p - D .121(1)(1)p p ---6.已知点(2,0)A -、(3,0)B ,动点2(,)P x y PA PB x ⋅=满足,则点P 的轨迹是( )A .圆ﻩB.椭圆C.双曲线ﻩD .抛物线7.已知函数()sin()12f x x ππ=--,则下列命题正确的是( )ﻩA.()f x 是周期为1的奇函数ﻩB.()f x 是周期为2的偶函数 ﻩC.()f x 是周期为1的非奇非偶函数 D.()f x 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下: ξ1 2 3 4 5 6 7 8 9 10 P 23 223 323 423 523 623 723 823 923 m则(10)P ξ==( )ABC DA 1B 1C 1D 1A.923 B.1023 C .913 D .1013 9.已知点1(2,0)F -、2(2,0)F ,动点P 满足21||||2PF PF -=. 当点P 的纵坐标是12时,点P 到坐标原点的距离是( ) A.62 B.32C. 3D.210.设A 、B、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD =DA =3,球心到该平面的距离是球半径的一半,则球的体积是( )A .86π B.646πﻩC.242πﻩD.722π二、填空题:11.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是_____________________. 12.若经过点P(-1,0)的直线与圆224230x y x y ++-+=相切,则此直线在y轴上的截距是 . 13.()cos limx x x x πππ→--= .14.如图,四棱柱ABCD —A1B 1C1D1的底面ABCD 为正方形,侧棱与底面边长均为2a ,且1160A AD A AB ∠=∠=︒,则侧棱AA 1和截面B 1D 1D B的距离是 . 15.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以数值作答)16.定义运算a b *为:()(),a a b a b b a b ≤⎧⎪*=⎨>⎪⎩例如,121*=,则函数f (x )=sin cos x x *的值域为ﻩﻩ.2016届高考选择题和填空题专项训练(8)一、选择题 :1.(1-i)2·i= ( ) A .2-2i B.2+2i C.-2 D.22.已知函数1()lg .().()1xf x f a b f a x-==-=+若则( )A .bB .-bC.1bD .-1b3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( ) ﻩA .7B.10C .13D.44.函数11(1)y x x =-+≥的反函数是( ) ﻩA.y=x 2-2x +2(x<1) ﻩB .y=x 2-2x +2(x ≥1) ﻩC.y=x 2-2x (x <1) D .y=x 2-2x (x ≥1)5.371(2)x x-的展开式中常数项是( )ﻩA .14ﻩB .-14ﻩC.42ﻩD .-426.设A、B、I 均为非空集合,且满足A ⊆B ⊆I,则下列各式中错误..的是ﻩ( ) A.(I C A)∪B=IﻩﻩB.(I C A)∪(I C B)=I ﻩC .A ∩(I C B )=φﻩD.(I C A)(I C B )= I C B7.椭圆2214x y +=的两个焦点为F1、F2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P,则2||PF =( )ﻩA .32ﻩB .3 C.72ﻩD.4 8.设抛物线y 2=8x 的准线与x 轴交于点Q,若过点Q 的直线l与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-12,12] B.[-2,2]ﻩC.[-1,1]ﻩD.[-4,4]9.为了得到函数sin(2)6y x π=-的图象,可以将函数cos2y x =的图象ﻩ( )A.向右平移6π个单位长度ﻩB .向右平移3π个单位长度C.向左平移6π个单位长度 D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S,其四个面的中心分别为E 、F、G、H.设四面体EFGH 的表面积为T,则TS等于( )ﻩﻩA .19B.49ﻩC.14 D .13二、填空题:11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为________________.12.不等式|x +2|≥|x |的解集是 .13.由动点P 向圆x2+y2=1引两条切线PA、PB,切点分别为A 、B ,∠AP B=60°,则动点P的轨迹方程为 .14.已知数列{a n },满足a 1=1,a n =a1+2a 2+3a3+…+(n -1)a n-1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 15.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号). 16、若函数2()log (3)k f x x kx =-+在区间,2k ⎛⎤-∞ ⎥⎝⎦上是减函数,则实数k 的取值范围是 。