知识讲解_高考总复习:算法与程序框图

合集下载

知识讲解高考总复习:算法与程序框图

知识讲解高考总复习:算法与程序框图

算法的特性
确定性:算法的每 一步操作都必须明 确,不能有任何歧 义。
有限性:算法必须 在有限步骤内完成, 不能无限循环。
输入输出:算法必 须具有输入和输出 ,以接收数据和返 回结果。
可行性:算法必须 是可行的,即在实 际计算机上能够实 现。
算法的表示方法
自然语言描述:简洁明了地描述算法的步骤和逻辑 伪代码:用类似于编程语言的简化和规范化的语言描述算法 流程图:用图形符号表示算法的流程和逻辑结构 程序框图:用框图的形式表示算法的逻辑结构和执行流程
程序框图在数学问题中的应用
用于解决代数问题
用于解决几何问题
用于解决数论问题
用于解决组合数学问题
程序框图在计算机编程中的应用
程序框图用于描述算法逻辑,使得算法更加直观易懂 程序框图有助于开发人员在设计阶段发现潜在问题,提高代码质量 通过程序框图,开发人员可以更好地进行团队协作,提高开发效率 程序框图在算法优化和调试过程中起到重要作用,有助于快速定位问题并进行修复
算法与程序框图
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 添加目录标题 02 算法的概述 03 程序框图的构成 04 程序框图的应用
05 高考总复习中的算法与程序框图
单击添加章节标题
第一章
算法的概述
第二章
算法的定义
算法是一系列解决问题的清晰指令 算法必须在有限步骤内完成 算法必须具有明确性、可行性、有穷性和输出性 算法可以用于解决各种问题,包括计算、推理、决策等
程序框图在算法中的应用
描述算法逻辑:程 序框图能够清晰地 展示算法的逻辑流 程,帮助理解复杂 的概念和过程。

高中数学之算法与程序框图

高中数学之算法与程序框图

算法与程序框图(讲义)➢知识点睛一、算法1.概念:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.特点:(1)确定性算法的每一步都是确定的,能有效执行且得到确定的结果.(2)有限性算法要有明确的开始和结束,必须在有限步内完成任务,不能无限制的持续进行.(3)顺序性算法从开始的“第一步”到“最后一步”之间做到环环相扣.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.二、程序框图1.概念:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.构成程序框图的图形符号、名称及功能算法共有三种基本逻辑结构:顺序结构、条件结构和循环结构.1.顺序结构:由若干个依次执行的步骤组成.这是任何一个算法都离不开的基本结构.用程序框图表示为:2. 条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.常见的条件结构可以用程序框图表示为下面两种形式:3. 循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.⎧⎨⎩直到型循环结构循环结构当型循环结构(1)直到型循环结构在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.程序框图如图.直到型循环结构当型循环结构(2)当型循环结构在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.程序框图如图.➢精讲精练1.下列所给问题中,可以设计一个算法的是____________.①二分法求方程x-2sin x=0的一个近似解;②解一个二元一次方程组;③求半径为3的圆的面积;④判断函数y=x2的单调性.2.给出以下四个问题:①输入一个数x,输出它的相反数;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数1()2x xf xx x-⎧=⎨+<⎩≥,,的函数值.其中不需要用条件语句来描述其算法的有()A.1个B.2个C.3个D.4个3.阅读下面的流程图,若输入的a,b,c分别是21,32,75,则输出的a,b,c分别是()A.75,21,32B.21,32,75C.32,21,75D.75,32,21第3题图第4题图4.如图所示的程序框图的输出结果为____________.5.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s的取值范围是()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]第5题图 第6题图6. 阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .585B .512C .73D .647. 阅读如图所示的程序框图,运行相应的程序,则输出的i 的值为_________.8.__________.10. 如图所示,该程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .8911. 如图,当输入x 为2 016时,输出的y =( ) A .28B .10C .4D .2第11题图第12题图12.阅读如图所示的程序框图,运行相应的程序,则输出的s的值为_________.13.执行如图所示的程序框图,若输入的x,t的值均为2,则输出的S的值为()A.7B.6C.5D.414.执行如图所示的程序框图,若输入的a,b,k的值分别为1,2,3,则输出的M的值为()A.203B.72C.165D.15815.执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件为()A.8S<?S<?D.11S<?C.10S<?B.917.执行如图所示的程序框图,如果输出的s的值为3,那么判断框内应填入的条件是()【参考答案】1.①②③2.B3.A4.85.A6.C7.5 8.B9.9 510.B11.B12.913.A14.D15.C16.B17.B算法与程序框图(随堂测试)1.执行如图所示的程序框图,则输出的S的值为()A.1B.23C.1321D.610987第1题图第2题图2.执行如图所示的程序框图,若输出的X的值为31,则判断框中应填入的条件是()A.k≤2?B.k<3?C.k≤3?D.k≤4?3.执行如图所示的程序框图,若输出的S的值为126,则判断框中应填入的条件是()A.n≤5?B.n≤6?C.n≤7?D.n≤8?【参考答案】1.C2.C3.B算法与程序框图(习题)1.下面是某个问题的算法:第一步,比较a与b的大小,若a<b,则交换a,b的位置.第二步,比较a与c的大小,若a<c,则交换a,c的位置.第三步,比较b与c的大小,若b<c,则交换b,c的位置.第四步,输出a,b,c.该算法结束后解决的问题是()A.输入a,b,c三个数,按从小到大的顺序输出B.输入a,b,c三个数,按从大到小的顺序输出C.输入a,b,c三个数,按输入顺序输出D.输入a,b,c三个数,无规律地输出2.阅读程序框图,运行相应的程序,则输出的S的值为()A.-10B.6C.14D.18第2题图第3题图3.当m=7,n=3时,执行如图所示的程序框图,则输出的s的值为()A.7B.42C.210D.8404.执行如图所示的程序框图,则输出的结果为()A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)第4题图第5题图5.执行如图所示的程序框图,若输入的n的值为10,则输出的S的值为()A .511B .1011C .3655D .72556. 执行如图所示的程序框图,如果输入的t ∈[-2,2],则输出的S 的取值范围是( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]7. 已知函数2log 222x x y x x ⎧=⎨-<⎩≥,,,若图中表示的是给定x 的值,求其对应的函数值y 的程序框图,则①处应填写_________,②处应填写___________.第7题图 第8题图8. 阅读程序框图,若输入的x 的值分别为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c =________.9. 执行如图所示的程序框图,若输入的a 的值为4,则输出的n 的值为( )A .2B .3C .4D .510.执行如图所示的程序框图,若输入的ε的值为0.25,则输出的n的值为___________.11.以下给出的是计算111124620++++…的值的一个程序框图,其中判断框内应填入的条件是()A.i>10?B.i<10?C.i>20?D.i<2012. 执行如图所示的程序框图,若输出的S 的值为52,则判断框内应填入的条件是( )A .i >10?B .i <10?C .i >9?D .i <9?第12题图 第13题图 13. 阅读如图所示的程序框图,若输出的i 的值为5,则空白矩形框中应填入的语句是( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +414. 阅读如图的程序框图,若输出的s 的值为-7,则判断框内可填写( )【参考答案】1. B2. B3. C4. B5. A6. D7. 2x < 2log y x = 8. 6 9. B 10. 3 11. A 12. A 13. C 14. D。

高考数学一轮总复习:算法与程序框图、基本算法语句

高考数学一轮总复习:算法与程序框图、基本算法语句

算法与程序框图、基本算法语句[基础梳理]1.算法算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图(1)程序框图的定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.(2)程序框图中图形符号的意义3.三种基本逻辑结构及相应语句(1)顺序结构:要解决的问题不需要分类讨论.(2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.2.循环结构的两个形式的区别(1)当型循环结构:先判断是否满足条件,若满足条件,则执行循环体.(2)直到型循环结构:先执行循环体,再判断是否满足条件,直到满足条件时结束循环.3.理解赋值语句要注意的三点(1)赋值语句中的“=”称为赋值号,与等号的意义不同.(2)赋值语句的左边只能是变量的名字,而不能是表达式.(3)对于同一个变量可以多次赋值,变量的值始终等于最近一次赋给它的值,先前的值将会被替换.[四基自测]1.某居民区的物业公司按月向居民收取卫生费,每月收费方法是:4人和4人以下的住户,每户收取6元;超过4人的住户,每超出1人加收1.1元,相应收费系统的程序框图如图所示,则①处应填()A.y=6+1.1x B.y=15+1.1xC.y=6+1.1(x-4) D.y=15+1.1(x-4)答案:C2.如图所示的程序框图的运行结果是()A.2 B.2.5C.3.5 D.4答案:B3.阅读下边的程序框图,运行相应的程序,则输出i的值为()A.2 B.3C.4 D.5答案:C4.(2017·高考全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=()A.2 B.3C.4 D.5答案:B高考总复习数学(文)第十章算法初步、统计、统计案例5.已知函数y=lg|x-3|,如图所示程序框图表示的是给定x值,求其相应函数值y的算法,请将该程序框图补充完整,其中①处应填________,②处应填________.答案:x<3?y=lg(x-3)考点一求运行后的输出结果◄考基础——练透角度1 输出计算结果[例1](1)(2016·高考全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b =6,那么输出的n=()A.3B.4C.5 D.6解析:运行程序框图,第1次循环,a=2,b=4,a=6,s=6,n=1;第2次循环,a=-2,b=6,a=4,s=10,n=2;第3次循环,a=2,b=4,a=6,s=16,n=3;第4次循环,a=-2,b=6,a=4,s=20,n=4,结束循环,故输出的n=4.答案:B(2)(2018·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4解析:输入N的值为20,第一次执行条件语句,N=20,i=2,Ni=10是整数,∴T=0+1=1,i=3<5;第二次执行条件语句,N=20,i=3,Ni=203不是整数,∴i=4<5;第三次执行条件语句,N=20,i=4,Ni=5是整数,∴T=1+1=2,i=5,此时i≥5成立,∴输出T=2.故选B.角度2 输出运算关系[例2]某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=|x| xC.f(x)=e x-e-x e x+e-xD.f(x)=1+sin x+cos x 1+sin x-cos x解析:由框图可知输出函数为奇函数且存在零点,依次判断各选项,A为偶函数,B不存在零点,不符合,对于C,由于f(-x)=e-x-e xe-x+e x=-f(x),即函数为奇函数,且存在零点为x=0,对于D,由于其定义域不关于原点对称,故其为非奇非偶函数,故选C.答案:C求程序框图运行结果的思路(1)要明确程序框图中的顺序结构、条件结构和循环结构.(2)要识别运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.1.(2019·河北石家庄模拟)当n=4时,执行如图所示的程序框图,则输出的S 值为()A.9 B.15C.31 D.63解析:由程序框图可知,n=4,k=1,S=1,满足条件k≤4;执行循环体,S=3,k=2,满足条件k≤4;执行循环体,S=7,k=3,满足条件k≤4;执行循环体,S=15,k=4,满足条件k≤4;执行循环体,S=31,k=5,不满足条件k≤4,退出循环,输出S的值为31.故选C.答案:C2.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A .y =2xB .y =3xC .y =4xD .y =5x解析:运行程序,第1次循环得x =0,y =1,n =2,第2次循环得x =12,y =2,n =3,第3次循环得x =32,y =6,此时x 2+y 2≥36,输出x ,y ,满足C 选项. 答案:C考点二 求输入的值◄考能力——知法[例3] (1)(2017·高考全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2解析:S =0+100=100,M =-10,t =2,100>91;S =100-10=90,M =1,t =3,90<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2,故选D.答案:D(2)《九章算术》是中国古代数学名著,体现了古代劳动人民的数学智慧,其中有一竹节容量问题,某老师根据这一问题的思想设计了如图所示的程序框图,若输出的m的值为35,则输入的a的值为()A.4 B.5C.7 D.11解析:起始阶段有m=2a-3,i=1,第一次循环,m=2(2a-3)-3=4a-9,i=2;第二次循环,m=2(4a-9)-3=8a-21,i=3;第三次循环,m=2(8a-21)-3=16a-45,i=4;接着计算m=2(16a-45)-3=32a-93,跳出循环,输出m=32a-93,令32a-93=35,得a=4.答案:A(2019·湖南郴州模拟)秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值可为()A .6B .5C .4D .3解析:模拟程序的运行,可得x =3,k =0,s =0,a =4,s =4,k =1,不满足条件k >n ;执行循环体,a =4,s =16,k =2,不满足条件k >n ;执行循环体,a =4,s =52,k =3,不满足条件k >n ;执行循环体,a =4,s =160,k =4,不满足条件k >n ;执行循环体,a =4,s =484,k =5,由题意,此时应该满足条件k >n ,退出循环,输出s 的值为484,可得5>n ≥4,所以输入n 的值可为4.故选C. 答案:C考点三 完善程序框图◄考基础——练透 [例4] (1)(2018·高考全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( ) A .i =i +1 B .i =i +2 C .i =i +3 D .i =i +4解析:把各循环变量在各次循环中的值用表格表循环次数①②③…○50N0+110+11+130+11+13+15…0+11+13+15+…+199T0+120+12+140+12+14+16…0+12+14+16+…+1100S1-121-12+13-141-12+13-14+15-16…1-12+13-14+…+199-1100因为N=N+i,由上表知i是1→3→5,…,所以i=i+2.故选B.答案:B(2)(2017·高考全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2解析:程序框图中A=3n-2n,故判断框中应填入A≤1 000,由于初始值n=0,要求满足A=3n-2n>1 000的最小偶数,故执行框中应填入n=n+2,选D.解决此类问题,其关键点1.分两种循环直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.2.理清所用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1.(2)累加变量:用来计算数据之和,如S=S+i.(3)累乘变量:用来计算数据之积,如p=p×i.(2019·许昌调研)如图给出的是计算12+14+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.i>100,n=n+1B.i>100,n=n+2 C.i>50,n=n+2 D.i≤50,n=n+2解析:因为12,14,…,1100共50个数,所以算法框图应运行50次,所以变量i应满足i>50,因为是求偶数的和,所以执行框图n满足n=n+2.故选C.逻辑推理、直观想象——传统文化中的程序框图的应用[例1](1)(2015·高考全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4 D.14解析:开始:a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,退出循环,输出a=2,故选B.答案:B(2)(2016·高考全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17 D.34解析:由程序框图知,第一次循环:x=2,n=2,a=2,s=0×2+2=2,k=1;第二次循环:a=2,s=2×2+2=6,k=2;第三次循环:a=5,s=6×2+5=17,k=3.结束循环,输出s的值为17,故选C.答案:C[例2](1)(2019·湖北荆州七校2月联考)宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2B.3C.4D.5解析:程序运行如下:n=1,a=5+52=152,b=4,a>b,继续循环;n=2,a=152+12×152=454,b=8,a>b,继续循环;n=3,a=454+12×454=1358,b=16,a>b,继续循环;n=4,a=1358+12×1358=40516,b=32,此时,a<b.输出n=4,故选C.答案:C(2)(2019·河南开封模拟)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是()A.i<7,s=s-1i,i=2iB.i≤7,s=s-1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1解析:由题意可知第一天后剩下12,第二天后剩下122,……,由此得出第7天后剩下127,则①应为i≤7,②应为s=s2,③应为i=i+1,故选D.答案:D(3)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,3,则输出v的值为()A.20B.61C.183D.548解析:初始值n,x的值分别为4,3,程序运行过程如下所示:v=1,i=3;v=1×3+3=6,i=2;v=6×3+2=20,i=1,v=20×3+1=61,i=0;v=61×3+0=183,i=-1;跳出循环,输出v的值为183,故选C.答案:C课时规范练A组基础对点练1.阅读如图所示的程序框图,运行相应的程序,则输出S的值为()A.2B.4C.6 D.8解析:第一次:S=8,n=2,第二次:S=2,n=3,第三次:S=4,n=4,满足n>3,输出S=4.答案:B2.阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0B.1C.2D.3解析:阅读程序框图可得,程序执行过程如下:首先初始化数值为N=19,第一次循环:N=N-1=18,不满足N≤3;第二次循环:N=N3=6,不满足N≤3;第三次循环:N=N3=2,满足N≤3;此时跳出循环体,输出N=2.答案:C3.执行如图所示的程序框图,则输出的λ是() A.-4B.-2C.0D.-2或0解析:依题意,若λa+b与b垂直,则有(λa+b)·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa+b 与b平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图,输出的λ是-2.答案:B4.执行如图所示的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.203 B.165C.72 D.158解析:第一次循环:M=32,a=2,b=32,n=2;第二次循环:M=83,a=32,b=83,n=3;第三次循环:M=158,a=83,b=158,n=4.则输出的M=158,选D.答案:D5.执行如图所示的程序框图,如果输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7解析:k=1≤2,执行第一次循环,M=11×2=2,S=2+3=5,k=1+1=2;k=2≤2,执行第二次循环,M=22×2=2,S=2+5=7,k=2+1=3;k=3>2,终止循环,输出S=7.故选D.答案:D6.阅读如图所示的程序框图,运行相应程序,则输出的i的值为()A.3 B.4C.5 D.6解析:第一次执行,i=1,a=2;第二次执行,i=2,a=5;第三次执行,i =3,a=16;第四次执行,i=4,a=65,此时满足条件a>50,跳出循环,故选B.答案:B7.执行如图所示的程序框图,如果输入的x的值是407,y的值是259,那么输出的x的值是()A.2 849 B.37C.74 D.77解析:输入x的值是407,y的值是259,第一次循环后,S=148,x=259,y =148;第二次循环后,S=111,x=148,y=111;第三次循环后,S=37,x =111,y=37;第四次循环后,S=74,x=74,y=37;第五次循环后,S=37,x=37,y=37,结束循环,所以输出的x的值是37.故选B.答案:B8.(2019·临沂模拟)某程序框图如图所示,若判断框内是k≥n,且n∈N时,输出的S=57,则判断框内的n应为________.解析:由程序框图,可得:S =1,k =1;S =2×1+2=4,k =2;S =2×4+3=11,k =3;S =2×11+4=26,k =4;S =2×26+5=57,k =5.答案:5B 组 能力提升练9.执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:作出分段函数s =⎩⎨⎧ 3t ,-1≤t <1,-t 2+4t ,1≤t ≤3的图象(图略),可知函数s 在[-1,2]上单调递增,在[2,3]上单调递减,∴t ∈[-1,3]时,s ∈[-3,4].答案:A10.(2019·郑州一中质检)执行如图所示的程序框图,若输出y=-3,则输入的θ=()A.π6B.-π6C.π3D.-π3解析:对于A,当θ=π6时,y=sin θ=sin π6=12,则输出y=12,不合题意;对于B,当θ=-π6时,y=sin θ=sin(-π6)=-12,则输出y=-12,不合题意;对于C,当θ=π3时,y=tan θ=tan π3=3,则输出y=3,不合题意;对于D,当θ=-π3时,y=tan θ=tan(-π3)=-3,则输出y=-3,符合题意.故选D.答案:D11.执行如图所示的程序框图(算法流程图),输出的n为________.解析:第一次执行循环体a=32,n=2;此时|a-1.414|=|1.5-1.414|=0.086>0.005;第二次执行循环体a=75,n=3;此时|a-1.414|=|1.4-1.414|=0.014>0.005;第三次执行循环体a =1712,n =4;此时|a -1.414|<0.005,此时不满足判断框内的条件,输出n =4.答案:412.阅读如图所示的程序框图,运行相应的程序,输出的 结果S =________.解析:由程序框图知,S 可看成一个数列{a n }的前2 018 项的和,其中a n =1n (n +1)(n ∈N *,n ≤2 018), ∴S =11×2+12×3+…+12 018×2 019=⎝ ⎛⎭⎪⎫1-12+ ⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 018-12 019=1-12 019=2 0182 019.答案:2 0182 019。

高中数学复习:算法与程序框图

高中数学复习:算法与程序框图

一般格式 ③ INPUT “提示内容”;变量 ④ PRINT “提示内容”;表达式 ⑤ 变量=表达式
教材研读 栏目索引
功能 输入信息 输出常量、变量的值和系统信息 将表达式的值赋给变量
(2)条件语句的格式及框图 a.IF-THEN格式
b.IF-THEN-ELSE格式
教材研读 栏目索引
(3)循环语句的格式及框图 a.UNTIL语句
教材研读 栏目索引
5.如图所示的程序框图的运行结果为
.
答案 2.5
6.执行如图所示的程序框图,则输出的A=
教材析 i=0,A=2;
A=2+ 1= 5,i=1;
22
2 12
A=2+ = ,i=2;
55
5 29
A=2+12=12 ,i=3;
A=2+
12 29
=
70 29
考点突破 栏目索引
规律方法 顺序结构和条件结构的运算方法 (1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按 从上到下的顺序进行的. (2)条件结构中条件的判断关键是明确条件结构的功能,然后根据 “是”的分支成立的条件进行判断.对于条件结构,无论判断框中的条 件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.
2.程序框图
(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示 算法的图形. (2)基本的程序框有终端框(起止框),输入、输出框,处理框(执行框),判断框.
3.三种基本逻辑结构
名称 顺序结构
条件结构
循环结构
教材研读 栏目索引
内 顺序结构是由若干个按 算法的流程根据条件 在一些算法中,会出现从某处开始,按照一
教材研读 栏目索引

高中数学_算法与程序框图

高中数学_算法与程序框图

算法与程序框图知识图谱算法与程序框图知识精讲一.算法的概念1.算法的定义由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则,解决某一类问题的明确的和有限的步骤,称为算法.通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征:(1)有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;(2)确定性:算法的每一个步骤必须有确定的含义;(3)可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;(4)输入:有零个或多个输入;(5)输出:有一个或多个输出.二.算法的描述1.用自然语言;2.用数学语言;3.用算法语言(程序设计语言);4.用程序框图(流程图).三.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).1.常用图形符号:图形符号名称符号表示的意义起、止框框图的开始或结束输入、输出框数据的输入或者结果的输出处理框赋值、执行计算语句、结果的传送判断框根据给定条件判断流程线流程进行的方向连结点连结另一页或另一部分的框图四.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构.1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,只有在执行完A 框指定的操作后,才能接着执行B 框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:否否是是BA A P PB A3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:否是A P三点剖析一.注意事项:1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到达结束框,流程线必须加箭头表示顺序.2.对于循环结构有如下需要注意的情况:(1)循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确;(2)循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如i n ≤就是中止循环的条件;(3)循环结构的关键是,要理解“累加变量”和“用1i 代替i ”,S 是一个累加变量,i 是计数变量,每循环一次,S 和i 都要发生变化,这两步要重复计算若干次;(4)一种循环结构是先判断i n ≤是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了当型循环外,常用的循环结构还有直到型循环.二.方法点拨1.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号;(4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚.2.画程序框图要注意的几点:(1)起、止框是任何流程不可少的,表示程序的开始和结束;(2)输入、输出框可以用在算法中任何需要输入、输出的位置;(3)算法中间要处理数据或计算,可分别写在不同的处理框内;(4)当算法要求你对两个不同的结果进行判断时,要写在判断框内;(5)一个算法步骤到另一个算法步骤用流程线连结;(6)如果一个框图需要分开来画,要在断开处画上连结点,并标出连结的号码.程序框图例题1、下列说法正确的是()A.算法就是某个问题的解题过程;B.算法执行后可以产生不同的结果;C.解决某一个具体问题算法不同结果不同;D.算法执行步骤的次数不可以为很大,否则无法实施.例题2、指出下列哪一个不是算法()A.解方程260x -=的过程是移项和系数化为1B.从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C.解方程2210x x +-=D.利用公式2πS r =,计算半径为3的圆的面积为2π3⨯例题3、下列语句中是算法的个数为()①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否是大树;④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积A.1B.2C.3D.4随练1、下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭要需要刷锅.添水.加热这些步骤C.在野外做饭叫野炊D.做饭必需要有米随练2、下列关于算法的说法正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后产生确定的结果.A.1个B.2个C.3个D.4个随练3、早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶算法的三种逻辑结构和框图表示例题1、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题2、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题3、阅读右边的程序框图,运行相应的程序,输出的S的值是()A.26B.40C.57D.无法确定随练1、如图是某算法的流程图,则执行该算法输出的结果是S=____.随练2、执行如图所示的程序框图,如果输入a=2,那么输出的a值为()A.4B.16C.256D.log316随练3、执行如图所示的程序框图,则输出的k=()A.4B.5C.6D.7拓展1、算法的有穷性是指()A.算法最后包含输出B.算法的每个操作步骤都是可执行的C.算法的步骤必须有限D.以上都不正确2、下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3、看下面的四段话,其中不是解决问题的算法的是()A.从上海到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C.方程210x -=有两个实根D.求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,4、根据如图程序框图,输出k 的值为()A.3B.4C.5D.65、给出计算12+14+16+…+120的值的一个程序框图如图,其中判断框内应填入的条件是()A.i >10B.i <10C.i >20D.i <206、如图所示的流程图表示一函数,记作y=f (x ),若x 0满足f (x 0)<0,且f (f (x 0))=1,则x 0=____.。

高中数学考点精讲算法与程序框图的理解

高中数学考点精讲算法与程序框图的理解

高中数学考点精讲算法与程序框图的理解高中数学考点精讲:算法与程序框图的理解在高中数学的学习中,算法与程序框图是一个重要且富有挑战性的考点。

它不仅是数学知识的一部分,还与计算机科学有着紧密的联系,对于培养我们的逻辑思维和解决问题的能力具有重要意义。

首先,让我们来明确一下什么是算法。

简单来说,算法就是解决某一类问题的明确和有限的步骤。

比如说,我们要做一道数学题,从读题、分析题目、选择解题方法到最终得出答案,这一系列的步骤就可以看作是一个算法。

算法具有确定性、有限性和可行性等特点。

确定性意味着每一步都有明确的规定和结果,不会产生歧义;有限性则要求算法在有限的步骤内能够结束;可行性表示算法的每一步都能够通过实际的操作来实现。

而程序框图呢,它是算法的一种直观表示方法。

就好像是给算法画了一幅“地图”,让我们能够更清晰地看到整个算法的流程和结构。

程序框图通常由一些图形符号组成,比如矩形表示处理框,用于赋值、计算等操作;菱形表示判断框,用于根据条件进行判断并决定流程走向;箭头则表示流程线,指明算法的执行顺序。

那么,为什么我们要学习算法与程序框图呢?一方面,它能够帮助我们更加有条理地思考和解决问题。

在面对复杂的问题时,通过将其分解为一个个具体的步骤,并以程序框图的形式呈现出来,可以让我们的思路更加清晰,避免混乱和遗漏。

另一方面,随着计算机技术的飞速发展,算法已经成为了计算机程序设计的基础。

了解算法和程序框图,能够为我们今后学习计算机相关知识打下良好的基础。

接下来,我们具体来看一看程序框图中的一些常见结构。

顺序结构是最简单的一种结构,它按照从上到下的顺序依次执行各个步骤。

就像我们早上起床后,先穿衣、再刷牙、然后洗脸,这就是一个典型的顺序结构。

选择结构则根据条件的不同来决定执行不同的分支。

比如说,如果今天是周末,我们就可以睡个懒觉;如果不是周末,就得按时起床去上学。

在程序框图中,通过判断框来实现选择结构。

循环结构就更有趣了,它用于重复执行一段代码,直到满足特定的条件为止。

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。

高考数学总复习 111算法与框图课件 新人教A版

高考数学总复习 111算法与框图课件 新人教A版

2.基本算法语句 经历将具体问题的程序框图转化为程序语句的过程,理解 几种基本算法语句——输入语句、输出语句、赋值语句、条件 语句、循环语句,进一步体会算法的基本思想. 3.通过阅读中国古代数学中的算法案例,体会中国古代数 学对世界数学发展的贡献.
4.流程图和结构图(文) (1)通过具体实例,了解工序流程图(即统筹图). (2)能绘制简单实际问题的流程图;体会流程图在解决实际 问题中的作用. (3)通过实例,了解结构图,运用结构图梳理已学过的知识, 整理收集到的资料信息. (4)结合作出的结构图与他人进行交流、体会结构图在揭示 事物联系中的作用.
(5)输入语句要求输入的值只能是具体的常数,不能是函 数、变量或表达式.
(6)提示内容与变量之间用分号“;”隔开,可以一次为 一个或多个变量赋值,若输入多个变量,变量与变量之间用 “,”隔开.
2.输出语句 (1)输出语句的一般格式是: PRINT“提示内容”;表达式 (2)输出语句的作用是实现算法的输出结果功能. (3)“提示内容”提示用户输出什么样的信息. (4)表达式是指程序要输出的数据. (5)输出语句可以输出常量、变量或表达式的值以及字符.
如图所示,它的功能是先执行循环体,即语句序列 A,然 后判断给定的条件 P2 是否成立,如果条件 P2 不成立,则再执 行循环体,然后再对条件 P2 作判断,如果条件 P2 仍然不成立, 又执行循环体……如此反复执行循环体,直到给定的条件 P2 成立时跳出循环.
二、基本算法语句与算法案例 1.输入语句 (1)输入语句的一般格式是: INPUT“提示内容”;变量 (2)输入语句的作用是实现算法的输入信息功能. (3)“提示内容”提示用户输入什么样的信息. (4)变量是指程序在运行时其值可以变化的量.

高考数学复习考点知识与题型专题讲解72 算法与程序框图

高考数学复习考点知识与题型专题讲解72  算法与程序框图

由题意,此时应该不满足条件,退出循环,输出 S 的值为 ; 故判断框中填写的内容可以是 n≤6. 故选:C.
D.n<9
【再练一题】 某程序框图如图所示,若输出的 S=26,则判断框内应填( )
7 / 32
A.k>3?
B.k>4?
C.k>5?
D.k>6?
【解答】解:程序在运行过程中,各变量的值变化如下表:
> ,是, = , = • = ( ) = ; k 0
k 1 S a1+S x0 a1+ a2+a3x0 x0 a1+a2x0+a3x02
> ,是, = , = • = . k 0
k 0 S a0+S x0 a0+a1x0+a2x02+a3x03
> ,否,输出 = . k 0
S a0+a1x0+a2x02+a3x03
高考数学复习考点知识与题型专题讲解
专题 72 算法与程序框图 考纲
1.了解算法的含义,了解算法的思想 2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构. 3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
基础知识融会贯通
1.算法与程序框图 (1)算法 ①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤. ②应用:算法通常可以编成计算机程序,让计算机执行并解决问题. (2)程序框图 定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 2.三种基本逻辑结构
. 语句 b WHILE 条件 WHILE
循环体
WEND
重点难点突破
【题型一】算法的基本结构 【典型例题】

高考总复习理数(北师大版)第12章第1节算法与程序框图

高考总复习理数(北师大版)第12章第1节算法与程序框图

第一节算法与程序框图考点高考试题考查内容核心素养程序框图2017·全国卷Ⅰ·T8·5分填充程序框图数学运算2017·全国卷Ⅱ·T8·5分循环结构框图逻辑推理2017·全国卷Ⅲ·T7·5分循环结构框图逻辑推理2016·全国卷Ⅰ·T9·5分框图的功能逻辑推理2016·全国卷Ⅱ·T8·5分循环结构框图逻辑推理2016·全国卷Ⅲ·T7·5分循环结构框图逻辑推理命题分析本节是高考的必考内容,常以选择题、填空题形式出现,考查题型有输出结果,完善程序框图以及判断程序运行功能.1.算法在解决某类问题时,所要执行的一系列可操作或可计算的步骤.现代算法的作用之一是使计算机能代替人完成某些工作.2.算法框图中的符号意义图形符号名称符号表示的意义起止框表示一个算法的起始和结束□输入、输出框表示一个算法输入和输出的信息处理框赋值、执行计算、结果传送判断框判断某一条件是否成立流程线流程进行的方向为了使算法结构更加清晰,可借助图来帮助描述算法.图的特点是直观、清楚,便于检查和交流.通常这样的图叫作框图.4.算法的基本结构名称内容顺序结构选择结构循环结构定义按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构在算法的执行过程中,需要对条件进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构在一些算法中,经常会出现从某处开始,按照一定的条件,反复执行某一处理步骤的情况,像这种需要反复执行循环体的结构称为循环结构算法框图提醒:1.辨明两个易误点(1)易混淆处理框与输入、输出框,处理框主要是赋值、计算,而输入、输出框只是表示一个算法输入或输出的信息.(2)易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.2.识别三种结构的关系顺序结构是每个算法结构都含有的,而对于循环结构有重复性,选择结构具有选择性没有重复性,并且循环结构中必定包含一个选择结构,用于确定何时终止循环体,循环结构和选择结构都含有顺序结构.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)算法只能解决一个问题,不能重复使用.()(2)程序框图中的图形符号可以由个人来确定.()(3)输入框只能紧接开始框,输出框只能紧接结束框.()(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.()答案:(1)×(2)×(3)×(4)√2.(教材习题改编)给出如图算法框图,其功能是()A .求a -b 的值B .求b -a 的值C .求|a -b |的值D .以上都不对解析:选C 由算法框图知其功能是求|a -b |的值.3.阅读如图所示的程序框图,运行相应的程序,输出s 的值等于( )A .-3B .-10C .0D .-2解析:选A 第一次循环:k =0+1=1,满足k <4,s =2×1-1=1; 第二次循环:k =1+1=2,满足k <4,s =2×1-2=0; 第三次循环:k =2+1=3,满足k <4,s =2×0-3=-3; 第四次循环:k =3+1=4,不满足k <4,故输出的s =-3. 4.(2018·济宁模拟)执行如图所示的程序框图,则输出的S 为( )A .-2B .12C .43D .3解析:选D 程序运行如下: S =3,k =1;S =43,k =2;S =12,k =3;S =-2,k =4; S =3,k =5;……发现此程序中的S 值4个一循环,2 017÷4=504……1,则输出的S =3,故选D .顺序结构与选择结构 [明技法]应用顺序结构和选择结构的注意点(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(3)选择结构中条件的判断关键是明确选择结构的功能,然后根据“是”的分支成立的条件进行判断.(4)对选择结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[提能力]【典例】 (1)运行如图所示程序框图,若输入a ,b 的值分别为log 23和log 32,则输出M 的值是( )A .0B .1C .2D .-1解析:选C∵log23>log32,即a>b,故M=a×b+1=log23×log32+1=2.(2)(2017·山东卷)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()A.0,0B.1,1C.0,1D.1,0解析:选D当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整除,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0.∴输出a=0.故选D.[刷好题]1.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为() A.2B.7C .8D .128解析:选C 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8.2.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:选A 由框图知s 是关于t 的分段函数s =⎩⎪⎨⎪⎧3t ,-1≤t <1,4t -t 2,1≤t ≤3,当t ∈[-1,1)时,s ∈[-3,3);当t ∈[1,3]时,s =4t -t 2=4-(t -2)2∈[3,4],故s ∈[-3,4],故选A .循环结构 [析考情]循环结构是高考命题的一个热点问题,多以选择题、填空题的形式呈现,试题难度不大,多为容易题或中档题.[提能力]命题点1:求程序运行后的结果【典例1】(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的S =( )A.7B.12C.17D.34解析:选C由框图可知,输入x=2,n=2,a=2,S=2,k=1,不满足条件;a=2,S=4+2=6,k=2,不满足条件;a=5,S=12+5=17,k=3,满足条件,输出S=17,故选C.命题点2:确定控制循环的变量【典例2】(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2解析:选D因为题目要求的是“满足3n-2n>1 000的最小偶数n”,所以n的叠加值为2,所以内填入“n=n+2”.由程序框图知,当内的条件不满足时,输出n,所以内填入“A≤1 000”.故选D.命题点3:辨析程序框图的功能【典例3】如图所示的程序框图,该算法的功能是()A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值D.计算[1+2+3+…+(n-1)]+(20+21+22+…+2n)的值解析:选C初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;当第2次进入循环体时,S=1+20+2+21,k=3,…;给定正整数n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.[悟技法]与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.[刷好题]1.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35B.20C.18D.9解析:选C按照图中的程序计算,当i=2时,得v=4;当i=1时,得v=2×4+1=9;当i=0时,得v=2×9+0=18;当i=-1时,直接输出v=18,即输出的v值为18.2.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=()A.2B.3C.4D.5解析:选B当K=1时,S=0+(-1)×1=-1,a=1,执行K=K+1后,K=2;当K=2时,S=-1+1×2=1,a=-1,执行K=K+1后,K=3;当K=3时,S=1+(-1)×3=-2,a=1,执行K=K+1后,K=4;当K=4时,S=-2+1×4=2,a=-1,执行K=K+1后,K=5;当K=5时,S=2+(-1)×5=-3,a=1,执行K=K+1后,K=6;当K=6时,S=-3+1×6=3,执行K=K+1后,K=7>6,输出S=3,结束循环.故选B.。

高考数学复习:算法与程序框图、基本算法语句

高考数学复习:算法与程序框图、基本算法语句

A.6
B.7
C.8
D.12
【解析】选C.S=0,n=1,S>1 009? 否
2 020
S=0+(1 )1 ,n=1+1=2,S1>009 ? 否
3
2 020
S=0+(1 )1 (1,n)2=2+1=3,S>1 009? 否
33
2 020
由( 1 )1 ( 1 )2 ( 1 )3 ( 1 )m
A.1B.1C. 3D.1
4
2
4
3
【解析】选A.由题意,得2×[2×(2x+1)+1]+1≥55, 解得x≥6,所以输出的x不小于55的概率为 8-6=1 .
84
思想方法系列15——程序框图中的分类讨论思想 【思想诠释】每个数学结论都有其成立的条件,每一种 数学方法的使用也往往有其适用范围,在我们所遇到的 数学问题中,有些问题的结论不是唯一确定的,有些问 题的结论在解题中不能以统一的形式进行研究,还有些
由( 1 )1 ( 1 )2 ( 1 )3 ( 1 )m
33 3
3
1[1-( 1 )m ] 33
1 [1-( 1
)m ]>1
009 ,得
1-1
23
2 020
3
1 < 1 ,即3m>1 010,m≥7,”………………抓本质
3m 1 010
“由此可知S=0+ (1 )1 (1 )2 (1 )3 (1 )7,
第八章 算法、复数、推理与证明 第一节 算法与程序框图、
基本算法语句(全国卷5年11考)
【知识梳理】 1.算法 算法通常是指按照一定_规__则__解决某一类问题的 __明__确__和__有__限__的__步__骤__.这些步骤必须是_明__确__和_有__效__ 的,而且能够在有限步之内完成.

高三数学 算法与程序框图复习课件

高三数学 算法与程序框图复习课件
答案:B
2.如下图所示的程序框图输出的结果是( A.1 C.5 B.20 D.10
)
答案:B
3.(2010年高考辽宁卷)如果执行如图所示的程序框 图,输入n=6,m=4,那么输出的p等于( )
A.720 B.360 C.240 D.120 答案:B 4.如图是某个函数求值的程序框图,则满足 该程序的函数解析式为________.
值的算法程序框图,则判断框①中可填 ________.
【思路点拨】 根据绝对值的意义求解. 【解析】 根据非负数的绝对值是它本身,负数 的绝对值是它的相反数,以及0的特殊性,可知填 x>0或x≥0. 【答案】 x>0或x≥0 【名师点评】 对于基本算法语句的阅读题,先 分析语句的类型,再分析语句所表示的具体含义, 才能顺利地展开解答.
5 A. 4 6 C. 5
4 B. 5 5 D. 6
【思路点拨】 根据程序框图 ( 算法流程图 ) 分 析出该程序框图的功能进行求解.
【解析】
根据程序框图可知,该程序框图的 1 1 1 功 能 是 计 算 S= + + + …+ 1× 2 2× 3 3× 4 1 , 现在输入的 N= 5, 所以输出的结果 k× k+ 1 1 1 1 1 1 1 为 S= + + + + = (1- ) 1× 2 2× 3 3× 4 4× 5 5× 6 2 1 1 1 1 5 + ( - )+…+( - )= ,故选 D. 2 3 5 6 6
变式训练1 (2010年高考 陕西卷)如图是求x1,x2, …,x10的乘积S的程序框图, 图中空白框中应填入的 内容为( )
A.S=S*(n+1) B.S=S*xn+1 C.S=S*n D.S=S*xn
解析:选D.由题意可知,输出的是10个数 的乘积,故循环体应为S=S*xn.

高考数学总复习 第十六章 第1讲 程序框图及简单的算法案例配套课件 文(1)

高考数学总复习 第十六章 第1讲 程序框图及简单的算法案例配套课件 文(1)

9.秦九韶算法 是一种用于计算一元 n 次多项式的值的方法. 10.进位制 人们为了计数和运算方便而约定的记数系统,“满 k 进 一”,就是 k 进制,k 进制的基数是 k.
1.(2013 年天津)阅读程序框图如图 16-1-1, 运行相应的程 序, 则输出 n 的值为( D )
A.7
B.6
图 16-1-1
2.理解程序框图的 点.
三种基本逻辑结构: 从全国的高考试题来看,其考查形式与特点是:
顺序、条件、循环. (1)选择题、填空题主要考查算法的含义、流程图、基本
3.理解几种基本算 算法语句等内容,一般在每份试卷中有1~2题,多为中档
法语句——输入语句、 题出现。
输出语句、赋值语句、 (2)在解答题中可通过让学生读程序框图去解决其他问题,
其结构形式为
.
(2)条件结构:指算法的流程根据给定的条件是否成立而选 择执行不同的流向的结构形式.
其结构形式为
(3)循环结构:指从某处开始,按照一定条件反复执行处理 某一步骤的情况.反复执行的处理步骤称为循环体.循环结构 又分为_当__型__(_W_H__I_L_E_型__)__和__直__到__型__(U__N_T_I_L__型__).其结构形式为
8.更相减损术 更相减损术是一种求两数最大公约数的方法,其基本过程 是:对于给定的两数,以较大的数减去__较__小__的__数__,接着把所 得的___差_____与__较__小__的__数__比较,并以大数减小数,继续这个 操作,直到所得的数与较小的数__相__等__为止,则这个数就是所 求的最大公约数.
答案:D 【方法与技巧】在循环结构中,要注意把当型与直到型区 分开来,在解答含循环结构的程序框图时,可以自己“运行” 循环刚开始的几次,找出循环的规律,再“运行”最后一次, 确定循环的“终点”,就可以把握循环的全过程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。

2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。

(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。

3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。

要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。

考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。

2.程序框图常用符号:3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。

判断框是具有超过一个退出点的唯一符号;(4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚。

4.算法的三种基本逻辑结构:(1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。

这是任何一个算法都离不开的基本结构。

(2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。

它是依据指定条件选择执行不同指令的控制结构。

(3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。

考点三:基本算法语句程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句、赋值语句、条件语句和循环语句。

以下均为BASIC语言。

1.输入语句这个语句的一般格式是:INPUT “提示内容”;变量其中,“提示内容”一般是提示用户输入什么样的信息。

每次运行程序时,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。

INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…要点诠释:①“提示内容”与变量之间必须用分号“;”隔开。

②各“提示内容”之间以及各变量之间必须用逗号“,”隔开,但最后的变量的后面不需要。

2.输出语句它的一般格式是:PRINT “提示内容”;表达式同输入语句一样,表达式前也可以有“提示内容”。

输出语句的用途:(1)输出常量,变量的值和系统信息;(2)输出数值计算的结果。

3.赋值语句用来表明赋给某一个变量一个具体的确定值的语句。

它的一般格式是:变量=表达式赋值语句中的“=”叫做赋值号。

赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。

要点诠释:①赋值号左边只能是变量名字,而不能是表达式。

如:2=X是错误的。

②赋值号左右不能对换。

如“A=B”与“B=A”的含义运行结果是不同的。

③不能利用赋值语句进行代数式的演算。

(如化简、因式分解、解方程等)。

④赋值号“=”与数学中的等号意义不同。

4.条件语句算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句。

它的一般格式是:(IF-THEN-ELSE格式)IF 条件 THEN语句1ELSE语句2END IF当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN 后的语句1,否则执行ELSE后的语句2。

在某些情况下,也可以只使用IF-THEN语句:(即IF-THEN格式)IF 条件 THEN语句END IF计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。

要点诠释:条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。

需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。

5.循环语句算法中的循环结构是由循环语句来实现的。

对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构,即WHILE语句和UNTIL语句。

(1)WHILE语句的一般格式是:WHILE 条件循环体WEND其中循环体是由计算机反复执行的一组语句构成的。

WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。

当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。

这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。

因此,当型循环有时也称为“前测试型”循环。

(2)UNTIL语句的一般格式是:DO循环体LOOP UNTIL 条件要点诠释:当型循环在进行循环前对控制条件进行判断,当条件满足时就反复循环,不满足就停止;直到型循环在进行一次循环后,对控制条件进行判断,当条件不满足时就反复循环,满足就停止。

1.算法与框图是新课标教材中新增的内容,但也曾与其它板块知识结合出现在前几年的各类考试中,其思想方法渗透在高中数学课程的其他相关内容中。

考题应考查算法的思想,基本结构为主,多以选择题、填空题的形式呈现。

2.根据本章知识的特点,复习中应加强对算法思想的理解,了解算法的基本逻辑结构,掌握算法基本语句的使用。

3.仔细审题.在画流程图时首先要进行结构的选择,套用公式.若求只含有一个关系的解析式的函数的函数值时,只用顺序结构就能够解决;若是分段函数或执行时需要先判断后才能执行后继步骤的,就必须引入选择结构;如果问题里涉及了许多重复的步骤,且数之间有相同的规律,就可引入变量,应用循环结构.当然应用循环结构里边一定要用到顺序结构与选择结构.循环结构有两种:直到型和当型,两种都能解决问题.【典型例题】类型一:算法的含义【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法.【思路点拨】先根据表面积算出球的半径,再根据球的体积公式求出球的体积,将上面步骤分解并分别写出即可得到算法。

【解析】算法如下:第一步,s=16π.第二步,计算R=第三步,计算343R Vπ=第四步,输出V.【总结升华】给出一个问题,设计算法应该注意:(1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况;(2)将此问题分成若干个步骤;(3)用简练的语句将各步表述出来.举一反三:【变式1】设计一个计算1×3×5×7×9×11×13的算法.横线①上不能填入的数是()A.13B.13.5C.14D.14.5【解析】当I<13成立时,只能运算1×3×5×7×9×11.故选A.【变式2】写出找出1至1 000内7的倍数的一个算法.解答:算法1:S1 令A=0;S2 将A不断增加1,每加一次,就将A除以7,若余数为0,则找到了一个7的倍数,将其输出;S3 反复执行第二步,直到A=1 000结束.算法2:S1 令k=1;S2 输出k·7的值;S3 将k的值增加1,若k·7的值小于1 000,则返回S2,否则结束.算法3:S1 令x=7; S2 输出x 的值;S3 将x 的值增加7,若没有超过1 000,则返回S2,否则结束. 类型二:程序框图【例2】写出解方程0a x b +=(a b R ∈、)的相应程序及程序框图。

【思路点拨】因为a b R ∈、,解方程0a x b +=时需要先对最高次项的系数a 是否为0进行判断。

若0a ≠,则方程的解为b x a=-;若0a =,则需要再次判断b 是否为0, 若0b =,则方程的解为全体实数, 若0b ≠,则方程无实数解。

据此可以用条件语句来实现。

【解析】程序: INPUT “a,b=”;a,b IF a<>=0 THENb x a=-PRINT “原方程的根为”;x ELSEIF b<>=0 THEN PRINT “方程无实数根” ELSEPRINT “方程的根为全体实数” END IF END IF END 程序框图:【总结升华】在写出算法时,应当对所要解决的问题有深入、全面的了解;条件分支结构的运用与分类讨论的数学思想密切相连;设计算法时,什么地方要进行分类讨论,什么地方就要用条件分支结构。

举一反三:【变式1】写出用二分法求函数()y f x =在区间[1,2]的零点(精确到0.01)的程序框图及相应程序。

【解析】 程序: a=1 b=2 DO IF ()02a b f += THEN EXITELSE IF ()()02a b f a f +< THEN2a b b +=ELSE 2a b a +=输出2a b +END IFLOOP UNTIL 0.01b a -<PRINT2a b +程序框图:【例3】执行如图所示的框图,输入N =5,则输出的数等于( )【思路点拨】 根据程序框图(算法流程图)分析出该程序框图的功能进行求解.【总结升华】 识别运行算法框图和完善算法框图是高考的热点. 解答这一类问题,第一,要明确算法框图的顺序结构、选择结构和循环结构; 第二,要识别运行算法框图,理解框图所解决的实际问题; 第三,按照题目的要求完成解答.对算法框图的考查常与数列和 函数等知识相结合,进一步强化框图问题的实际背景.类型三:条件结构【例3】已知函数223(0)2(0)x x y x x ->⎧=⎨+≤⎩,写出求该函数的函数值的算法并画出程序框图。

相关文档
最新文档