2016高考数学选择题、填空题75分练
2016年江苏高考数学试题及答案
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2016•江苏)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=______.2.(5分)(2016•江苏)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是______.3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的焦距是______.4.(5分)(2016•江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是______.5.(5分)(2016•江苏)函数y=的定义域是______.6.(5分)(2016•江苏)如图是一个算法的流程图,则输出的a的值是______.7.(5分)(2016•江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.8.(5分)(2016•江苏)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是______.9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是______.10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是______.11.(5分)(2016•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是______.12.(5分)(2016•江苏)已知实数x,y满足,则x2+y2的取值范围是______.13.(5分)(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是______.14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是______.二、解答题(共6小题,满分90分)15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)(2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)(2016•江苏)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)(2016•江苏)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)(2016•江苏)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)(2016•江苏)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.(2016•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.(2016•江苏)设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(2016•江苏)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC +(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2016•江苏)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)(2016•江苏)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)(2016•江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)(2016•江苏)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)(2016•江苏)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)(2016•江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)(2016•江苏)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)(2016•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a值,是解答的关键.12.(5分)(2016•江苏)已知实数x,y满足,则x2+y2的取值范围是[,13].【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)(2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)(2016•江苏)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).同理①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)(2016•江苏)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)(2016•江苏)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)(2016•江苏)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.(2016•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.(2016•江苏)设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(2016•江苏)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC +(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.祝福语祝你考试成功!。
2016高考真题含答案
2016高考真题含答案题目:2016高考真题2016高考数学试题一、选择题1. 若函数f(x)经过点(2, 5),则f(x)可能是以下哪个函数?(A) f(x) = 2x + 1(B) f(x) = 3x - 1(C) f(x) = 2x - 1(D) f(x) = x^2 + 1答案:C2. 若a,b为正数,且(a+b)^2=81,下列结论中正确的是:(A) a^2 + b^2 = 81(B) a^2 + 2ab + b^2 = 9(C) a + b = √81(D) a - b = 3答案:B3. 若函数f(x)的图像关于点(1, 3)对称,则函数f(x)可能是以下哪个函数?(A) f(x) = 2x + 1(B) f(x) = x^2 - 1(C) f(x) = x^3 + 3x(D) f(x) = √x答案:B二、填空题4. 一个球从100m的高度自由落下,在每次撞地后弹起的高度是它下一次落下的高度的1/2,求第10次落地时共经过的距离。
答案:300m5. 某池塘有一种蚊蜂,蚊每10天滋生2000只,蜂每30天滋生200只,现已知某天时,池塘内共有6200只蚊蜂,该天距今多少天?答案:29天三、解答题6. 已知等比数列{an}的前三项分别为a₁=2,a₂=6,a₃=18,求公比r及第n项的表达式。
解答:由题意,可得 a₂/a₁ = a₃/a₂则 6/2 = 18/6得 r = 3又可得 a₃/a₂ = a₄/a₃则 18/6 = a₄/18得 a₄ = 54所以,公比r为3,第n项的表达式为:aₙ = 2 * 3^(n-1)四、解答题7. 已知在一个三角形ABC中,∠B = 120°,AC = 3,AB = 2√3,则BC的长度为多少?解答:由三角形ABC,我们可以通过余弦定理求得BC的长度。
设BC = x根据余弦定理:x^2 = 3^2 + (2√3)^2 - 2 * 3 * 2√3 * cos(120°)x^2 = 9 + 12 - 12√3 * (-1/2)x^2 = 21x = √21所以,BC的长度为√21。
2016高考全国1数学试卷及解析
2016高考全国1数学试卷及解析2016年高考全国1卷数学试卷及解析一、选择题(共12小题,每小题5分,共60分)1. 题干解析:答案和解析2. 题干解析:答案和解析3. 题干解析:答案和解析4. 题干解析:答案和解析5. 题干解析:答案和解析6. 题干解析:答案和解析7. 题干解析:答案和解析解析:答案和解析9. 题干解析:答案和解析10. 题干解析:答案和解析11. 题干解析:答案和解析12. 题干解析:答案和解析二、非选择题(共8小题,每小题10分,共80分)13. 题干解析:答案和解析14. 题干解析:答案和解析15. 题干解析:答案和解析解析:答案和解析17. 题干解析:答案和解析18. 题干解析:答案和解析19. 题干解析:答案和解析20. 题干解析:答案和解析综合题(共4小题,每小题15分,共60分)21. 题干解析:答案和解析22. 题干解析:答案和解析23. 题干解析:答案和解析解析:答案和解析本文为2016年高考全国1卷数学试卷及解析,主要回顾了该试卷的选择题和非选择题部分,同时提供了答案和解析。
本文按照试卷的结构分为三个部分:选择题、非选择题和综合题。
在选择题部分,共有12道题目,每题5分,总分60分;非选择题部分共有8道题目,每题10分,总分80分;综合题部分共有4道题目,每题15分,总分60分。
在解析部分,对每一道题目都提供了详细的解答过程和答案,以帮助考生更好地理解和掌握相应的解题方法。
整篇文章以简洁美观的排版和流畅的语句呈现,以保证读者的阅读体验。
总的来说,本文通过对2016年高考全国1卷数学试卷的回顾和解析,旨在帮助考生更好地了解考试内容和解题思路,为备战高考提供实际的帮助和指导。
希望本文能为广大考生带来实际的帮助,并祝愿大家在高考中取得好成绩!。
2016年山东省高考数学试卷(含文理及解析)
2016山东数学文理试题及解析(一)2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),∴T=π,故选:B8.已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,故答案为:312.若(ax2+)5的展开式中x5的系数是﹣80,则实数a= .解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.13.已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD 的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.14.在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.15.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.17.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2AB=BC,求二面角F﹣BC﹣A的余弦值.证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>===﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.18.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.19.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==20.已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.∵e x>1+x,∴x>ln(1+x),∴e x﹣1>x,则x﹣1>lnx,∴F(x)>=.令φ(x)=,则φ′(x)=(x∈[1,2]).∴φ(x)在[1,2]上为减函数,则,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.21.平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S 2=|PM|•|x 0﹣|=(y 0+)•=x 0•,则=,令1+2x 02=t (t ≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x 0=时,取得最大值,此时点P 的坐标为(,).(二)2016年山东省高考数学试卷(文科)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
2016年普通高等学校招生全国统一考试数学(理)上海卷
2016上海理一、填空题(共14小题;共70分) 1. 设 x ∈R ,则不等式 ∣x −3∣<1 的解集为 . 2. 设 z =3+2i i,其中 i 为虚数单位,则 z 的虚部等于 .3. l 1:2x +y −1=0,l 2:2x +y +1=0,则 l 1,l 2 的距离为 .4. 某次体检,6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).5. 已知点 (3,9) 在函数 f (x )=1+a x 的图象上,则 f (x ) 的反函数 f −1(x )= .6. 如图,在正四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 的边长为 3,BD 1 与底面所成角的大小为 arctan 23,则该正四棱柱的高等于 .7. 方程 3sinx =1+cos2x 在区间 [0,2π] 上的解为 .8. 在 (√x 3−2x )n的二项式中,所有项的二项式系数之和为 256,则常数项等于 . 9. 已知 △ABC 的三边长为 3,5,7,则该三角形的外接圆半径等于 .10. 设 a >0,b >0,若关于 x ,y 的方程组 {ax +y =1x +by =1 无解,则 a +b 的取值范围是 .11. 无穷数列 {a n } 由 k 个不同的数组成,S n 为 {a n } 的前 n 项和,若对任意 n ∈N ∗,S n ∈{2,3},则k 的最大值为 .12. 在平面直角坐标系中,已知 A (1,0),B (0,−1),P 是曲线 y =√1−x 2 上一个动点,则 BP⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的取值范围是 .13. 设 a,b ∈R ,c ∈[0,2π],若对任意实数 x 都有 2sin (3x −π3)=asin (bx +c ),则满足条件的有序实数组 (a,b,c ) 的组数为 .14. 如图,在平面直角坐标系 xOy 中,O 为正八边形 A 1A 2⋯A 8 的中心,A 1(1,0),任取不同的两点A i ,A j ,点 P 满足 OP ⃗⃗⃗⃗⃗ +OA i ⃗⃗⃗⃗⃗⃗⃗ +OA j ⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,则点 P 落在第一象限的概率是 .二、选择题(共4小题;共20分)15. 设 a ∈R ,则“a >1”是“a 2>1”的 ( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件D. 既非充分也非必要条件16. 下列极坐标方程中,对应的曲线为下图的是 ( )A. ρ=6+5cosθB. ρ=6+5sinθC. ρ=6−5cosθD. ρ=6−5sinθ17. 已知无穷等比数列 {a n } 的公比为 q ,前 n 项和为 S n ,且 lim n→∞S n =S ,下列条件中,使得 2S n <S (n ∈N ∗) 恒成立的是 ( ) A. a 1>0,0.6<q <0.7 B. a 1<0,−0.7<q <−0.6 C. a 1>0,0.7<q <0.8D. a 1<0,−0.8<q <−0.718. 设 f (x ),g (x ),ℎ(x ) 是定义域为 R 的三个函数,对于命题:①若 f (x )+g (x ),f (x )+ℎ(x ),g (x )+ℎ(x ) 均为增函数,则 f (x ),g (x ),ℎ(x ) 中至少有一个为增函数;②若 f (x )+g (x ),f (x )+ℎ(x ),g (x )+ℎ(x ) 均是以 T 为周期的函数,则 f (x ),g (x ),ℎ(x ) 均是以 T 为周期的函数,下列判断正确的是 ( )A. ①和②均为真命题B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题三、解答题(共5小题;共65分)19. 将边长为 1 的正方形 AA 1O 1O (及其内部)绕 OO 1 旋转一周形成圆柱,如图,AC ⏜ 长为 23π,A 1B 1⏜ 长为 π3,其中 B 1 与 C 在平面 AA 1O 1O 的同侧.(1)求三棱锥 C −O 1A 1B 1 的体积. (2)求异面直线 B 1C 与 AA 1 所成角的大小.20. 有一块正方形菜地 EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到 F 点或河边运走.于是,菜地分为两个区域 S 1 和 S 2,其中 S 1 中的蔬菜运到河边较近,S 2 中的蔬菜运到 F 点较近,而菜地内 S 1 和 S 2 的分界线 C 上的点到河边与到 F 点的距离相等,现建立平面直角坐标系,其中原点 O 为 EF 的中点,点 F 的坐标为 (1,0),如图.(1)求菜地内的分界线 C 的方程.(2)菜农从蔬菜运量估计出 S 1 面积是 S 2 面积的两倍,由此得到 S 1 面积的“经验值”为 83.设 M是 C 上纵坐标为 1 的点,请计算以 EH 为一边,另一边过点 M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于 S 1 面积的经验值.21. 双曲线 x 2−y 2b 2=1(b >0) 的左、右焦点分别为 F 1,F 2,直线 l 过 F 2 且与双曲线交于 A ,B 两点.(1)若 l 的倾斜角为 π2,△F 1AB 是等边三角形,求双曲线的渐近线方程. (2)设 b =√3,若 l 的斜率存在,且 (F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0,求 l 的斜率.22. 已知 a ∈R ,函数 f (x )=log 2(1x +a).(1)当 a =5 时,解不等式 f (x )>0.(2)若关于 x 的方程 f (x )−log 2[(a −4)x +2a −5]=0 的解集中恰有一个元素,求 a 的取值范围.(3)设 a >0,若对任意 t ∈[12,1],函数 f (x ) 在区间 [t,t +1] 上的最大值和最小值的差不超过 1,求 a 的取值范围.23. 若无穷数列 {a n } 满足:只要 a p =a q (p,q ∈N ∗),必有 a p+1=a q+1,则称 {a n } 具有性质 P .(1)若 {a n } 具有性质 P .且 a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求 a 3.(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1,b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由.(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N∗),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.答案第一部分1. (2,4)【解析】−1<x−3<1,即2<x<4.2. −3【解析】z=−i(3+2i)=2−3i.3. 2√55【解析】d=√22+12=2√55.4. 1.76【解析】将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.5. log2(x−1)【解析】a3+1=9,故a=2,f(x)=1+2x.所以x=log2(y−1),所以f−1(x)=log2(x−1).6. 2√2【解析】BD=3√2,DD1=BD⋅23=2√2.7. x=π6,5π6【解析】3sinx=2−2sin2x,即2sin2x+3sinx−2=0.所以(2sinx−1)(sinx+2)=0,所以sinx=12,所以x=π6,5π6.8. 112【解析】2n=256,n=8.通项C8r⋅x8−r3⋅(−2x )r=C8r(−2)r⋅x8−4r3.取r=2,常数项为C82(−2)2=112.9. 7√33【解析】a=3,b=5,c=7,cosC=a 2+b2−c22ab=−12,所以sinC=√32,所以R=c2sinC =7√33.10. (2,+∞)【解析】由已知,ab=1,且a≠b,所以a+b>2√ab=2.11. 4【解析】当n=1时,a1=2或a1=3;当n≥2时,若S n=2,则S n−1=2,于是a n=0,若S n=3,则S n−1=3,于是a n=0.从而存在k∈N∗,当n≥k时,a k=0.其中数列{a n}:2,1,−1,0,0,⋯⋯满足条件,所以k max=4.12. [0,1+√2]【解析】设 P (cosα,sinα),α∈[0,π],BA⃗⃗⃗⃗⃗ =(1,1),BP ⃗⃗⃗⃗⃗ =(cosα,sinα+1). BP⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =cosα+sinα+1=√2sin (α+π4)+1∈[0,1+√2]. 13. 4【解析】(i )若 a =2, 若 b =3,则 c =5π3;若 b =−3,则 c =4π3.(ii )若 a =−2,若 b =−3,则 c =π3;若 b =3,则 c =2π3.共 4 组. 14. 528【解析】5C 82=528.第二部分 15. A【解析】a >1⇒a 2>1,a 2>1⇒a >1 或 a <−1, 所以是充分非必要条件.16. D 【解析】θ=−π2 时,ρ 达到最大. 17. B 【解析】S n =a 1(1−q n )1−q ,S =a 11−q,−1<q <1.2S n <S ,即 a 1(2q n −1)>0, 若 a 1>0,则 q n >12,不可能成立. 若 a 1<0,则 q n <12,B 成立.18. D 【解析】①不成立,可举反例.f (x )={2x,x ≤1,−x +3,x >1.g (x )={2x +3,x ≤0,−x +3,0<x <1,2x,x ≥1.ℎ(x )={−x,x ≤0,2x,x >0.② f (x )+g (x )=f (x +T )+g (x +T ) f (x )+ℎ(x )=f (x +T )+ℎ(x +T ) g (x )+ℎ(x )=g (x +T )+ℎ(x +T )前两式作差,可得 g (x )−ℎ(x )=g (x +T )−ℎ(x +T ). 结合第三式,可得 g (x )=g (x +T ),ℎ(x )=ℎ(x +T ). 也有 f (x )=f (x +T ). 所以②正确. 第三部分19. (1) 连 O 1B 1,则 A 1B 1⏜=∠A 1O 1B 1=π3, 所以 △A 1O 1B 1 为正三角形,所以 S △A 1O 1B 1=√34, 所以 V C−O 1A 1B 1=13OO 1⋅S △A 1O 1B 1=√312. (2) 设点 B 1 在下底面圆周的射影为 B ,连 BB 1,则 BB 1∥AA 1, 所以 ∠BB 1C 为直线 B 1C 与 AA 1 所成角(或补角). BB 1=AA 1,连 BC ,BO ,OC , AB ⏜=A 1B 1⏜=π3,AC ⏜=2π3,所以 BC ⏜=π3, 所以 ∠BOC =π3, 所以 △BOC 为正三角形, 所以 BC =BO =1, 所以 tan∠BB 1C =BC BB 1=1,所以 ∠BB 1C =45∘,所以直线 B 1C 与 AA 1 所成角大小为 45∘.20. (1) 设分界线上任一点为 (x,y ),依题意 ∣x +1∣=√(x −1)2+y 2, 可得 y =2√x (0≤x ≤1). (2) 设 M (x 0,y 0),则 y 0=1, 所以 x 0=y 024=14.所以设所表述的矩形面积为 S 3,则 S 3=2×(14+1)=52.设五边形 EOMGH 面积为 S 4,则 S 4=S 3−S △OMP +S △MGQ =52−12×14×1+12×34×1=114,S 1−S 3=83−52=16,S 4−S 1=114−83=112<16.所以五边形 EOMGH 的面积更接近 S 1 的面积. 21. (1) 由已知 F 1(−√b 2+1,0),F 2(√b 2+1,0), 取 x =√b 2+1,得 y =b 2,∣F 1F 2∣=√3∣∣F 2A∣∣. 因为 ∣F 1F 2∣=2√b 2+1,∣F 2A∣∣=b 2, 所以 2√b 2+1=√3b 2,即 3b 4−4b 2−4=(3b 2+2)(b 2−2)=0, 所以 b =√2,所以渐近线方程为 y =±√2x . (2) 若 b =√3,则双曲线为 x 2−y 23=1,所以 F 1(−2,0),F 2(2,0),设 A (x 1,y 1),B (x 2,y 2),则 F 1A ⃗⃗⃗⃗⃗⃗⃗ =(x 1+2,y 1),F 1B ⃗⃗⃗⃗⃗⃗⃗ =(x 2+2,y 1),AB ⃗⃗⃗⃗⃗ =(x 2−x 1,y 2−y 1) 所以 F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+x 2+4,y 1+y 2), (F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =x 22−x 12+4(x 2−x 1)+y 22−y 12(∗). 因为 x 12−y 123=x 22−y 223=1,所以 y 22−y 12=3(x 22−x 12).所以代入 (∗) 式,可得 4(x 22−x 12)+4(x 2−x 1)=0.直线 l 的斜率存在,故 x 1≠x 2, 所以 x 1+x 2=−1.设直线 l 为 y =k (x −2),代入 3x 2−y 2=3, 得 (3−k 2)x 2+4k 2x −(4k 2+3)=0,所以 3−k 2≠0,且 Δ=16k 4+4(3−k 2)(4k 2+3)=36(k 2+1)>0 x 1+x 2=−4k 23−k 2=−1, 所以 k 2=35, 所以 k =±√155, 所以直线 l 的斜率为 ±√155. 22. (1) log 2(1x +5)>0⇔1x +5>1⇔4x+1x>0⇔x (4x +1)>0,所以不等式的解为 {x ∣ x >0或x <−14}.(2) 依题意,log 2(1x+a)=log 2[(a −4)x +2a −5],所以 1x +a =(a −4)x +2a −5,① 可得 (a −4)x 2+(a −5)x −1=0, 即 (x +1)[(a −4)x −1]=0,②当 a =4 时,方程②的解为 x =−1,代入①式,成立. 当 a =3 时,方程②的解为 x =−1,代入①式,成立. 当 a ≠3 且 a ≠4 时,方程②的解为 x =−1,1a−4.若 x =−1 为方程①的解,则 1x +a =a −1>0,即 a >0. 若 x =1a−4为方程①的解,则 1x+a =2a −4>0,即 a >2.要使得方程①有且仅有一个解,则 1<a ≤2.综上,若原方程的解集有且只有一个元素,则 a 的取值范围为 1<a ≤2 或 a =3 或 a =4. (3) 在 f (x ) 在区间 [t,t +1] 上单调递减. 依题意,f (t )−f (t +1)≤1, 即 log 2(1t +a)−log 2(1t+1+a)≤1,所以 1t+a ≤2(1t+1+a),即 a ≥1t−2t+1=1−tt (t+1). 设 1−t =r ,则 r ∈[0,12], 1−t t (t+1)=r(1−r )(2−r )=rr 2−3r+2. 当 r =0 时,rr 2−3r+2=0. 当 0<r ≤12 时,rr 2−3r+2=1r+2r−3.因为函数 y =x +2x在 (0,√2) 递减, 所以 r +2r ≥12+4=92, 所以1r+2r−3≤192−3=23,所以 a 的取值范围为 a ≥23. 23. (1) a 2=a 5=2, 所以 a 3=a 6, 所以 a 4=a 7=3, 所以 a 5=a 8=2,所以 a 6=21−a 7−a 8=16, 所以 a 3=16.(2) 设 {b n } 的公比为 d ,{c n } 的公差为 q ,则 q >0. b 5−b 1=4d , 所以 d =20, 所以 b n =20n −19, 所以 c5c 1=q 4=181,所以 q =13, 所以 c n =(13)n−5,所以 a n =b n +c n =20n −19+(13)n−5.因为 a 1=82,a 5=82,而 a 2=21+27=48,a 6=101+13=3043,a 1=a 5,但 a 2≠a 6,故 {a n } 不具有性质 P .(3) 充分性:若 {b n } 为常数列,设 b n =C , 则 a n+1=C +sina n 若存在 p ,q 使得 a p =a q ,则 a p+1=C +sina p =C +sina q =a q+1 , 故 {a n } 具有性质 P .必要性:若对任意 a 1,{a n },具有性质 P , 则 a 2=b 1+sina 1.设函数 f (x )=x −b 1,g (x )=sinx ,由 f (x ),g (x ) 图象可得,对任意的 b 1,二者图象必有一个交点,所以一定能找到一个a1,使得a1−b1=sina1,所以a2=b1+sina1=a1,所以a n=a n+1,故b n+1=a n+2−sina n+1=a n+1−sina n=b n,所以{b n}是常数列.。
2016高考全国3数学试卷及解析
2016年普通高等学校招生全国统一考试(III)一.选择题(共12小题)1.设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i3.已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.6.已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.68.在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.﹣B.C.﹣ D.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.8110.在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.11.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二.填空题(共4小题)13.若x,y满足约束条件,则z=x+y的最大值为.14.函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.16.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三.解答题(共7小题)17.已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.﹣B.C.﹣ D.【分析】作出图形,令∠DAC=θ,依题意,可求得c osθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:A.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.81【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二.填空题(共4小题)13.若x,y满足约束条件,则z=x+y的最大值为.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是2x+y+1=0.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三.解答题(共7小题)17.已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S=|FN||y1﹣y2|,△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+co sθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
2016年新课标全国卷2高考理科数学试题与答案
一、选择题( 本大题共12 小题,共60.0 分)1. 已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m的取值范围是()A. (-3 ,1)B. (-1 ,3)C.(1,+∞)D.(- ∞,-3 )2. 已知集合A={1,2,3} ,B={x| (x+1)(x-2 )<0,x∈Z},则A∪B=()A.{1}B.{1 ,2}C.{0 ,1,2,3}D.{-1 ,0,1,2,3}3. 已知向量=(1,m),=(3,-2 ),且(+ )⊥,则m=()A.-8B.-6C.6D.84. 圆x2+y2-2x-8y+13=0 的圆心到直线ax+y-1=0 的距离为1,则a=()A.-B.-C.D.25. 如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于G处的老年公寓参加志愿者为()数活动,则小明到老年公寓可以选择的最短路径条A.24B.18C.12D.96. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7. 若将函数y=2sin2x 的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x= - (k∈Z)B.x= + (k∈Z)C.x= - (k∈Z)D.x= + (k∈Z)8. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的 a 为2,2,5,则输出的s=()A.7B.12C.17D.349. 若cos(- α)= ,则sin2 α=()A. B. C.- D.-10. 从区间[0 ,1] 随机抽取2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n 构成n 个数对(x1,y1 ),(x2,y2)⋯(x n,y n),其中两数的平方和小于 1 的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.11. 已知F1,F2 是双曲线E:- =1 的左、右焦点,点M在E 上,MF1 与x轴垂直,sin ∠MF2F1= ,则E 的离心率为()A. B. C. D.212. 已知函数 f (x)(x∈R)满足f(-x )=2-f (x),若函数y= 与y=f (x)图象的交点为(x1,y1),(x2,y2),⋯,(x m,y m),则(x i +y i )=()A.0B.mC.2mD.4m二、填空题( 本大题共 4 小题,共20.0 分)13. △ABC的内角A,B,C的对边分别为a,b,c,若cosA= ,cosC= ,a=1,则b= ______ .14. α,β是两个平面,m,n 是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m?α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n 与β所成的角相等.其中正确的命题是______ (填序号)15. 有三张卡片,分别写有 1 和2,1 和3,2 和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是______ .16. 若直线y=kx+b 是曲线y=lnx+2 的切线,也是曲线y=ln (x+1)的切线,则b= ______ .94.0 分)三、解答题( 本大题共8小题,共17.S n 为等差数列{a n} 的前n 项和,且a1=1,S7=28,记b n=[lga n] ,其中[x] 表示不超过x的最大整数,如[0.9]=0 ,[lg99]=1 .(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000 项和.18. 某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险0 1 2 3 4 ≥5次数保费0.85a a 1.25a 1.5a 1.75a 2a:设该险种一续保人一年内出险次数与相应概率如下一年内出险0 1 2 3 4 ≥5次数概率0.30 0.15 0.20 0.20 0.10 0.05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19. 如图,菱形ABCD的对角线A C与BD交于点O,AB=5,AC=6,A D,CD上,AE=CF= ,EF交于BD于点M,将点E,F 分别在△DEF沿EF 折到△D′EF 的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B- D′A-C 的正弦值.20.已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△A MN的面积;.(Ⅱ)当2|AM|=|AN|时,求k的取值范围21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.22.如图,在正方形A BCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形B CGF的面积.23.在直角坐标系x Oy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.24. 已知函数 f (x)=|x- |+|x+ | ,M为不等式f(x)<2 的解集.(Ⅰ)求M;a,b∈M时,|a+b| <|1+ab| .(Ⅱ)证明:当2016 年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14. ②③④15.1 和316.1-ln217. 解:(Ⅰ)S n 为等差数列{a n} 的前n 项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn] ,则b1=[lg1]=0 ,b11=[lg11]=1 ,b101=[lg101]=2 .(Ⅱ)由(Ⅰ)可知:b1=b2=b3=⋯=b9=0,b10=b11=b12=⋯=b99=1.b100=b101=b102=b103=⋯=b999=2,b10,00=3.数列{b n} 的前1000 项和为:9×0+90×1+900×2+3=1893.18. 解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55 .(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55 ,P(AB)=0.10+0.05=0.15 ,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p2=P(B|A)= = = .为:(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值=1.23 ,∴续保人本年度的平均保费与基本保费的比值为 1.23 .19. (Ⅰ)证明:∵ABCD是菱形,∴AD=D,C又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面A D′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.25.解:(Ⅰ)t=4时,椭圆E的方程为+=1,A(-2,0),22+16k2x+16k2-12=0,直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k)x解得x=-2或x=-,则|AM|=?|2-|=?,由AN⊥AM,可得|AN|=?=?,高中数学试卷第6页,共15页由|AM|=|AN| ,k>0,可得? = ? ,整理可得(k-1 )(4k2-k+4 )=0,由4k2-k+4=0 无实根,可得k=1,即有△AMN的面积为|AM| 2= (? )2= ;A M的方程为y=k(x+ ),代入椭圆方程,(Ⅱ)直线可得(3+tk 2)x2+2t k2 x+t 2k2-3t=0 ,解得x=- 或x=- ,即有|AM|= ?| - |= ? ,|AN| ═? = ? ,由2|AM|=|AN| ,可得 2 ? = ? ,整理得t= ,由椭圆的焦点在x 轴上,则t>3,即有>3,即有<0,(,2).可得<k<2,即k 的取值范围是26. 解:(1)证明:f (x)=f' (x)=ex()=∵当x∈(- ∞,-2 )∪(-2 ,+∞)时,f' (x)>0∴f (x)在(- ∞,-2 )和(-2 ,+∞)上单调递增∴x>0 时,>f (0)=-1x即(x-2 )e +x+2>0(2)g' (x)= =a∈[0 ,1]为(-1 ,+∞),只有一解使得,t ∈[0 ,由(1)知,当x>0 时,f(x)= 的值域2]当x∈(0,t )时,g' (x)<0,g(x)单调减;当x∈(t ,+∞),g' (x)>0,g(x)单调增;高中数学试卷第7页,共15 页h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,,故k(t)单调递增所以h(a)=k(t)∈(,].27.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=D,G CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=18°0,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接G B,Rt△BCG≌Rt△BFG,∴S四边形B CG=F2S△BCG=2××1×=.28.解:(Ⅰ)∵圆C的方程为(x+6)22+y=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα?x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.29. 解:(I )当x<时,不等式 f (x)<2 可化为:-x-x- <2,解得:x>-1 ,∴-1 <x<,当≤x≤时,不等式 f (x)<2 可化为:-x+x+ =1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式 f (x)<2 可化为:- +x+x+ <2,解得:x<1,∴<x<1,综上可得:M=(-1 ,1);证明:(Ⅱ)当a,b∈M时,(a2-1 )(b2-1 )>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b| <|1+ab| .【解析】2. 解:z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,可得:,解得-3 <m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可..力本题考查复数的几何意义,考查计算能3. 解:∵集合A={1 ,2,3} ,B={x| (x+1)(x-2 )<0,x∈Z}={0 ,1} ,∴A∪B={0,1,2,3} .故选:C.先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.4. 解:∵向量=(1,m),=(3,-2 ),∴+ =(4,m-2),又∵(+ )⊥,15 页高中数学试卷第9 页,共∴12 -2 (m-2)=0,解得:m=8,故选:D.求出向量+ 的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.30. 解:圆x2+y2-2x-8y+13=0 的圆心坐标为:(1,4),故圆心到直线ax+y-1=0 的距离d= =1,解得:a= ,故选:A.求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.31. 解:从 E 到F,每条东西向的街道被分成 2 段,每条南北向的街道被分成 2 段,从E 到F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,2每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,故共有C4 =6 种走法.同理从 F 到G,最短的走法,有C31=3 种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18 种走法.故选:B.从E 到F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,由组合数可得最短的走法,同理从F 到G,最短的走法,有C31=3 种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题32. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是 2 ,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π× 2 2+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是 2 ,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.33. 解:将函数y=2sin2x 的图象向左平移个单位长度,得到y=2sin2 (x+ )=2sin (2x+ ),高中数学试卷第10 页,共15 页由2x+ =kπ+(k∈Z)得:x= + (k∈Z),即平移后的图象的对称轴方程为x= + (k∈Z),故选:B.利用函数y= A sin (ωx+ φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.本题考查函数yy= A sin (ωx+ φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.34. 解:∵输入的x=2,n=2,当输入的 a 为2 时,S=2,k=1,不满足退出循环的条件;当再次输入的 a 为2 时,S=6,k=2,不满足退出循环的条件;当输入的 a 为5 时,S=17,k=3,满足退出循环的条件;故输出的S 值为17,故选:CS的值,模拟程序的运行根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量过程,可得答案.解答.进行本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法35. 解:∵cos(- α)= ,∴sin2 α=cos(- 2α)=cos2 (- α)=2cos 2 (- α)- 1=2×-1=- ,故选:D.利用诱导公式化sin2 α=cos(- 2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.36. 解:由题意,,∴π=.故选:C.率π的近似值.以面积为测度,建立方程,即可求出圆周事件的个古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生.数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到37. 解:设|MF1|=x ,则|MF2|=2a+x ,∵MF1 与x 轴垂直,2 2 2∴(2a+x)=x +4c,∴x=∵sin ∠MF2F1= ,∴3x=2a+x,∴x=a,∴=a,∴a=b,高中数学试卷第11 页,共15 页∴c= a,∴e= = .故选:A.|MF1|=x ,则|MF2|=2a+x ,利用勾股定理,求出x= ,利用sin ∠MF2F1= ,求得 x=a,可得=a,设求出 a=b,即可得出结论.础.较基本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比38. 解:函数 f (x)(x∈R)满足f(-x )=2-f (x),即为 f (x)+f (-x )=2,可得 f (x)关于点(0,1)对称,函数 y= ,即 y=1+ 的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x 1,2-y 1 )也为交点,(x2,y2)为交点,即有(-x 2,2-y 2)也为交点,⋯则有(x i +y i )=(x1+y1)+(x2+y2)+⋯ +(x m+y m)= [ (x1+y1)+(-x 1+2-y 1)+(x2+y2)+(-x 2+2-y 2)+⋯ +(x m+y m)+(-x m+2-y m)]=m.故选 B.由条件可得 f (x)+f (-x )=2,即有 f (x)关于点( 0,1)对称,又函数y= ,即 y=1+ 的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x 1,2-y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.39. 解:由cosA= ,cosC= ,可得sinA= = = ,sinC= = = ,sinB=sin (A+C)=sinAcosC+cosAsinC= ×+ ×= ,由正弦定理可得b== = .高中数学试卷第12 页,共15 页故答案为:.运用同角的平方关系可得sinA ,sinC ,再由诱导公式和两角和的正弦公式,可得sinB ,运用正弦定理可得b= ,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.40. 解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故错误;②如果n∥α,则存在直线l ? α,使n∥l ,由m⊥α,可得m⊥l ,那么m⊥n.故正确;③如果α∥β,m?α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n 与α所成的角和m,n 与β所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.41. 解:根据丙的说法知,丙的卡片上写着 1 和2,或 1 和3;(1)若丙的卡片上写着 1 和2,根据乙的说法知,乙的卡片上写着 2 和3;∴根据甲的说法知,甲的卡片上写着 1 和3;(2)若丙的卡片上写着 1 和3,根据乙的说法知,乙的卡片上写着 2 和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是 1 和2,这与已知矛盾;∴甲的卡片上的数字是 1 和3.故答案为: 1 和3.可先根据丙的说法推出丙的卡片上写着 1 和2,或 1 和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.42. 解:设y=kx+b 与y=lnx+2 和y=ln (x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k= = ,得x1=x2+1 再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx 1+2 得出b=1-ln2 .先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题43.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n} 的前1000 项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.44.高中数学试卷第13 页,共15 页(Ⅰ)上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.条件概率计算本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、公式的合理运用.45.(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B- D′A-C 的平面角为θ,求出|cos θ| .则二面角B-D′A-C 的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.46.(Ⅰ)求出t=4 时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM| ,由垂直的条件可得|AN| ,再由|AM|=|AN| ,解得k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM的方程为y=k(x+ ),代入椭圆方程,求得交点M,可得|AM| ,|AN| ,再由2|AM|=|AN| ,求得t ,再由椭圆的性质可得t >3,解不等式即可得到所求范围.公式的运用,考查本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长化简整理的运算能力,属于中档题.47.,利用复合函数的求导公从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域式进行求导,然后逐步分析即可,计算该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义量较大,中档题.48.(Ⅰ)证明B,C,G,F 四点共圆可证明四边形BCGF对角互补,由已知条件可知∠B CD=9°0,因此问题可转化为证明∠G FB=90°;(Ⅱ)在Rt△DFC中,GF= CD=G,C因此可得△GFB≌△GCB,则S 四边形BCG=F2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.49.(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsin α,能求出圆 C的极坐标方程.(Ⅱ)由直线l 的参数方程求出直线l 的一般方程,再求出圆心到直线距离,由此能求出直线l 的斜率.高中数学试卷第14 页,共15 页点本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要意审题,注认真.到直线公式、圆的性质的合理运用50.;案(I )分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答(Ⅱ)当a,b∈M时,(a2-1 )(b2-1 )>0,即a2b2 +1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.高中数学试卷第15 页,共15 页。
2016年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.23.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5 分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n 的最大值为.16.(5 分)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5 个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3 个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900 元.该企业现有甲材料150kg,乙材料90kg,则在不超过600 个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y 的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|= ,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y 的值是解决本题的关键.3.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9 项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10 分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y 在7:50 至8:00,或8:20 至8:30 时,小明等车时间不超过10 分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n 的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x 轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1 表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n 的取值范围是:(﹣1,3).当焦点在y 轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5 分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2 时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0 有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A 错误;函数f(x)=x c﹣1 在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B 错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C 正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C 的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n 所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω 的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω 的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2 .r +1【考点】9O :平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A :平面向量及应用. 【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m ,1),=(1,2),可得 m +2=0,解得 m=﹣2. 故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5 分)(2x +)5 的展开式中,x 3 的系数是 10 .(用数字填写答案)【考点】DA :二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P :二项式定理. 【分析】利用二项展开式的通项公式求出第 r +1 项,令 x 的指数为 3,求出 r ,即可求出展开式中 x 3 的系数. 【解答】解:(2x +)5 的展开式中,通项公式为:T = =25﹣r,令 5﹣=3,解得 r=4 ∴x 3 的系数 2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5 分)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为 64 .1 2 n 1 【考点】87:等比数列的性质;8I :数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列. 【分析】求出数列的等比与首项,化简 a 1a 2…a n ,然后求解最值. 【解答】解:等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,可得 q (a 1+a 3)=5,解得 q=. a 1+q 2a 1=10,解得 a 1=8.则 a a …a =a n •q1+2+3+…+(n ﹣1)=8n • = = ,当 n=3 或 4 时,表达式取得最大值: =26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5 分)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品 A 的利润为 2100元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 216000元.【考点】7C :简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设 A 、B 两种产品分别是 x 件和 y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设 A 、B 两种产品分别是 x 件和 y 件,获利为 z 元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000 元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0 求出cosC 的值,即可确定出出C 的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b 的值,即可求△ABC 的周长.【解答】解:(Ⅰ)∵在△ABC 中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC 的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC、平面ABC 的法向量,代入向量夹角公式可得二面角E﹣BC﹣A 的余弦值.【解答】(Ⅰ)证明:∵ABEF 为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE 为二面角D﹣AF﹣E 的平面角;由ABEF 为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF 为二面角C﹣BE﹣F 的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB✪平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC 为等腰梯形.以E 为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC 的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC 的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A 的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A 的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列.(II)由X 的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5 中n 的最小值.(III)法一:由X 的分布列得P(X≤19)=.求出买19 个所需费用期望EX1和买20 个所需费用期望EX2,由此能求出买19 个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19 时,费用的期望和当n=20时,费用的期望,从而得到买19 个更合适.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,P (X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)= =,P(X=20)= ==,P(X=21)= =,P(X=22)= ,∴X 的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19 时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20 时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19 个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E 的轨迹为以A,B 为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E 的轨迹为以A,B 为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E 的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•= •=12•,A 到PQ 的距离为d==,|PQ|=2 =2=,则四边形MPNQ 面积为S= |PQ|•|MN|= ••12•=24•=24,当m=0 时,S 取得最小值12,又>0,可得S<24•=8 ,即有四边形MPNQ 面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a 进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2 是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0 恒成立,当x<1 时,f′(x)<0,此时函数为减函数;当x>1 时,f′(x)>0,此时函数为增函数;此时当x=1 时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1 存在一个零点;当x<1 时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t1,t2,且t1<t2,则当x<t1,或x>t2 时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1 存在一个零点;即函数f(x)在R 是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当ln(﹣2a)<x<1 时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0 得:函数f(x)在R 上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故函数f(x)在R 上单调递增,函数f(x)在R 上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1 时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=1 时,函数取极大值,由f(1)=﹣e<0 得:函数f(x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2 是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1 时,g′(x)<0,g(x)单调递减;当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)= ,m>0,则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K 为AB 中点,连结OK.根据等腰三角形AOB 的性质知OK⊥ AB,∠A=30°,OK=OAsin30°=OA,则AB 是圆O 的切线.(Ⅱ)设圆心为T,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K 为AB 中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB 与⊙O 相切;(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设T 是A,B,C,D 四点所在圆的圆心.∵OA=OB,TA=TB,∴OT 为AB 的中垂线,同理,OC=OD,TC=TD,∴OT 为CD 的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1 是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ 化为极坐标方程;(Ⅱ)化曲线C2、C3 的极坐标方程为直角坐标方程,由条件可知y=x 为圆C1 与C2 的公共弦所在直线方程,把C1 与C2 的方程作差,结合公共弦所在直线方程为y=2x 可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足tanα0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1 时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)= ,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1 时,|x﹣4|>1,解得x>5 或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1 或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5 或x<3,即有x>5 或≤x<3.综上可得,x<或1<x<3 或x>5.则|f(x)|>1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年天津高考数学试题(文)(解析版)
2016 年一般高等学校招生全国一致考试(天津卷)数学(文史类)第 I 卷一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1)已知会合A{1,2,3} , B { y | y2x 1, x A},则AI B=()( A ){1,3}( B){1,2}( C){ 2,3}( D){1,2,3}【答案】 A【分析】试题剖析: B {1,3,5}, A I B {1,3} ,选A.考点:会合运算(2)甲、乙两人下棋,两人下成和棋的概率是1,甲获胜的概率是1,则甲不输的概率为()(A)5(B)2(C)12(D)13 6563【答案】 A考点:概率(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,获得的几何体的正视图与俯视图以下图,则该几何体的侧(左)视图为()【答案】 B【分析】试题剖析:由题意得截去的是长方体前右上方极点,应选B 考点:三视图(4)已知双曲线x2y21(a 0,b 0) 的焦距为2 5 ,且双曲线的一条渐近线与直线2x y 0 垂直,a2b2则双曲线的方程为()x2y21( B)x2y2( A )1 44(C) 3x23y21(D) 3x2 3 y21 205520【答案】 A考点:双曲线渐近线(5)设x 0,y R x y x| y |”的(),则“”是“(A)充要条件( B)充足而不用要条件( C)必需而不充足条件( D)既不充足也不用要条件【答案】 C【分析】试题剖析: 34,3| 4 | ,所以充足性不建立; x | y | y x y ,必需性建立,应选C 考点:充要关系(6)已知 f ( x) 是定义在 R 上的偶函数, 且在区间 (,0) 上单一递加, 若实数 a 知足 f (2|a 1| ) f ( 2 ) ,则 a 的取值范围是( )(A )( ,1)(B ) (,1) (3, ) (C )(1,3)(D ) (3,)2222 22【答案】 C【分析】试题剖析:由题意得 f ( 2|a 1|) f (2|a 1|22|a 1|11132)22| a 1| a ,应选 C2 22考点:利用函数性质解不等式(7)已知 △ABC 是边长为 1 的等边三角形,点D, E 分别是边 AB, BC 的中点,连结 DE 并延伸到点 F ,使得 DE 2EF ,则 AF BC 的值为()( A )【答案】 B5 1 1 11(B )8( C )( D )848【分析】uuur r uuur ruuur 1 uuur1 rruuur 3 uuur3 r r试题剖析:设 BAa , BCb ,∴ DEAC(ba) , DFDE4(ba) ,222uuur uuuruuur1 r 3 rr5r3ruuur uuur5 r r3 r 25 3 1,应选 B.AFADDF2a4(ba) ab ,∴ AFBC 4a bb84 8444考点:向量数目积(8)已知函数 f ( x)sin2x 1sin x 1 ( 0) ,xR .若 f ( x) 在区间 ( ,2 ) 内没有零点, 则的222 取值范围是( )(A ) (0, 1](B ) (0, 1][5,1) ( C ) (0, 5]( D ) (0, 1] [1,5]84 888 48【答案】 D考点:解简单三角方程第Ⅱ卷注意事项:1、用黑色墨水的钢笔或署名笔将答案写在答题卡上.2、本卷共 12 小题,合计110 分.二、填空题:本大题共 6 小题,每题 5 分,共 30 分.(9) i 是虚数单位,复数z 知足 (1i ) z 2 ,则z的实部为_______.【答案】 1【分析】试题剖析:(1i )z2z21i,所以 z 的实部为11i考点:复数观点(10)已知函数f (x)(2+1)x ,f( )为 f (x) 的导函数,则 f (0) 的值为__________.x e x【答案】 3【分析】试题剖析: Q f( x)(2 x+3)e x ,f(0) 3.考点:导数(11)阅读右侧的程序框图,运转相应的程序,则输出S 的值为_______.【答案】 4考点:循环构造流程图(12)已知圆 C 的圆心在 x 轴的正半轴上,点M (0,5) 在圆C上,且圆心到直线 2x y 0的距离为 4 5,5则圆 C 的方程为 __________.【答案】 ( x 2)2y29.【分析】试题剖析:设 C ( a,0),( a0) ,则| 2a |4 5a2, r225 3 ,故圆C的方程为 ( x2) 2y29.55考点:直线与圆地点关系(13)如图,AB 是圆的直径,弦 CD 与 AB 订交于点 E,BE=2AE =2,BD=ED ,则线段 CE 的长为 __________.【答案】2 33考点:订交弦定理x2(4a3) x3a, x0且a 1)在 R上单调递减,且关于 x的方程(14) 已知函数f ( x)log a ( x1)1,x0(a 0| f ( x) | 2x恰有两个不相等的实数解,则 a 的取值范围是 _________. 31 2 【答案】[ , )3 3 【分析】试题剖析:由函数 f ( x) 在R上单一递减得4a30,013,又方程 | f ( x) | 2x 2a 1,3a 1a恰343有两个不相等的实数解,所以3a2,1 1 62a 1,所以 a 的取值范围是[1,2)a3733考点:函数综合三、解答题:本大题共 6 小题,共80 分.(15)(本小题满分 13分)在 ABC 中,内角A, B,C所对应的边分别为a,b,c,已知a sin 2B3b sin A .(Ⅰ )求 B;1(Ⅱ )若cosA,求 sinC 的值 .3【答案】(Ⅰ) B261(Ⅱ)66考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理(16)(本小题满分 13 分 )某化肥厂生产甲、乙两种混淆肥料,需要A,B,C 三种主要原料 .生产 1 车皮甲种肥料和生产 1 车皮乙中肥料所需三种原料的吨数以下表所示:现有 A 种原料 200 吨, B 种原料 360 吨, C 种原料 300 吨,在此基础上生产甲乙两种肥料.已知生产1 车皮甲种肥料,产生的收益为2 万元;生产 1 车皮乙种肥料,产生的收益为3 万元 .分别用 x,y 表示生产甲、乙两种肥料的车皮数.(Ⅰ )用 x,y 列出知足生产条件的数学关系式,并画出相应的平面地区;(Ⅱ )问分别生产甲、乙两种肥料各多少车皮,可以产生最大的收益?并求出此最大收益.【答案】(Ⅰ)详看法析(Ⅱ)生产甲种肥料20 车皮,乙种肥料24 车皮时收益最大,且最大收益为112 万元试4x5y2008x5 y360题分析:(Ⅰ)解:由已知x, y 知足的数学关系式为 3x10 y300 ,该二元一次不等式组所表示的地区x 0y 0为图 1 中的暗影部分 .y8x+5y=360 10O104x+5y=200(1)x3x+10y=300y8x+5y=360M10xO102x+3y=z3x+10y=3004x+5y=2002x+3y=0(2)考点:线性规划(17)(本小题满分 13 分 )如图,四边形 ABCD 是平行四边形,平面 AED ⊥平面 ABCD ,EF||AB ,AB=2 ,BC=EF=1 ,AE= 6 ,DE=3 ,∠ BAD=60o , G 为 BC 的中点 .(Ⅰ )求证: FG||平面 BED ;(Ⅱ )求证:平面BED ⊥平面 AED ;(Ⅲ )求直线 EF 与平面 BED 所成角的正弦值.5【答案】(Ⅰ)详看法析(Ⅱ)详看法析(Ⅲ)6(Ⅱ)证明:在 ABD 中,AD1, AB2,BAD 600,由余弦定理可 BD 3 ,从而可得ADB900,即BD AD ,又由于平面AED平面 ABCD , BD平面 ABCD ;平面 AED 平面ABCD AD ,所以BD平面 AED .又由于 BD平面 BED ,所以平面 BED平面 AED .(Ⅲ)解:由于 EF // AB,所以直线 EF 与平面 BED 所成角即为直线AB 与平面BED 所成角.过点 A 作AH DE 于点 H ,连结 BH ,又由于平面 BED平面 AED ED ,由(Ⅱ)知AH平面 BED ,所以直线AB 与平面 BED 所成角即为ABH .在 ADE 中,AD1, DE3, AE 6 ,由余弦定理可得cos ADE 2,所以 sin ADE5,所以 AH AD sin ADE5,在 Rt AHB 中,333sin ABH AH5AB 与平面 BED 所成角的正弦值为5 AB,所以直线.66考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角(18)(本小题满分 13 分 )已知 a n是等比数列,前n项和为 S n n N,且112,S663 . a1a2a3(Ⅰ )求a n的通项公式;(Ⅱ )若对随意的n N , b n是 log 2 a n和 log 2 a n 1的等差中项,求数列n2的前 2n 项和 .1 b n【答案】(Ⅰ) a n2n 1(Ⅱ) 2n2(Ⅱ)解:由题意得b n 1(log 2a n log 2 a n 1 )1(log 2 2n 1log 2 2n ) n1,即数列 { b n } 是首项222为1,公差为 1的等差数列. 2设数列 {(1) n b n2 } 的前 n 项和为 T n,则T2n ( b12b22 )( b32b42 )(b22n 1 b22n )b1 b2b2 n2n(b1b2 n )2n22考点:等差数列、等比数列及其前n 项和(19)(本小题满分14 分)设椭圆 x2y21(a 3 )的右焦点为F,右极点为A,已知113e,此中 Oa23|OF | |OA| |FA |为原点, e为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点 A 的直线l与椭圆交于点B ( B 不在x轴上),垂直于l的直线与l交于点 M ,与 y 轴交于点 H ,若 BF HF ,且MOAMAO ,求直线的 l 斜率.【答案】(Ⅰ)x2y261(Ⅱ)443( 2)设直线的斜率为 k(k0) ,则直线l的方程为 y k( x2) ,x2y21,设 B( x B , y B ) ,由方程组43消去 y ,y k(x 2),整理得 (4 k23) x216k 2 x16k 2120,解得x2或 x8k 2 6 ,4k23由题意得 x B 8k4k226,从而 yB12k,3234kuuur uuur94k 2,12k) ,由( 1)知F (1,0),设H (0, y H),有FH( 1, y H ) ,BF(234k 24k3考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14 分)设函数 f x x3ax b, x R ,此中a,b R( )(Ⅰ)求 f (x) 的单一区间;(Ⅱ)若 f (x) 存在极值点x0,且f ( x1) f (x0 ) ,此中 x1x0,求证: x1 2x00 ;1(Ⅲ)设 a0 ,函数g( x)| f ( x) | ,求证: g( x) 在区间 [1,1] 上的最大值不小于....4【答案】(Ⅰ)递减区间为 (3a ,3a) ,递加区间为 ( ,3a) , (3a, ) .(Ⅱ)详看法析(Ⅲ)3333详看法析【分析】试题剖析:(Ⅰ)先求函数的导数: f ( x) 3x2 a ,再依据导函数零点能否存在状况,分类议论:①当a0时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,存在三个单一区间试题分析:( 1)解:由 f (x)x 3 ax b ,可得 f ( x) 3x 2a ,下边分两种状况议论:①当 a0 时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,令 f ( x)0 ,解得 x3a 3a 或 x .33当 x 变化时, f ( x) 、 f ( x) 的变化状况以下表:x( ,3a ) 3a (3a , 3a ) 3a 3a , ) (333333f ( x)单一递加极大值单一递减极小值单一递加f ( x)所以 f ( x) 的单一递减区间为(3a , 3a) ,单一递加区间为 (,3a) , (3a, ) .3333( 2)证明:由于 f (x) 存在极值点,所以由( 1)知 a 0 且 x 00 .由题意得 f (x 0 ) 3x 02 a0 ,即 x 02a ,3从而f ( x 0 ) x 03ax 0 b2ax 0 b ,38a2a又f ( 2x 0 )8x 03 2ax 0 bx 0 2ax 0 b x 0 b f ( x 0 ) ,且 2x 0 x 0 ,3 3由题意及( 1)知,存在独一实数x 1 知足 f ( x 1 ) f ( x 0 ) ,且 x 1 x 0 ,所以 x 12x 0 ,所以 x1 +2 x0 =0 .( 3 )证明:设g( x) 在区间 [ 1,1]上的最大值为M , max{ x, y} 表示 x , y 两数的最大值,下边分三种状况议论:②当3a 3 时,23a13a3a123a ,43333由( 1)和( 2)知f (1) f ( 2 3a ) f (3a) , f (1) f (23a ) f (3a ),3333所以 f ( x) 在区间 [1,1]上的取值范围为 [ f (3a), f (3a)] ,33所以 max{| f (3a|,| f (3a) |}max{|2a3a b |,|2a3a b |} 3399max{|2a3a b |,|2a3a2a3a| b |23331 99b |}944.94考点:导数的运算,利用导数研究函数的性质、证明不等式。
2016上海市高考数学试卷及答案(理数)
2016年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( ) (A )25. (B )50. (C )75.(D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)ABCDABCPE21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2016年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . 3.函数1sin cos 2)(-=xx x f 的值域是],[2325-- .4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 -160 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf )sin(16θπ- . 11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是32(结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 [2, 5] . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c . 二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( B ) (A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( C ) (A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.ABCD17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( A )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( D ) (A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求: (1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分) [解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与的夹角为θ,则222224||||cos ===⨯⋅BC AE BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形, 所以∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π ……12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分AB CD PE yAB CDP EF由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线 24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程y =中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分) (2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分) (3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n . 先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以kk q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n . ……18分。
2016年普通高等学校招生全国统一考试(上海卷)数学试题 (理科)解析版
一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为__________. 【答案】(2,4) 【解析】 试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4). 考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易. 2、设iiZ 23+=,期中i 为虚数单位,则Im z =_____________. 【答案】3- 【解析】 试题分析:i(32i)23i z =-+=-,故Im 3z =-考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一. 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.【解析】试题分析:利用两平行线间距离公式得d ===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)- 【解析】 试题分析:将点39(,)带入函数()xf x 1a =+的解析式得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注.本题较为容易.6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.【答案】【解析】 试题分析:由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=. 考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等. 7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________ 【答案】566ππ或 【解析】 试题分析:3sinx 1cos 2x =+,即23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或. 考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简 ,得到角的某种三角函数值,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n 2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】3【解析】 试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C = 考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等. 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是_________.【答案】2+∞(,)考点:方程组的思想以及基本不等式的应用.【名师点睛】从解方程组入手,探讨得到方程组无解的条件,进一步应用基本不等式达到解题目的.易错点在于忽视得到a b ≠.本题能较好地考查考生的逻辑思维能力、基本运算求解能力等. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 【解析】 试题分析:要满足{}3,2∈n S ,说明n S 的最大值为3,最小值为2.所以涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成.考点:数列求和.【名师点睛】从分析条件入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等. 12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则⋅的取值范围是 .【答案】[0,1 【解析】 试题分析:由题意得知21x y -=表示以原点为圆心,半径为1的上半圆. 设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =, (cos ,sin 1)BP αα=+所以πcos [0,1sin 1)14BP BA ααα⋅=++=+∈+⋅BP BA 的范围为[0,1.考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到⋅的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4 【解析】考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,首先确定得到,a b 的可能取值,利用分类讨论的方法,进一步得到c 的值,从而根据具体的组合情况,使问题得解.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足=++j i OA ,则点P 落在第一象限的概率是 .【答案】528【解析】 试题分析:共有2828C =种基本事件,其中使点P 落在第一象限共有2325C +=种基本事件,故概率为528. 考点:1.排列组合;2.古典概型;3.平面向量的线性运算.【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力、数形结合思想等. 二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=考点:极坐标系【名师点睛】本题是极坐标系问题中的基本问题,从解法上看,一是可通过记忆比对,作出判断,二是利用特殊值代入检验的方法.本题突出体现了高考试题的基础性,能较好的考查考生基本运算能力、数形结合思想等.17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B【解析】试题分析:由题意得:11112,(0|q |1)11n q a a q q -<<<--对一切正整数恒成立,当10a >时12n q >不恒成立,舍去;当10a <时21122n q q <⇒<,因此选B.考点:1.数列的极限;2.等比数列的求和.【名师点睛】本题解答中确定不等关系是基础,准确分类讨论是关键,易错点是在建立不等关系之后,不知所措或不能恰当地分类讨论.本题能较好的考查考生的逻辑思维能力、基本计算能力分类讨论思想等.18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】试题分析:①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩ ②()()()()f x g x f x T g x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 三、解答题(74分)19. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
2016年高考理科数学试题(天津卷)及参考答案
2016年天津市高考数学试卷(理科)一、选择题1.(5分)(2016•天津)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}2.(5分)(2016•天津)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.173.(5分)(2016•天津)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.44.(5分)(2016•天津)阅读如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.85.(5分)(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件6.(5分)(2016•天津)已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=17.(5分)(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则的值为()A.﹣ B.C.D.8.(5分)(2016•天津)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}二、填空题9.(5分)(2016•天津)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则的值为.10.(5分)(2016•天津)(x2﹣)8的展开式中x7的系数为(用数字作答)11.(5分)(2016•天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m312.(5分)(2016•天津)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.13.(5分)(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是.14.(5分)(2016•天津)设抛物线(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.三、计算题15.(13分)(2016•天津)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.16.(13分)(2016•天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.17.(13分)(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.18.(13分)(2016•天津)已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n和a n+1的等比中项.(1)设c n=b﹣b,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:.19.(14分)(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.20.(14分)(2016•天津)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.2016年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2016•天津)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【分析】把A中元素代入y=3x﹣2中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2016•天津)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.17【分析】作出不等式组表示的平面区域,作出直线l0:2x+5y=0,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.【解答】解:作出不等式组表示的可行域,如右图中三角形的区域,作出直线l0:2x+5y=0,图中的虚线,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.故选:B.【点评】本题考查简单线性规划的应用,涉及二元一次不等式组表示的平面区域,关键是准确作出不等式组表示的平面区域.3.(5分)(2016•天津)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【分析】直接利用余弦定理求解即可.【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC•BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.【点评】本题考查三角形的解法,余弦定理的应用,考查计算能力.4.(5分)(2016•天津)阅读如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.8【分析】根据程序进行顺次模拟计算即可.【解答】解:第一次判断后:不满足条件,S=2×4=8,n=2,i>4,第二次判断不满足条件n>3:第三次判断满足条件:S>6,此时计算S=8﹣6=2,n=3,第四次判断n>3不满足条件,第五次判断S>6不满足条件,S=4.n=4,第六次判断满足条件n>3,故输出S=4,故选:B.【点评】本题主要考查程序框图的识别和运行,根据条件进行模拟计算是解决本题的关键.5.(5分)(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,若“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”不一定成立,例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;而“对任意的正整数n,a2n﹣1+a2n<0”,前提是“q<0”,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件,故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.6.(5分)(2016•天津)已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为x2+y2=4,双曲线的两条渐近线方程为y=±x,利用四边形ABCD的面积为2b,求出A的坐标,代入圆的方程,即可得出结论.【解答】解:以原点为圆心,双曲线的实半轴长为半径长的圆的方程为x2+y2=4,双曲线的两条渐近线方程为y=±x,设A(x,x),则∵四边形ABCD的面积为2b,∴2x•bx=2b,∴x=±1将A(1,)代入x2+y2=4,可得1+=4,∴b2=12,∴双曲线的方程为﹣=1,故选:D.【点评】本题考查双曲线的方程与性质,考查学生分析解决问题的能力,属于中档题.7.(5分)(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则的值为()A.﹣ B.C.D.【分析】运用向量的加法运算和中点的向量表示,结合向量的数量积的定义和性质,向量的平方即为模的平方,计算即可得到所求值.【解答】解:由DD、E分别是边AB、BC的中点,DE=2EF,可得=(+)•(﹣)=(+)•(﹣)=(+)•(﹣)=2﹣•﹣2=﹣•1•1•﹣=.故选:B.【点评】本题考查了数量积的定义和性质,注意运用向量的中点的表示,考查计算能力,属于中档题.8.(5分)(2016•天津)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}【分析】利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a的范围.【解答】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,函数f(x)在R上单调递减,则则:;解得,;由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故选:C.【点评】本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.二、填空题9.(5分)(2016•天津)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则的值为2.【分析】根据复数相等的充要条件,构造关于a,b的方程,解得a,b的值,进而可得答案.【解答】解:∵(1+i)(1﹣bi)=1+b+(1﹣b)i=a,a,b∈R,∴,解得:,∴=2,故答案为:2【点评】本题考查的知识点是复数的乘法运算,复数相等的充要条件,难度不大,属于基础题.10.(5分)(2016•天津)(x2﹣)8的展开式中x7的系数为﹣56(用数字作答)【分析】利用通项公式即可得出.【解答】解:T r+1==x16﹣3r,令16﹣3r=7,解得r=3.∴(x2﹣)8的展开式中x7的系数为=﹣56.故答案为:﹣56.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2016•天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为2m3【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积S=2×1=2m2,棱锥的高h=3m,故体积V==2m3,故答案为:2【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.12.(5分)(2016•天津)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.13.(5分)(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是(,).【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化进行求解即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在区间(0,+∞)上单调递减,则f(2|a﹣1|)>f(﹣),等价为f(2|a﹣1|)>f(),即﹣<2|a﹣1|<,则|a﹣1|<,即<a<,故答案为:(,)【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.14.(5分)(2016•天津)设抛物线(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.【分析】化简参数方程为普通方程,求出F与l的方程,然后求解A的坐标,利用三角形的面积列出方程,求解即可.【解答】解:抛物线(t为参数,p>0)的普通方程为:y2=2px焦点为F(,0),如图:过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF与BC相交于点E.|CF|=2|AF|,|CF|=3p,|AB|=|AF|=p,A(p,),△ACE的面积为3,,可得=S△ACE.即:=3,解得p=.故答案为:.【点评】本题考查抛物线的简单性质的应用,抛物线的参数方程的应用,考查分析问题解决问题的能力.三、计算题15.(13分)(2016•天津)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【分析】(1)利用三角函数的诱导公式以及两角和差的余弦公式,结合三角函数的辅助角公式进行化简求解即可.(2)利用三角函数的单调性进行求解即可.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的增区间为[kπ﹣,kπ+],k∈Z,当k=0时,增区间为[﹣,],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,],由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的减区间为[kπ+,kπ+],k∈Z,当k=﹣1时,减区间为[﹣,﹣],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣],即在区间[﹣,]上,函数的减区间为∈[﹣,﹣],增区间为[﹣,].【点评】本题主要考查三角函数的图象和性质,利用三角函数的诱导公式,两角和差的余弦公式以及辅助角公式将函数进行化简是解决本题的关键.16.(13分)(2016•天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【分析】(1)选出的2人参加义工活动次数之和为4为事件A,求出选出的2人参加义工活动次数之和的所有结果,即可求解概率.则P(A).(2)随机变量X的可能取值为0,1,2,3分别求出P(X=0),P(X=1),P(X=2),P(X=3)的值,由此能求出X的分布列和EX.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2P∴EX=0×+1×+2×=1.【点评】本题考查离散型随机变量的分布列和数学期望,是中档题,在历年的高考中都是必考题型.解题时要认真审题,仔细解答,注意古典概型的灵活运用.17.(13分)(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG∥FI,利用线面平行的判定定理证明:EG∥平面ADF;(2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值;(3)求出=(﹣,,),利用向量的夹角公式求出直线BH和平面CEF所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.【点评】本题考查证明线面平行的判定定理,考查二面角O﹣EF﹣C的正弦值,直线BH和平面CEF所成角的正弦值,考查学生分析解决问题的能力,属于中档题.18.(13分)(2016•天津)已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n和a n+1的等比中项.(1)设c n=b﹣b,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:.【分析】(1)根据等差数列和等比数列的性质,建立方程关系,根据条件求出数列{c n}的通项公式,结合等差数列的定义进行证明即可.(2)求出T n=(﹣1)k b k2的表达式,利用裂项法进行求解,结合放缩法进行不等式的证明即可.【解答】证明:(1)∵{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n和a n+1的等比中项.∴c n=b﹣b=a n+1a n+2﹣a n a n+1=2da n+1,∴c n+1﹣c n=2d(a n+2﹣a n+1)=2d2为定值;∴数列{c n}是等差数列;(2)T n=(﹣1)k b k2=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=2d(a2+a4+…+a2n)=2d=2d2n(n+1),∴==(1﹣…+﹣)=(1﹣).即不等式成立.【点评】本题主要考查递推数列的应用以及数列与不等式的综合,根据等比数列和等差数列的性质分别求出对应的通项公式以及利用裂项法进行求解是解决本题的关键.综合性较强,有一定的难度.19.(14分)(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H 的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA≤∠MAO,得到x0≥1,转化为关于k的不等式求得k的范围.【解答】解:(1)由+=,得,即,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA≤∠MAO,∴x0≥1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为,令x=0,得,∵BF⊥HF,∴,即1﹣x1+y1y H=,整理得:,即8k2≥3.∴或.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)(2016•天津)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)f′(x0)=0,可得3(x0﹣1)2=a,分别计算f(x0),f(3﹣2x0),化简整理即可得证;(3)要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得g (x1)﹣g(x2)≥.讨论当a≥3时,当0<a<3时,运用单调性和极值,化简整理即可得证.【解答】解:(1)函数f(x)=(x﹣1)3﹣ax﹣b的导数为f′(x)=3(x﹣1)2﹣a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1﹣时,f′(x)>0,当1﹣<x<1+,f′(x)<0,可得f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+);(2)证明:f′(x0)=0,可得3(x0﹣1)2=a,由f(x0)=(x0﹣1)3﹣3x0(x0﹣1)2﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,f(3﹣2x0)=(2﹣2x0)3﹣3(3﹣2x0)(x0﹣1)2﹣b=(x0﹣1)2(8﹣8x0﹣9+6x0)﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,即为f(3﹣2x0)=f(x0)=f(x1),即有3﹣2x0=x1,即为x1+2x0=3;(3)证明:要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得g(x1)﹣g(x2)≥.当a≥3时,f(x)在[0,2]递减,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(0)﹣f(2)=2a﹣2≥4>,递减,成立;当0<a<3时,f(1﹣)=(﹣)3﹣a(1﹣)﹣b=﹣﹣a+a﹣b=﹣a﹣b,f(1+)=()3﹣a(1+)﹣b=﹣a﹣a﹣b=﹣﹣a﹣b,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(2)﹣f(0)=2﹣2a,若0<a≤时,f(2)﹣f(0)=2﹣2a≥成立;若a>时,f(1﹣)﹣f(1+)=>成立.综上可得,g(x)在区间[0,2]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,考查不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法的证明,以及化简整理的运算能力,属于难题.参与本试卷答题和审题的老师有:sllwyn;双曲线;qiss;****************;sxs123;翔宇老师;沂蒙松;maths;ww方(排名不分先后)菁优网2016年8月18日第21页(共21页)。
(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷
2016年高考理数真题试卷(上海卷)及解析
○…………订…………○班级:___________考号:___________○…………订…………○2016年高考理数真题试卷(上海卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题)A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ2.已知无穷等比数列{a n }的公比为q ,前n 项和为S n , 且 lim n→∞S n =S ,下列条件中,使得2S n <S (n∈N *)恒成立的是( ) A.a 1>0,0.6<q <0.7 B.a 1<0,﹣0.7<q <﹣0.6 C.a 1>0,0.7<q <0.8 D.a 1<0,﹣0.8<q <﹣0.7第II 卷(非选择题)二、填空题(题型注释)|x ﹣3|<1的解集为 . 4.设Z=3+2ii,其中i 为虚数单位,则Imz= .5.已知平行直线l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则l 1 , l 2的距离 .6.已知点(3,9)在函数f (x )=1+a x 的图象上,则f (x )的反函数f ﹣1(x )= .7.在正四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 的边长为3,BD 1与底面所成角的大小为arctan23,则该正四棱柱的高等于 .8.在( √x 3−2x )n 的二项式中,所有的二项式系数之和为256,则常数项等于 .答案第2页,总11页…○…………装…………○……订…………○………※※请※※不※※要※※在※※装※※线※※内※※答※※题※※……○…………装…………○……订…………○………10.设a >0,b >0,若关于x ,y 的方程组 {ax +y =1x +by =1无解,则a+b 的取值范围为 .11.无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和,若对任意n∈N * , S n ∈{2,3},则k 的最大值为 .12.在平面直角坐标系中,已知A (1,0),B (0,﹣1),P 是曲线y= √1−x 2 上一个动点,则 BP →• BA →的取值范围是 .13.如图,在平面直角坐标系xOy 中,O 为正八边形A 1A 2…A 8的中心,A 1(1,0)任取不同的两点A i , A j , 点P 满足 OP →+ OA i →+ OA j →= 0→,则点P 落在第一象限的概率是 .三、解答题(题型注释)14.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为 23 π,A 1B 1长为 π3 ,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.15.有一块正方形EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分别为两个区域S 1和S 2 , 其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图…○…………线…………○…____…○…………线…………○…(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1面积是S 2面积的两倍,由此得到S 1面积的经验值为 83 .设M 是C 上纵坐标为1的点,请计算以EH 为一边,另一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于S 1面积的经验值.16.双曲线x 2﹣ y 2b2 =1(b >0)的左、右焦点分别为F 1 , F 2 , 直线l 过F 2且与双曲线交于A ,B 两点.(1)直线l 的倾斜角为 π2 ,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b= √3 ,若l 的斜率存在,且( F 1A →+F 1B →)• AB →=0,求l 的斜率. 17.若无穷数列{a n }满足:只要a p =a q (p ,q∈N *),必有a p+1=a q+1 , 则称{a n }具有性质P . (1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3; (2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1;b 5=c 1=81,a n =b n +c n , 判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n+1=b n +sina n (n∈N *),求证:“对任意a 1 , {a n }都具有性质P”的充要条件为“{b n }是常数列”.答案第4页,总11页外…………○…………………订…………○…※※请※※不※※※线※※内※※答※※题※※内…………○…………………订…………○…参数答案1.D【解析】1.解:由图形可知:θ=−π2 时,ρ取得最大值,只有D 满足上述条件. 故选:D . 2.B【解析】2.解:∵S n =a 1(1−q n )1−q ,S= lim n→∞S n =a 11−q ,﹣1<q <1,2S n <S , ∴a 1(2q n -1)>0 ,若a 1>0,则 q n >12 ,故A 与C 不可能成立;若a 1<0,则q n <12,故B 成立,D 不成立.故选:B . 【考点精析】解答此题的关键在于理解等比数列的前n 项和公式的相关知识,掌握前项和公式:.3.(2,4)【解析】3.解:∵x∈R,不等式|x ﹣3|<1, ∴﹣1<x ﹣3<1, 解得2<x <4.∴不等式|x ﹣3|<1的解集为(2,4). 所以答案是:(2,4). 4.-3【解析】4.解:∵Z= 3+2i i =3i+2i 2i2 =3i−2−1 =2﹣3i ,∴Imz=﹣3.所以答案是:﹣3.【考点精析】根据题目的已知条件,利用复数的乘法与除法的相关知识可以得到问题的答案,需要掌握设则;.5.2√55外…………○…………装…………○…………………线…………○…学校:___________姓名:___________班级:________内…………○…………装…………○…………………线…………○…【解析】5.平行直线l 1:2x+y ﹣1=0,l 2:2x+y+1=0,则l 1 , l 2的距离=||√22+12=2√55. 所以答案是:2√55. 【考点精析】解答此题的关键在于理解两平行线的距离的相关知识,掌握已知两条平行线直线和的一般式方程为:,,则与的距离为.6.log 2(x ﹣1)(x >1)【解析】6.解:∵点(3,9)在函数f (x )=1+a x 的图象上,∴9=1+a 3 , 解得a=2. ∴f(x )=1+2x , 由1+2x =y ,解得x=log 2(y ﹣1),(y >1). 把x 与y 互换可得:f (x )的反函数f ﹣1(x )=log 2(x ﹣1). 所以答案是:log 2(x ﹣1),(x >1). 7.2√2【解析】7.解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1的侧棱D 1D⊥底面ABCD , ∴∠D 1BD 为直线BD 1与底面ABCD 所成的角, ∴tan∠D 1BD= 23 ,∵正四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 的边长为3, ∴BD=3 √2 ,∴正四棱柱的高=3 √2 × 23 =2 √2 , 所以答案是:2 √2 .【考点精析】通过灵活运用棱柱的结构特征,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形即可以解答此题. 8.112【解析】8.解:∵在( √x 3﹣ 2x )n 的二项式中,所有的二项式系数之和为256, ∴2n =256,解得n=8,答案第6页,总11页……外…………○…………装…………○………订…………○……线…………○※※请※※不※※要※※在※※装※※订※※※※内※※答※※题※※……内…………○…………装…………○………订…………○……线…………○∴( √x 3﹣ 2x )8中,T r+1= = ,∴当=0,即r=2时,常数项为T 3=(﹣2)2C 82=112.所以答案是:112. 9.7√33【解析】9.解:可设△ABC 的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣ ,可得sinC== √1−14 = √32 ,可得该三角形的外接圆半径为 c2sinC =2×√32= 7√33 .所以答案是: 7√33. 10.(2,+∞)【解析】10.解:∵关于x ,y 的方程组{ax +y =1x +by =1无解,∴直线ax+y=1与x+by=1平行, ∵a>0,b >0,∴ a1=1b ≠ 1 ,即a≠1,b≠1,且ab=1,则b= 1a ,则a+b=a+ 1a ,则设f (a )=a+ 1a ,(a >0且a≠1),则函数的导数f′(a )=1﹣ 1a 2 = a 2−1a 2 ,当0<a <1时,f′(a )= a 2−1a 2<0,此时函数为减函数,此时f (a )>f (1)=2,当a >1时,f′(a )= a 2−1a 2>0,此时函数为增函数,f (a )>f (1)=2, 综上f (a )>2,即a+b 的取值范围是(2,+∞), 所以答案是:(2,+∞).【考点精析】掌握基本不等式是解答本题的根本,需要知道基本不等式:,(当且仅当时取到等号);变形公式:.11.4【解析】11.解:对任意n∈N * , S n ∈{2,3},可得 当n=1时,a 1=S 1=2或3;若n=2,由S 2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1; 若n=3,由S 3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1; 若n=4,由S 3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1; 或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1; 或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1; 或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1; 或3,﹣1,1,0;或3,﹣1,1,﹣1; …即有n >4后一项都为0或1或﹣1,则k 的最大个数为4, 不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1. 所以答案是:4. 12.[0,1+ √2 ]【解析】12.解:∵在平面直角坐标系中,A (1,0),B (0,﹣1),P 是曲线y= √1−x 2 上一个动点,∴设P (cosα,sinα),α∈[0,π],∴ BA → =(1,1), BP → =(cosα,sinα+1),BP →·BA →=cosα+sinα+1=√2sin (α+π4)+1 , ∴ BP →• BA →的取值范围是[0,1+ √2 ]. 所以答案是:[0,1+ √2 ]. 13.528【解析】13.解:从正八边形A 1A 2…A 8的八个顶点中任取两个,基本事件总数为 C 82=28 . 满足 OP → + OA i → + OA j → = 0→,且点P 落在第一象限,对应的A i , A j , 为:(A 4 , A 7),(A 5 , A 8),(A 5 , A 6),(A 6 , A 7),(A 5 , A 7)共5种取法.∴点P 落在第一象限的概率是 P= 528,所以答案是: 528 . 14. (1)解:连结O 1B 1,则∠O 1A 1B 1=∠A 1O 1B 1= π3 , ∴△O 1A 1B 1为正三角形, ∴ S △O 1A 1B 1 = √34 ,V C−O 1A 1B 1 = 13×OO 1×S △O 1A 1B 1 = √312答案第8页,总11页………装…………○……………线…………请※※不※※要※※在※※装※※订※※………装…………○……………线…………解:设点B 1在下底面圆周的射影为B ,连结BB 1,则BB 1∥AA 1, ∴∠BB 1C 为直线B 1C 与AA 1所成角(或补角), BB 1=AA 1=1,连结BC 、BO 、OC ,∠AOB=∠A 1O 1B 1= π3 , ∠AOC =2π3,∴∠BOC= π3 ,∴△BOC 为正三角形,∴BC=BO=1,∴tan∠BB 1C=45°,∴直线B 1C 与AA 1所成角大小为45°.【解析】14.(1)连结O 1B 1 , 推导出△O 1A 1B 1为正三角形,从而= √34 ,由此能求出三棱锥C ﹣O 1A 1B 1的体积.(2)设点B 1在下底面圆周的射影为B ,连结BB 1 , 则BB 1∥AA 1 , ∠BB 1C 为直线B 1C 与AA 1所成角(或补角),由此能求出直线B 1C 与AA 1所成角大小.本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题. 15. (1)解:设分界线上任意一点为(x ,y ),由题意得|x+1|= √(x −1)2+y 2 ,得y=2 √x ,(0≤x≤1),(2) 解:………线…………○…………线…………○…设M (x 0,y 0),则y 0=1,∴x 0=y 024= 14 ,∴设所表述的矩形面积为S 3,则S 3=2×( 14 +1)=2× 54 = 52 ,设五边形EMOGH 的面积为S 4,则S 4=S 3﹣S △OMP +S △MGN = 52 ﹣ 12 × 14 ×1+ 12×34×1 = 114 , S 1﹣S 3= 83−52 = 16 ,S 4﹣S 1= 114 ﹣ 83 = 112 < 16 ,∴五边形EMOGH 的面积更接近S 1的面积.【解析】15.(1)设分界线上任意一点为(x ,y ),根据条件建立方程关系进行求解即可. (2)设M (x 0 , y 0),则y 0=1,分别求出对应矩形面积,五边形FOMGH 的面积,进行比较即可.本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大. 16. (1)解:双曲线x 2﹣ y 2b2 =1(b >0)的左、右焦点分别为F 1,F 2,a=1,c 2=1+b 2,直线l 过F 2且与双曲线交于A ,B 两点, 直线l 的倾斜角为 π2 ,△F 1AB 是等边三角形, 可得:A (c ,b 2),可得: √32×2b 2=2c , 3b 4=4a 2+b 2,即3b 4﹣b 2﹣4=0, b >0,解得b 2= 43 . 所求双曲线方程为:x 2﹣ 3y 24 =1(2)解:b= √3 ,双曲线x 2﹣ y 23 =1,可得F 1(﹣2,0),F 2(2,0). 设A (x 1,y 1),B (x 2,y 2),直线的斜率为:k= y 2−y1x −x ,答案第10页,总11页直线l 的方程为:y=k (x ﹣2), 由题意可得: {y =kx −2k x 2−y 23=1,消去y 可得:(3﹣k 2)x 2+4k 2x ﹣4k 2﹣3=0,可得x 1+x 2=﹣4k 23−k 2,则y 1+y 2=k (x 1+x 2﹣4)= k(4k 23−k +4) .F 1A →=(x 1+2,y 1), F 1B →=(x 2+2,y 2),( F 1A →+F 1B →)• AB →=0可得:(x 1+x 2+4,y 1+y 2)•(x 1﹣x 2,y 1﹣y 2)=0, 可得: −x 1+x 2+4y 1+y 2=y 2−y 1x 2−x 1=k ,−−4k 23−k 2+4k(4k 23−k 2−4) , 可得:k 2=1, 解得k=±1. l 的斜率为:±1【解析】16.(1)利用直线的倾斜角,求出AB ,利用三角形是正三角形,求解b ,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A 、B 坐标,利用向量的数量积为0,即可求值直线的斜率.本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用. 17. (1)解:∵a 2=a 5=2,∴a 3=a 6,a 4=a 7=3,∴a 5=a 8=2,a 6=21﹣a 7﹣a 8=16,∴a 3=16(2)解:设无穷数列{b n }的公差为:d ,无穷数列{c n }的公比为q ,则q >0, b 5﹣b 1=4d=80,∴d=20,∴b n =20n ﹣19, c 5c 1 =q 4= 181 ,∴q= 13 ,∴c n = (13)n−5∴a n =b n +c n =20n ﹣19+ (13)n−5.∵a 1=a 5=82,而a 2=21+27=48,a 6=101 +13 =3043.a 1=a 5,但是a 2≠a 6,{a n }不具有性质P第11页,总11页(3)解:充分性:若{b n }是常数列, 设b n =C ,则a n+1=C+sina n ,若存在p ,q 使得a p =a q ,则a p+1=C+sina p =C+sina q =a q+1, 故{a n }具有性质P .必要性:若对于任意a 1,{a n }具有性质P , 则a 2=b 1+sina 1,设函数f (x )=x ﹣b 1,g (x )=sinx ,由f (x ),g (x )图象可得,对于任意的b 1,二者图象必有一个交点, ∴一定能找到一个a 1,使得a 1﹣b 1=sina 1, ∴a 2=b 1+sina 1=a 1,∴a n =a n+1,故b n+1=a n+2﹣sina n+1=a n+1﹣sina n =b n , ∴{b n }是常数列.【解析】17.(1)利用已知条件通过a 2=a 5=2,推出a 3=a 6 , a 4=a 7 , 转化求解a 3即可. (2)设无穷数列{b n }的公差为:d ,无穷数列{c n }的公比为q ,则q >0,利用条件求出,d 与q ,求出b n , c n 得到a n 的表达式,推出a 2≠a 6 , 说明{a n }不具有性质P .(3)充分性:若{b n }是常数列,设b n =C ,通过a n+1=C+sina n , 证明a p+1=a q+1 , 得到{a n }具有性质P .必要性:若对于任意a 1 , {a n }具有性质P ,得到a 2=b 1+sina 1 , 设函数f (x )=x ﹣b 1 , g (x )=sinx ,说明b n+1=b n , 即可说明{b n }是常数列.本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大.。
2016年成人高考全国统一考试高起专数学(文)试题及答案
2016年成人高等学校招生全国统一考试数学(文史财经类)试题第一部分 选择题(85分)一、选择题(本大题共17小题,每小题5分,共85分。
在每小题给出的 四个选项中,只有一项是符合题目要求的,将所选项前的字母填写 在题后括号内)1. 设集合A=}{1,0,B=}{210,,,则A ∩B=( )A. }{10,B. }{20,C. }{21,D. }{210,,2. 函数x x y cos sin 2=的最小正周期是( )A.2πB. πC. 2πD. 4π3. 等差数列}{n a 中,若===731,6,2a a a 则( )A. 14B. 12C. 10D. 84. 若甲: x>1; 乙:xe >1,则 ( )A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲不是乙的充分条件,也不是乙的必要条件D. 甲是乙的充分必要条件5. 不等式132≤-x 的解集为( )A. }{31≤≤x xB. }{21-1≥≤x x 或C. }{21≤≤x xD. }{32≤≤x x6. 下列函数中,为偶函数的是( )A.x y 2log =B. x x y +=2C. xy 4=D. 2x y = 7. 点(2,4)关于直线y=x 的对称点的坐标为( )A. (-2, 4)B. (-2, -4)C. (4, 2)D. (-4, -2) 8. 将一颗骰子抛掷1次,得到的点数为偶数的概率为( )A.32B.21 C. 31D. 619. 在ΔABC 中,若AB=3,A=45。
,C=。
30,则BC=( )A. 23B. 32C.3D.22 10. 下列函数中,函数值恒为负值的是( )A. x y =B. 12+=x yC. 3x y = D. 12--=x y 11. 过点(0,1)且与直线x+y+1=0垂直的直线方程为( )A. x y =B. 12+=x yC. 1+=x yD. 1-=x y12. 设双曲线191622=-y x 的渐近线的斜率为k ,则k =( )A. 169B. 43C. 34D. 91613. =+81log 649132( )A. 8B. 10C. 12D. 14 14. 若3tan =α,则⎪⎭⎫⎝⎛+4tan πα=( )A. 2B.21 C. -2D. -4 15. 函数()111ln 2-+-=x x y 的定义域为( )A. }{11〉〈-x x x 或B. RC. }{11〈〈-x xD. }{11〉〈x x x 或16. 某同学每次投篮投中的概率为52,该同学投篮2次,只投中1次的概率为 ( )A.256 B. 259C. 2512D. 5317. 曲线243+-=x x y 在点(1,-1)处的切线方程为( )A. x +y =0B. x -y =0C. x -y -2=0`D. x +y -2=0第二部分 非选择题(65分)二、填空题(本大题共4小题,每小题4分,共16分。
2016年高考数学试卷附标准答案与解析
高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=15.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++228.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1 .⊥•=1 4+)⊥9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是()10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()=i3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=1y=5.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()则对应的标准差为=7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++22×2×1+2××+×2×1.8.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1.⊥•=1 4+)⊥,根据已知三角形为等边三角形解之.的等边三角形,,满足=2,=2+,又,,=4×1×2×cos120°=﹣,=4,所以4),所以9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是(),∴b>﹣﹣10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()x=2x+=2x=∴2×+φ=2kπ+,,可解得:φ=2kπ+(2x+2kπ+)2x+))﹣4+2π)>4+=Asin>>﹣4+2π>>,而2x+)在区间(,二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是35 (用数字填写答案)=;∴r=4,可得:12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 6 .θ=y=xθ=θ=y=xd=(ρ∈13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为 4时不满足条件,,,14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1 .项和为:15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解:∵∠A=AC=3…4中,由正弦定理可得:,…8AD=== (12)17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)=.=.=.=200 300 400+300×+400×18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.,时,时,因为=19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.=的一个法向量为===,,得=∴cos(,==的余弦值为20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.即,可得=1,线段,∴=.,∴==1NS,解得∴a=3的方程为:21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.的最大值.,)递增,,f′((;或,当时,参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2016年6月13日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016高考数学选择题、填空题75分练
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
选择题、填空题75分练(三)
实战模拟,30分钟拿到选择题、填空题满分!
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数z=,z的共轭复数为,z·= ( )
A.1-i
B.2
C.1+i
D.0【解析】选B.z===1+i,所以z·==2.
2.已知集合A={x|y=log2(x+1)},集合B=,则
A∩B= ( )
A.(1,+∞)
B.(-1,1)
C.(0,+∞)
D.(0,1)
【解析】选D.A={x|y=log2(x+1)}={x|x>-1},
B=={y|0<y<1},
所以A∩B=(0,1).
3.(2014·聊城模拟)若a,b,c是空间三条不同的直线,α,β是空间中不同的平面,则下列命题中不正确的是( )
A.若c⊥α,c⊥β,则α∥β
B.若b⊂α,b⊥β,则α⊥β
C.若b⊂α,a⊄α且c是a在α内的射影,若b⊥c,则a⊥b
D.当b⊂α且c⊄α时,若c∥α,则b∥c
【解析】选D.对于A,若c⊥α,c⊥β,则α∥β,正确.对于B,若b⊂α,b⊥β,则α⊥β,符合面面垂直的判定定理,成立.对于C,当b⊂α,a⊄α且c是a 在α内的射影,若b⊥c,则a⊥b符合三垂线定理,成立.对于D,当b⊂α且c⊄α时,若c∥α,则b∥c,线面平行,不代表直线平行于平面内的所有的直线,故错误.选D.
4.已知等差数列{a n}的前n项和为S n,若a2=3,a6=11,则S7= ( )
A.91
B.
C.98
D.49
【解析】选D.因为a2+a6=a1+a7,所以S7====49.
5.实数x,y满足若目标函数z=x+y取得最大值4,则实数a的值为( )
A.4
B.3
C.2
D.
【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.
6.(2014·邯郸模拟)在“神十”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有( )
A.24种
B.48种
C.96种
D.144种
【解析】选C.当A出现在第一步时,再排A,B,C以外的3个程序,有种,A与A,B,C以外的3个程序生成4个可以排列程序B,C的空档,此时共有种排法;当A出现在最后一步时的排法与此相同,故共有2=96
种编排方法.
7.执行如图所示的程序框图,若输入x=2,则输出y的值为( )
A.2
B.5
C.11
D.23
【解析】选D.输入x=2,y=5.|2-5|=3<8,x=5,y=11,|5-11|=6<8,x=11,y=23,|11-23|=12>8,满足条件,输出y=23.
8.(2014·泰安模拟)在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和
C(4,0),顶点B在椭圆+=1上,则= ( )
A. B. C. D.
【解析】选D.因为点B在椭圆上,所以BA+BC=10,又AC=8,所以由正弦定理得:===.
9.(2014·保定模拟)已知点F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.(1,)
B.(,2)
C.(1+,+∞)
D.(1,1+)
【解析】选D.A,B,F2(c,0),
=,=.
·=4c2->0,
e2-2e-1<0,1<e<1+.
【加固训练】已知椭圆+=1(a>b>0),M,N是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线PM,PN的斜率分别为k1,k2,若|k1k2|=,则椭圆的离心率e为( )
A. B. C. D.
【解析】选C.设P(x,y),M(x0,y0),N(-x0,-y0),
则k1=,k2=,依题意有|k1k2|===.
又因为点P,M,N在椭圆上,
所以+=1,+=1,
两式相减,得+=0,
即=-,
所以=,
即=,
解得e==.
10.(2014·扬州模拟)已知函数f(x)=lnx+3x-8的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b= ( )
A.5
B.4
C.3
D.2
【解析】选A.本题的实质是求解函数f(x)=ln x+3x-8的零点所在的区间[a,b].易知f(2)=ln2+6-8=ln2-2<0,f(3)=ln3+9-8=ln3+1>0,又a,b∈N*,b-a=1,所以a=2,b=3,故a+b=5.
【加固训练】已知函数f(x)=e x-2x+a有零点,则a的取值范围是.【解析】f′(x)=e x-2.由f′(x)>0得e x-2>0,
所以x>ln2.由f′(x)<0得,x<ln2.
所以f(x)在x=ln2处取得最小值.
只要f(x)min≤0即可.
所以e ln2-2ln2+a≤0,
所以a≤2ln2-2.
所以a的取值范围是(-∞,2ln2-2].
答案:(-∞,2ln2-2]
二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)
11.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则+的值为. 【解析】=(a-2,-2),=(-2,b-2),
依题意,有(a-2)(b-2)-4=0,
即ab-2a-2b=0,所以+=.
答案:
12.(2014·青岛模拟)已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,
最小值为0,两条对称轴间的最短距离为,直线x=是其图象的一条对称轴,则符合条件的解析式是.
【解析】依题意,得:解得:又两条对称轴间的最短距离为,
所以,周期T=π=,
所以ω=2,函数的解析式为:y=2sin(2x+φ)+2,
由直线x=是其图象的一条对称轴,
得:2×+φ=kπ+,k∈Z,
即φ=kπ+,k∈Z.
当k=0时,有φ=.
答案:y=2sin+2
13.某几何体的正视图与俯视图如图,正视图与侧视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积为.
【解析】由三视图知,原几何体为一个正方体挖掉一个正四棱锥,其中正方体的棱长为2,正四棱锥的底面为正方体的上底面,高为1,所以原几何体的体积为V=2×2×2-×2×2×1=.
答案:
14.(2014·临沂模拟)已知各项不为零的等差数列{a n}的前n项和为S n.若m∈N*,
且a m-1+a m+1-=0,S2m-1=38,则m= .
【解析】由a m-1+a m+1=2a m,
得2a m-=0,又a m≠0.
所以a m=2,则S2m-1==(2m-1)a m=2(2m-1)=38,所以m=10.
答案:10
15.(2014·承德模拟)若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为.
【解析】因为函数f(x)的图象关于直线x=-2对称,
所以f(0)=f(-4),得4b=-60+15a,
又f′(x)=-4x3-3ax2+2(1-b)x+a,
而f′(-2)=0,-4×(-2)3-3a(-2)2+2(1-b)×(-2)+a=0.
得11a-4b=28,即
解得a=8,b=15.
故f(x)=(1-x2)(x2+8x+15),
则f(x)=(1-x)(1+x)(x+3)(x+5),
=(1-x)(x+5)(1+x)(x+3)
=-(x2+4x-5)(x2+4x+3).
令x2+4x=t(t≥-4),
故f(x)=-t2+2t+15=-(t-1)2+16,
当t=1,即x=-2时,f(x)max=16.
答案:16
【加固训练】(2014·承德模拟)若函数f(x)=x+(x>2)在x=a处取最小值,则a= .
【解析】f′(x)=1-,因为函数在x=a处有最小值,则一定有
f′(a)=1-=0,
解得a=1或a=3,
因为x>2,所以a=3.
答案:3
关闭Word文档返回原板块。