外文翻译---壳聚糖对红掌组培污染菌的抑制作用
毕业论文外文翻译-壳聚糖-茶多酚纳米颗粒的合成和性质及细胞毒性的研究

毕业论文外文翻译-壳聚糖-茶多酚纳米颗粒的合成和性质及细胞毒性的研究Synthesis and Characterization of Chitosan-Tea Polyphenol Nanoparticles and Their Cytotoxicity StudyAbstractIn this study, chitosan-tea polyphenol nanoparticles were synthesized using a simple and green method. The physical and chemical properties of the nanoparticles were characterized by various techniques including dynamic light scattering, Fourier transform infrared spectroscopy, and transmission electron microscopy. The cytotoxicity of the nanoparticles was evaluated using MTT assay and cell morphological observation. The results showed that the synthesized nanoparticles had a diameter of 183.6 nm, a positive surface charge of 27.54 mV, and a polydispersity index of 0.22. The nanoparticles exhibited good biocompatibility with cells and low cytotoxicity, indicating their potential application in drug delivery.Keywords: chitosan, tea polyphenol, nanoparticles, cytotoxicity, drug deliveryIntroductionNanoparticles have been extensively studied in the field of drug delivery due to their unique properties such as high surface area, high reactivity, and enhanced permeation and retention effect. Among various materials, chitosan has attracted great attention as a drug delivery carrier due to its biocompatibility, biodegradability, and low toxicity (1). However, chitosan nanoparticles often suffer from low stability and poor solubility, which limit their application in drug delivery. To overcome these limitations, various methods have been developed to improve the stability and solubility of chitosan nanoparticles, such as crosslinking, coating, and blending with other materials (2).Tea polyphenols are natural plant extracts with various biological activities such as antioxidation, anticancer, and anti-inflammatory effects (3). Therefore, tea polyphenols have been widely used as functional food ingredients and nutraceuticals. In addition, tea polyphenols have also been investigated as potential anticancer agents due to their ability to induce apoptosis and inhibit cell proliferation (4). However, tea polyphenols suffer from low bioavailability and poor stability, which limit their therapeutic efficacy (5).To improve the stability and solubility of chitosan nanoparticles and enhance the therapeutic efficacy of tea polyphenols, we synthesized chitosan-tea polyphenol nanoparticles using a simple and green method. The physical and chemical properties of the nanoparticles were characterized, and the cytotoxicity of the nanoparticles was evaluated.Materials and MethodsMaterialsChitosan (degree of deacetylation > 85%, molecular weight 300,000-400,000 g/mol) was purchased from Sigma-Aldrich (USA). Tea polyphenols were extracted from green tea leaves and purified using ethanol precipitation according to a previous method (6). Dulbecco's modified eagle medium (DMEM), fetal bovine serum (FBS), and penicillin/streptomycin solution were obtained from Gibco (USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (USA). All reagents were of analytical grade and used without further purification.Synthesis of Chitosan-Tea Polyphenol NanoparticlesChitosan-tea polyphenol nanoparticles were prepared using a simple and green method. Briefly, chitosan (50 mg) was dissolved in 5 ml of acetic acid (1%, v/v), and tea polyphenol (5 mg) was dissolved in 5 ml of distilled water. The tea polyphenol solution was added dropwise into the chitosan solution under magnetic stirring at room temperature. The mixture was stirred for another 30 min to obtain a homogeneous solution. The solution was then added dropwise to 20 ml of 0.1 M sodium hydroxide solution under magnetic stirring to induce nanoparticle formation. The mixture was stirred for 60 min and then centrifuged at 10,000 rpm for 10 min to remove unreacted materials. The nanoparticles were washed three times with distilled water and freeze-dried for further use.Characterization of Chitosan-Tea Polyphenol NanoparticlesThe physical and chemical properties of chitosan-tea polyphenol nanoparticles were characterized by various techniques. The nanoparticle size and zeta potential were measured using a dynamic light scattering instrument (Malvern, UK). The particle morphology was observed using a transmission electron microscope (TEM, JEOL, Japan) after negative staining with uranyl acetate. The chemical structure of the nanoparticles was analyzed by Fourier transform infrared spectroscopy (FTIR, PerkinElmer, USA) using KBr pellets.Cytotoxicity StudyThe cytotoxicity of chitosan-tea polyphenol nanoparticles was evaluated using MTT assay and cell morphological observation. Human gastric cancer cells (SGC-7901) were seeded in a 96-well plate at a density of 5 × 103 cells per well in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin solution. After 24 h, the cells were treated with different concentrations of chitosan-tea polyphenol nanoparticles (0, 12.5, 25, 50, 100, and 200 μg/ml) for 24 h. Then, the MTT solution (5 mg/ml) was added to each well and incubated for another 4 h. The supernatant was discarded, and DMSO was added to dissolve the formazan crystals. The absorbance was measured at 490 nm using a microplate reader (BioTek, USA). Cell viability was calculated as a percentage of the control group.For cell morphological observation, the cells were treated with chitosan-tea polyphenol nanoparticles (50 μg/ml) for 24 h and then observed under an inverted microscope (Olympus, Japan).Results and DiscussionsCharacterization of Chitosan-Tea Polyphenol NanoparticlesChitosan-tea polyphenol nanoparticles were synthesized using a simple and green method, and the physical and chemical properties of the nanoparticles were characterized by various techniques. As shown in Figure 1A and B, the nanoparticles had a diameter of 183.6 nm and a positive surface charge of 27.54 mV, indicating good stability and low aggregation. The nanoparticles exhibited a narrow size distribution with a polydispersity index of 0.22, indicating good homogeneity. The TEM image of the nanoparticles showed a spherical shape with a smooth surface, and the size observed by TEM was consistent with the DLS measurement (Figure 1C). FTIR spectroscopy was used to investigate the chemical structure of the nanoparticles. The characteristic absorption peaks of chitosan at 1658 cm-1 (amide I) and 1569 cm-1 (amide II) were observed in the spectrum of chitosan-tea polyphenol nanoparticles, indicating the successful formation of nanoparticles (Figure 1D).Cytotoxicity StudyThe cytotoxicity of chitosan-tea polyphenol nanoparticles was evaluated using MTT assay and cell morphological observation. As shown in Figure 2A, the cell viability of SGC-7901 cells treated with chitosan-tea polyphenol nanoparticles wasabove 90% at concentrations up to 200 μg/ml, indicating good biocompatibility with cells and low cytotoxicity. The morphological observation of cells treated with chitosan-tea polyphenol nanoparticles (50 μg/ml) showed no obvious changes compared with the control group (Figure 2B).ConclusionIn this study, we successfully synthesized chitosan-tea polyphenol nanoparticles using a simple and green method. The nanoparticles had a diameter of 183.6 nm, a positive surface charge of 27.54 mV, and a polydispersity index of 0.22, indicating good stability and low aggregation. The nanoparticles exhibited good biocompatibility with cells and low cytotoxicity, indicating their potential application in drug delivery. Further studies are needed to investigate the in vivo efficacy and safety of these nanoparticles.Figure 1 Characterization of chitosan-tea polyphenol nanoparticles. (A) Size distribution of nanoparticles measured by dynamic light scattering; (B) Zeta potential of nanoparticles; (C) Transmission electron microscopy image of nanoparticles; (D) Fourier transform infrared spectroscopy spectra of chitosan and chitosan-tea polyphenol nanoparticles.Figure 2 Cytotoxicity evaluation of chitosan-tea polyphenol nanoparticles. (A) MTT assay of SGC-7901 cells treated with different concentrations of nanoparticles (n = 3, *p < 0.05 compared with control); (B) Morphological observation of SGC-7901 cells treated with chitosan-tea polyphenol nanoparticles (50 μg/ml) and control group.AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (No. 81673508).References1. Qi L, Xu Z, Jiang X, Hu C, Zou X, Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339:2693-2700.2. Chen M-C, Mi F-L, Liao Z-X, Hsiao C-W, Sonaje K, Chung M-F, et al., Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules.Adv Drug Deliv Rev. 2013;65:865-879.3. Wang D, Wang H, Guo Y, Ning W, Katirai F, Zhou Q, et al., Antioxidant properties and neuroprotective capacity of naturally occurring polyphenols in Parkinson's disease.Antioxidants (Basel). 2019;8:420.4. Siddiqui IA, Adhami VM, Ahmad N, Mukhtar H, Nanochemoprevention: sustained release of bioactive food components for cancer prevention.Nutr Cancer. 2010;62:883-890.5. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun O-K, Comparison ofABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods.J Food Compos Anal. 2011;24:1043-1048.6. Zhang L, Yang X, Lv Y, Wang P, Gao Y, Hu K, et al., Optimizing the ultrasonic-assisted extraction of tea polyphenols from green tea using response surface methodology.J Food Sci. 2012;77:C1205-C1210.。
壳聚糖的抑菌效果研究

第32卷第6期2012年12月 上饶师范学院学报J OURNAL O F SHANGR AO NOR MAL UNIVERSITY Vol 32,No 6Dec 2012收稿日期:2012-03-30基金项目:上饶师范学院2011年教学改革研究项目(201105)。
作者简介:叶利民(1975-),男,江西进贤人,硕士,讲师,主要从事微生物学教学与研究。
壳聚糖的抑菌效果研究叶利民,刘 翔(上饶师范学院,江西上饶334001)摘要:比较了苯甲酸和不同浓度壳聚糖对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌、黑曲霉菌、苏云金芽孢杆菌等的抑菌效果。
研究结果表明,壳聚糖对以上五种菌均具有一定的抑菌效果,且抑菌效果好于苯甲酸。
壳聚糖对金黄色葡萄球菌和苏云金杆菌的最低抑菌浓度为0.125%,对大肠杆菌的最低抑菌浓度为0.25%,对枯草芽孢杆菌的最低抑菌浓度为0.5%,对黑曲霉的最低抑菌浓度为1.0%。
说明,金黄色葡萄球菌和苏云金杆菌对壳聚糖较敏感,黑曲霉对壳聚糖不太敏感。
关键词:壳聚糖;最低抑菌浓度;抑菌活性中图分类号:Q93.334 文献标识码:A 文章编号:1004-2237(2012)06-0085-04DOI:10.3969/j.issn.1004-2237.2012.06.018目前,由于价格低廉的优势,国内食品工业中使用最多的防腐剂仍然是苯甲酸钠和苯甲酸,但是苯甲酸类存在叠加中毒现象,在使用上有争议,而且在一些国家的进口食品中受到限制[1]。
随着人们生活水平的提高,广谱、高效、安全抗菌剂的开发应用受到了人们的广泛关注[2]。
壳聚糖(chitosan)是甲壳素(chitin)的一种重要衍生物[3],壳聚糖具有生物相容性、抗菌、环境友好和提取方便等优点,已在许多领域得到了广泛应用,包括废水处理、层析、抗菌材料、生物降解膜、药剂载体[4]。
目前,有关壳聚糖抗菌的研究较多,但大多局限在对植物病原菌[5-8]、金黄色葡萄球菌[9-11]和大肠杆菌[12]的研究。
壳聚糖对几种植物病原真菌的作用

壳聚糖对几种植物病原真菌的作用
于汉寿;张益明
【期刊名称】《天然产物研究与开发》
【年(卷),期】1999(011)005
【摘要】在马铃薯区区糖琼脂(PDA)上测定了酸溶性壳聚糖(S-1)和2种水溶性壳聚糖(S-Ⅱ和S-Ⅲ)对15种植物病原真菌的作用,结果表明,三种壳聚糖对供试的15种植物病原真菌均有一定程度的抑制作用,抑制强度因壳聚糖的理化性质以及不同的病原真菌而较大差异。
水溶性壳聚糖S-Ⅱ可明显抑制水稻恶苗病菌分生孢子的萌发。
壳聚糖的抑菌作用机制与其增加菌丝细胞膜的透性有关。
【总页数】1页(P33)
【作者】于汉寿;张益明
【作者单位】江苏丘陵地区镇江农科所;南京农业大学
【正文语种】中文
【中图分类】S143.8
【相关文献】
1.不同分子量壳聚糖对几种植物病原真菌的拮抗作用 [J], 廖春燕;马国瑞;陈美慈;洪文英
2.哈茨木霉Thga1基因敲除突变株对几种植物病原真菌的离体拮抗作用 [J], 刘增亮;李梅;张玉杰;张林;杨晓燕;蒋细良;
3.1株柑橘炭疽病生防放线菌对几种植物病原真菌的抑制作用 [J], 吴思梦;王文君;
刘冰;蒋军喜;
4.1株柑橘炭疽病生防放线菌对几种植物病原真菌的抑制作用 [J], 吴思梦;王文君;刘冰;蒋军喜
5.薄荷精油对几种植物病原真菌的抑制作用研究 [J], 刘琳玉;牛之函;任艳利
因版权原因,仅展示原文概要,查看原文内容请购买。
不同分子量壳聚糖对几种植物病原真菌的拮抗作用

不同分子量壳聚糖对几种植物病原真菌的拮抗作用廖春燕;马国瑞;陈美慈;洪文英【期刊名称】《浙江农业学报》【年(卷),期】2001(013)003【摘要】@@壳聚糖是甲壳素脱去乙酰基后得到的一种高分子阳离子多聚糖,广泛存在于真菌的细胞壁及虾、蟹等甲壳动物外壳中。
壳聚糖及其衍生物被广泛地应用于医药、农业、食品、化工等领域。
在农业中,它不仅具有果蔬保鲜、种子包衣等用途,而且还可以作为一种安全有效的生物农药被开发应用。
壳聚糖能诱导植物的多种抗病性反应[1~4],对许多病原菌有较为明显的抑制作用[5~8]。
此外,壳聚糖具有无毒、施用后可被土壤微生物完全降解,不会对土壤微环境造成不利影响等优点[9]。
近年来,关于壳聚糖诱导植物抗病反应的研究得到各国科学家的关注,但有关壳聚糖不同分子量及不同浓度对植物病原真菌抑制作用的影响则未见系统报道。
本文以3种不同分子量的壳聚糖为材料,研究了不同分子量、不同浓度的壳聚糖对几种植物病原真菌的拮抗作用,获得了一些新资料,现整理如下。
【总页数】4页(P172-175)【作者】廖春燕;马国瑞;陈美慈;洪文英【作者单位】浙江大学环境与资源学院,;浙江大学环境与资源学院,;浙江大学生命科学学院,;杭州市蔬菜研究所,【正文语种】中文【中图分类】S481+.1【相关文献】1.白黄笋顶孢霉对几种植物病原真菌的拮抗作用 [J], 何苏琴;金秀琳;王生荣2.哈茨木霉Thga1基因敲除突变株对几种植物病原真菌的离体拮抗作用 [J], 刘增亮;李梅;张玉杰;张林;杨晓燕;蒋细良;3.哈茨木霉Thga1基因敲除突变株对几种植物病原真菌的离体拮抗作用 [J], 刘增亮;李梅;张玉杰;张林;杨晓燕;蒋细良4.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用 [J], 石志琦;胡梁斌;于淑池;徐朗莱;范永坚5.生防菌株NJ-18的鉴定及其对几种植物病原真菌的拮抗作用研究 [J], 章四平;匡静;王建新;陈长军;周明国因版权原因,仅展示原文概要,查看原文内容请购买。
壳聚糖对红掌离体叶片渗透胁迫的缓解效应

壳聚糖对红掌离体叶片渗透胁迫的缓解效应
从心黎;黄绵佳;杨意伯
【期刊名称】《云南农业科技》
【年(卷),期】2008(000)001
【摘要】研究不同浓度壳聚糖溶液对红掌离体叶片在15%聚乙二醇-6000(PEG-6 000)渗透胁迫条件下生理生化的影响.结果表明,在渗透胁迫下,壳聚糖(CTS)预处理有效地降低了渗透胁迫条件下红掌叶片的电导率和MDA含量,显著增加了脯氨酸含量和SOD活性,0.4%的CTS处理效果最好.
【总页数】2页(P29-30)
【作者】从心黎;黄绵佳;杨意伯
【作者单位】华南热带农业大学园艺学院,海南,儋州,571737;华南热带农业大学园艺学院,海南,儋州,571737;华南热带农业大学园艺学院,海南,儋州,571737
【正文语种】中文
【中图分类】S5
【相关文献】
1.壳聚糖对芒果离体叶片渗透胁迫的缓解效应 [J], 刘晚苟;黄小明;杨秀坚
2.干旱胁迫对红掌离体叶片生理指标的影响 [J], 从心黎;黄绵佳;杨意伯
3.壳聚糖对沿阶草叶片抗渗透胁迫的影响 [J], 刘晚苟;廖锡佳
4.土壤水分胁迫对红富士苹果叶片渗透调节特性的影响 [J], 杨素苗;杜纪壮;李保国;齐国辉;徐国良;秦立者
5.不同品种红掌叶片细胞膜稳定性和渗透调节物质对高温胁迫的响应 [J], 王宏辉;顾俊杰;房伟民;陈发棣;张栋梁
因版权原因,仅展示原文概要,查看原文内容请购买。
壳聚糖对6株植物枯萎病菌的室内抑菌活性测定

壳聚糖对6株植物枯萎病菌的室内抑菌活性测定刘昌燕;金铃;刘颖颖;汪军;黄俊生【期刊名称】《热带生物学报》【年(卷),期】2010(001)002【摘要】以6株植物枯萎病菌为实验材料,测定了不同含量壳聚糖对植物枯萎病菌抑菌活性的影响.结果表明:壳聚糖对6种植物枯萎病菌都有抑制作用,经壳聚糖处理后,植物枯萎病菌的形态出现畸变.在一定含量范围内,随着壳聚糖含量的增加,抑制作用增强,且在壳聚糖的φ=0.4%时,对6种植物枯萎病菌的菌丝生长、产孢量以及孢子萌发的抑制作用均达到最大;但是随着壳聚糖含量的继续增加,其抑制作用反而下降,这可能与高含量时壳聚糖分子之间通过氢键自相聚集造成有效含量的下降有关.【总页数】5页(P125-129)【作者】刘昌燕;金铃;刘颖颖;汪军;黄俊生【作者单位】中国热带农业科学院,环境与植物保护研究所,海南,儋州,571737;海南大学(儋州校区)农学院,海南,儋州,571737;海南大学(儋州校区)农学院,海南,儋州,571737;海南大学(儋州校区)农学院,海南,儋州,571737;中国热带农业科学院,环境与植物保护研究所,海南,儋州,571737;中国热带农业科学院,环境与植物保护研究所,海南,儋州,571737【正文语种】中文【中图分类】S432.4+4【相关文献】1.8种生物杀菌剂对草莓枯萎病菌室内抑菌活性的测定 [J], 吉沐祥;陈宏州;吴祥;姚克兵;王莉莉;陈源;李国平2.三种植物提取物对黄瓜枯萎病菌的离体抑菌活性测定 [J], 赵飞龙;董海龙;仲嘉伟;张勇智;曹挥;刘素琪3.3种分子量的壳聚糖对香蕉枯萎病病原菌室内抑菌活性测定 [J], 占魏;张欣;吕延超;张贺;王芳;邱晓聪;谢艺贤4.生物杀菌剂对草莓枯萎病菌室内抑菌活性的测定 [J], 魏嘉怡;史芳芳;周明冬5.植物提取物对瓜类枯萎病菌的抑菌活性 [J], 曹冬煦;薛广厚;啜文婷;李颖;张宇;傅雷;于生成;范海延因版权原因,仅展示原文概要,查看原文内容请购买。
实验室落菌的种类

实验室落菌种类摘要:归纳了组织培养中污染原因及不同污染原因所造成的表观现象,并概括了解决外植体引发污染的方法。
发现棒杆菌属( Corynebac2terium) 、肠杆菌属( Enterobacter) 、葡萄球菌属( S taphylococus) 、地霉属( Geot richum) 、曲霉属( Aspergillus) 、毛霉属( Mucor) 、根霉属( Rhizopus) 等常见的细菌和真菌是引起组培苗严重污染的主要菌类。
取样测试鉴定表明,大部分的微生物来源于无菌接种室内的空气、超净工作台鼓风机排出的气体。
研究了壳聚糖对该菌的抑制作用,探索了3 种分子量及其6 种浓度的壳聚糖对该菌的抑制效果。
壳聚糖对该污染菌有抑制作用,5 万和25 万分子量的抑菌效果高于3000 分子量,浓度越高,抑菌效果越好。
初步证实了壳聚糖对组培污染菌类有很好的抑制作用,在花卉组织培养污染防治方面具有应用价值。
关键词植物组织培养;污染;外植体;灭菌组织培养;污染;壳聚糖;抑制作用从德国植物生理学家Haberlandt1902 年提出设想到现在,植物组织培养的研究已有100 多年的历史,近几十年来植物组织培养技术发展最为迅速。
然而植物组织培养一些技术环节仍然存在不少问题,其中污染、褐化、玻璃化被认为是组织培养的三大杀手。
与褐化、玻璃化相比污染更易发生,给科研和生产实践带来巨大的危害。
因此采取有效的防控措施,降低污染发生的机率,是组织培养成功的重要保障。
在众多污染途径中,外植体携带微生物污染组织培养是最常见且不易解决的问题。
笔者通过对相关文献的分析,并结合实践,归纳了组织培养过程中引起污染的原因及各种污染的表观现象,提出解决外植体引发污染的措施。
1 污染的原因及其表观现象污染就是在组织培养过程中微生物进入培养体系,在外植体上、外植体周围的培养基以及培养基的其他部位生长。
由于植物组织培养过程中的温度、湿度、营养、pH 值等适宜微生物的生长,因此一旦微生物进入培养容器中就将快速繁殖,通过营养竞争、侵蚀植物材料、分泌有毒代谢产物等途径使植物材料发生病害或死亡,造成组织培养的失败。
壳寡糖抑制植物病原菌生长的研究

壳寡糖抑制植物病原菌生长的研究
胡健;姜涌明;殷士学
【期刊名称】《扬州大学学报:自然科学版》
【年(卷),期】2000(3)2
【摘要】研究了平均分子量 50 0~ 2 0 0 0的壳寡糖对棉花炭疽病菌
( Macrophomina phaseolina)和小麦赤霉病菌 ( Fusarium graminearum)等植物病原真菌和水稻白叶枯病菌 ( Xanthomonas oryzae)、马铃薯环腐病菌
( Clavibacter michiganensis)、棉花角斑病 ( Xanthomonas campestris)等植物病原细菌生长的影响 .结果表明 :不同分子量的壳寡糖对各种植物病原细菌的生长及植物病原真菌孢子萌发形成菌丝体均有明显的抑制作用 ,抑制作用的大小因壳寡糖分子量、浓度、植物病原菌的不同而有差异 .
【总页数】3页(P42-44)
【关键词】壳寡糖;植物病原菌;抑制作用;生长;棉花炭疽病菌
【作者】胡健;姜涌明;殷士学
【作者单位】扬州大学农学院农学系;扬州大学生物科学与技术学院生物技术系【正文语种】中文
【中图分类】S432.4
【相关文献】
1.低聚壳寡糖植物生长调节剂对丹参生长及次生代谢产物的影响 [J], 张元;林强
2.壳寡糖对植物病原真菌抑制效果的影响因素研究 [J], 陶凤云;林强;赵伟
3.壳寡糖对植物病原真菌的抑制作用 [J], 刘晓宇;刘志恒;吕淑霞
4.壳寡糖对烟草赤星病病原菌的抑制作用 [J], 胡国元;胡坚;李超影;杨春雷;袁军;余君;杨锦鹏
5.新型植物生长调节剂壳聚寡糖在果蔬作物上的应用研究 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
红掌组培苗继代过程中细菌污染的防治试验(1)

Abstract: Anthurium andraeanum is a good ornamental herbaceous plant and easy to be contaminated by bacteria in tissue culture. A comparative experiment treated with antibiotics and HgCl2 to control the bacteria contamination was made. The results showed that 300mg/L penicillin+180mg/L streptomycin could effectively control the contamination of sub-culture for Anthurium andraeanum and it had less effect on the growth of plantlet than any other solutions. Key words: Anthurium andraeanum; tissue culture; bacteria contamination; antibiotic
2 高浓度青霉素 链霉素处理也再度出现黄色水渍样细菌污染 污染率达到 88.5% 95.5% 这与
万方数据
﹒54﹒
第 32 卷
前人关于使用单一抗菌素易使细菌产生抗药性的结论一致 3 青霉素 链霉素的处理效果最好 再 次污染率仅为 25.0% 青霉素 庆大霉素处理效果次之 再次污染率为 42.9% 且这两个低浓度抗菌 素混合处理在无抗菌素继代后生长状况表现良好 组培苗黄化现象消失
壳聚糖中胺基对其抑菌性能的影响及与DNA的作用

壳聚糖中胺基对其抑菌性能的影响及与DNA的作用李小芳;冯小强;伏国庆;杨声;苏中兴【摘要】采用抑菌圈法研究了壳聚糖对大肠杆菌(E.coli)和金黄色葡萄球菌(St.aureus)的抑菌活性.利用壳聚糖的席夫碱反应,对壳聚糖的胺基进行保护后,研究了壳聚糖中胺基对其抑菌性能的影响.同时,运用紫外吸收光谱和电化学的方法,研究了壳聚糖与DNA的相互作用,提出了壳聚糖对E.coli和St.atueus的抑菌机理.研究结果表明,壳聚糖对E.coli和St.aureus具有很好的抑制作用,且抑菌活性与其胺基有关;壳聚糖能与细胞内带负电的核酸结合,使细胞正常DNA复制生理功能受到影响,抑制细菌的繁殖,从而达到抑菌的目的.【期刊名称】《天然产物研究与开发》【年(卷),期】2010(022)003【总页数】6页(P373-377,470)【关键词】壳聚糖;抑菌活性;希夫碱;胺基;DNA【作者】李小芳;冯小强;伏国庆;杨声;苏中兴【作者单位】天水师范学院,生命科学与化学学院;天水师范学院,生命科学与化学学院;天水市中医医院化验科,天水,741001;天水师范学院,生命科学与化学学院;兰州大学化学化工学院,兰州,730000【正文语种】中文【中图分类】Q946.91;R285壳聚糖(Chitosan,简称 CTS)是甲壳素脱乙酰的产物,来源丰富、无毒,是可吸收降解的直链状高分子化合物。
壳聚糖及其衍生物具有广谱的抗菌性能,可抑制多种细菌和真菌的生长[1-5]。
但是,就其确切的抑菌机理目前尚不清楚。
Young等认为壳聚糖可吸附于细菌表面,与细菌细胞膜作用而改变其通透性[6];Helander等提出,壳聚糖对革兰氏阴性菌的抑菌作用是由于细胞外膜被破坏,最终造成菌体死亡[7];Hadwiger提出以细菌分子中DNA为作用靶向的抗菌机理[8];Tokura等认为壳聚糖吸附细菌后,壳聚糖分子包埋了整个细胞,抑制了细菌的呼吸和营养物质的进入而导致细菌死亡[9];Papineu等研究认为壳聚糖的抑菌作用可能是由于它导致了细胞内物质的泄漏而引起的[10]。
壳聚糖对番茄叶霉病菌的抑制作用

壳聚糖对番茄叶霉病菌的抑制作用
李美芹;肖慧;孟祥红;段方猛;陈西广;唐学玺
【期刊名称】《武汉大学学报:理学版》
【年(卷),期】2007(53)2
【摘要】以番茄叶霉病菌为实验菌种,用含毒介质法系统研究了壳聚糖的脱乙酰度、分子量、浓度、环境pH值及溶剂等因素对壳聚糖抑菌活性的影响.结果表明,壳聚
糖对番茄叶霉病菌具有明显抑制作用;在研究范围内,随浓度的增加和环境pH值降低,抑菌活性增强;较理想的溶剂是乳酸和醋酸;脱乙酰度为86%、分子量为
213×103的壳聚糖抑菌效果较好;0.2%的壳聚糖与三唑酮等农药抑菌效果相同.【总页数】5页(P244-248)
【关键词】壳聚糖;番茄叶霉病菌;抑菌活性
【作者】李美芹;肖慧;孟祥红;段方猛;陈西广;唐学玺
【作者单位】中国海洋大学海洋生命学院;莱阳农学院植物保护系
【正文语种】中文
【中图分类】O636.1
【相关文献】
1.壳聚糖对红掌叶部某致病菌的抑制作用研究 [J], 高凤菊;李春香;顾丽嫱;王丽华;
胡博涵
2.4株拮抗细菌对番茄叶霉病菌的抑制作用 [J], 李艳丽;纪明山;徐宜宏;魏松红;李
丽娜;杨春喜
3.番茄叶霉病菌对多菌灵和乙霉威的抗药性与电导率关系的初步研究 [J], 陈俊美;王美琴;孔令斌
4.垫形汉斯霉——番茄叶霉病菌重寄生真菌在中国的首次报道 [J], 杨小凤;刘喆;梁晨;李宝笃;郑长英
5.番茄叶霉病菌对多菌灵、乙霉威及代森锰锌抗性检测 [J], 王美琴;刘慧平;韩巨才;高俊明
因版权原因,仅展示原文概要,查看原文内容请购买。
低分子量壳聚糖对植物病原菌的抑制作用研究

低分子量壳聚糖对植物病原菌的抑制作用研究何日安;岳武;姚评佳;魏远安【期刊名称】《安徽农业科学》【年(卷),期】2009(037)004【摘要】[目的]探索壳聚糖对植物病原菌的抑制作用与其分子量的关系.[方法]通过测定最小抑制浓度和抑制圈,研究不同分子量的低分子量壳聚糖对稻胡麻叶斑病菌等13个植物原病菌的抑制作用.[结果]对多数植物病原菌来说,可溶性的低分子量壳聚糖分子量在662~5 492范围内,随分子量的增加,其抑菌能力增强,抑菌效果更明显,最小杀菌浓度减小,杀菌能力增强.其中以聚合度在10~34,分子量在1 628~5 492的低分子量壳聚糖抑菌效果最好,对野油菜黄单孢-8004菌、青枯雷尔氏菌GMI1000菌株和辣椒斑点病菌的抑菌效果都很好.[结论]该研究为植物病原菌抑制剂的开发提供了依据.【总页数】3页(P1566-1568)【作者】何日安;岳武;姚评佳;魏远安【作者单位】广西大学广西亚热带生物资源保护利用重点实验室,广西,南宁,530004;广西大学广西亚热带生物资源保护利用重点实验室,广西,南宁,530004;广西大学广西亚热带生物资源保护利用重点实验室,广西,南宁,530004;广西大学广西亚热带生物资源保护利用重点实验室,广西,南宁,530004【正文语种】中文【中图分类】S432【相关文献】1.不同分子量壳聚糖对大肠杆菌抑制作用规律及其机理探讨 [J], 冯小强;杨声;王廷璞;苏中兴;梁凯强;雷新有2.壳聚糖对菘蓝根腐病病原菌抑制作用的研究 [J], 黄海丽3.不同分子量壳聚糖对五种常见茵的抑制作用研究 [J], 冯小强;杨声;李小芳;付国庆;王廷璞;苏中兴4.低分子量壳聚糖对猕猴桃灰霉病的抑制作用 [J], 王晓芙; 曹来福; 张丹凤; 刘永胜5.两种植物病原菌毒素和10种医用抗菌素对植物病原菌的抑制作用研究 [J], 朱杰华;樊慕贞;董金皋;杜雷因版权原因,仅展示原文概要,查看原文内容请购买。
壳聚糖对植物病害的抑制作用研究进展

壳聚糖对植物病害的抑制作用研究进展
马鹏鹏;何立千
【期刊名称】《天然产物研究与开发》
【年(卷),期】2001(013)006
【摘要】本文综述了甲壳素的重要衍生物--壳聚糖对植物病害的抑制作用及作用方式,并对壳聚糖对植物病害的抑制作用机制及壳聚糖在农业方面的应用前景作了介绍.
【总页数】5页(P82-86)
【作者】马鹏鹏;何立千
【作者单位】北京联合大学职业技术师范学院保健科学系,北京,100011;北京联合大学职业技术师范学院保健科学系,北京,100011
【正文语种】中文
【中图分类】Q94
【相关文献】
1.壳聚糖抑制植物病害的机制研究进展 [J], 淦国英;蒲金基;张欣;漆艳香;谢艺贤
2.生防地衣芽孢杆菌BLA1对植物病害的抑制作用研究 [J], 彭玲;胡颖;罗冰科
3.壳聚糖抑制植物病害的研究进展 [J], 于汉寿;吴汉章;杨冰
4.壳聚糖在植物病害防治方面的研究 [J], 罗志会;刘慕兰;张海军;李惠
5.人参皂苷Rh2-壳聚糖纳米粒子制备及对A549细胞的抑制作用 [J], 顾倩;周静;张建梅;尚志;沈婷;杨晓君;胡卫成
因版权原因,仅展示原文概要,查看原文内容请购买。
壳聚糖的抑菌作用及其稳定性研究

壳聚糖的抑菌作用及其稳定性研究
叶磊;何立千;高天洲;李丽云
【期刊名称】《北京联合大学学报(自然科学版)》
【年(卷),期】2004(018)001
【摘要】研究了壳聚糖对食品中常见微生物的抑制作用,结果表明:3种不同分子量的壳聚糖(50 kD,100kD,200kD)对金黄色葡萄球菌、铜绿假单胞菌、枯草芽孢杆菌、短小棒状杆菌、大肠杆菌、白色念珠菌等所有被试菌都有明显的抑制作用,随分子质量增大,壳聚糖的抑菌作用逐渐减小,相应最小抑菌浓度在0.5 g/L以上.同时探讨了壳聚糖抑菌作用的稳定性,结果表明壳聚糖的热稳定性良好,环境中的金属离子对壳聚糖的抑菌性能有一定的影响.
【总页数】4页(P79-82)
【作者】叶磊;何立千;高天洲;李丽云
【作者单位】北京联合大学,师范学院,北京,100011;北京联合大学,师范学院,北京,100011;北京联合大学,师范学院,北京,100011;北京联合大学,师范学院,北京,100011
【正文语种】中文
【中图分类】Q93-334
【相关文献】
1.壳聚糖和羧甲基壳聚糖纳米银复合物的抑菌作用 [J], 倪付花;桑青;朱晓红;刘平;陈晓霞;肖庆振
2.迷迭香提取液的抑菌作用及稳定性研究 [J], 孙长花;丁娟芳;王君;李晓凤
3.桑叶活性成分的抑菌作用及稳定性研究 [J], 成少宁;董文宾;蔺毅峰;王莎莎;王琴琴
4.丁香提取物抑菌作用及稳定性研究 [J], 孙长花;于智勇;丁娟芳;刘妮婷
5.大蒜汁的抑菌作用及稳定性研究 [J], 宋军霞;祁红兵;宁文醒
因版权原因,仅展示原文概要,查看原文内容请购买。
红掌组培过程中污染分析 毕业论文

保存期限:三年保存部门:专业教研室红掌组培过程中污染分析摘要:红掌(拉丁名:Spathiphyllum floribundum),亦叫安祖花,红鹤芋等,天南星科火烛属。
其花色艳丽,花茎挺拔,叶型翠绿美观,是当今世界著名的切花和盆栽花卉之一,市场潜力大,具有极高的观赏价值和经济价值。
红掌的繁殖方法通常采用分株繁殖、扦插繁殖和组织培养繁殖。
但分株繁殖、扦插繁殖很难满足当前市场的需求,组织培养是红掌快速繁殖的有效途径。
由于组织培养中经常出现不同程度的污染问题,造成很大的损失,因此控制污染是植物组织培养苗工厂化生产中重要的技术环节。
本文从灭菌方法、内源性污染、继代培养中污染防治等方面,进行了红掌组培快繁过程中污染原因的分析及对策的探讨。
关键词:红掌,组织培养,灭菌,污染,防治Tissue cultureprocess ofpollution analysisABSTRACT:Anthurium, also called Andrew Flower, lines such as flamingo, a Fire Araceae. Its bright colors, tall and straight stem, green leaf-type appearance, are well-known in today's world of cut and potted flowers, one large market potential, with high ornamental value and economic value. Flower andraeanum breeding methods commonly used ramets propagation, cutting propagation and tissue cultur e propagation. However, ramets propagation, cutting propagation is difficult to meet current market demand, tissue culture andraeanum Flower Express are an effective way of breeding. Tissue culture because of the frequent occurrence of various degrees of pollution, resulting in great loss, so control of pollution are industrial plant tissue culture vaccine production technology in the important aspect. This article from the sterilization method, endogenous pollution subculture in such areas as pollution prevention, to discuss how to minimize the emergence of tissue in the pollution problems.KEY WORDS:Anthurium,tissue culture,sterilization,pollution,prevention and treatment目录前言 (1)第 1 章培养基的灭菌 (2)1.1 一般培养基的灭菌 (2)1.2 不耐热物质的灭菌 (2)第 2 章外植体材料的消毒与灭菌 (4)2.1 外植体的消毒与灭菌 (4)第 3 章接种前的准备工作 (5)3.1 器皿、工具的灭菌 (5)3.1.1 器皿与金属器械的灭菌 (5)3.1.2 布质制品的灭菌 (5)3.2 培养室的灭菌 (5)3.3 无菌操作和无菌操作技术 (5)第 4 章红掌诱导与继代培养过程中的污染 (7)第 5 章污染的原因和预防措施 (8)5.1 通常污染 (8)5.2 内源性污染 (8)5.3 污染原因判断及污染苗抢救 (8)5.4 预防方法和措施 (9)5.4.1 基本方法 (9)5.4.2 经常检查消毒锅的灭菌质量 (9)5.4.3 检查培养容器是否存在问题 (10)5.4.4 继代培养中污染的控制 (10)5.4.5 减少培养基中的有机成分 (10)结论 (11)参考文献 (12)谢辞 (13)前言红掌(拉丁名:Spathiphyllum floribundum),天南星科火烛属,原产地哥伦比亚。
壳聚糖对红掌组培污染菌的抑制作用

Hy h my e e p o c t lsDe t c a n rc o e ma Th h b t n e f c ft e t r e k n so h t s n t ef n i s p p c t sHy h my e ae ma i e e a d t h d r . e i i i o f to h e i d fc i a o h g a i n i e h on u wa c n u td T er s l h we h t h h t s n h d i h b t n e fc n t e f n i T e h g e o c n r t n f ht s a e t o d ce . h e u t s o dt a e c i a a n i i o fe t h u g . h i h rc n e ta i so i a h d ab re s t o i o o c on
ihbt nefc h elwe n sTh hbt n efc f5 ,0 d2 00 0molc lrweg t hts Sb a rta a fte n ii o fe t a t i tn h o ro e . ei i io fe t 00 0a 5 ,0 n i o n e ua ih i a i e e n t t c on h h o h
Ke r s t s ec l r; o tm iain Chts ;n iio fe t ywo d : i u ut e c na n t ; i a ihbt n efc s u o on i
植物组织培养不仅在植物育种、 苗木快速繁殖和有用次 生代谢产物 生产等方面应用广泛 , 也是植物基因工程和植物 分子生物学研究 的重要基础之 -[。污染 、褐化 、玻璃化等 ” 是组织培养 存在 的主要 问题 , 中污染最普遍 [。因此采取 其 2 1
壳聚糖的抑菌作用及在农业中的应用

壳聚糖的抑菌作用及在农业中的应用壳聚糖是一种多糖类聚合物,由N-乙酰葡聚糖和D-葡聚糖组成。
它具有良好的生物相容性和生物可降解性,并且在抑菌作用方面具有显著的潜力。
壳聚糖可以通过多种方式对细菌、真菌和病毒进行抑制,因此被广泛应用于农业领域。
首先,壳聚糖对细菌具有直接的抑制作用。
研究发现,壳聚糖能够与细菌表面的负电荷相互作用,形成复合物,从而导致细菌的细胞壁破裂和蛋白质失活,进而抑制细菌的生长和繁殖。
壳聚糖对多种致病菌如金黄色葡萄球菌、大肠杆菌等都具有明显的抗菌效果。
因此,在农业生产中,可以利用壳聚糖来预防和治疗作物病害,减少化学农药的使用。
除了对细菌的抑制作用,壳聚糖对真菌的防治也具有潜力。
真菌是农作物病害的主要病原体之一,经常导致庄稼减产甚至死亡。
壳聚糖通过与真菌的细胞壁发生作用,干扰其萌发、吸附和侵入过程,从而抑制真菌的生长。
研究发现,壳聚糖对多种植物病原真菌如白粉病菌、黑斑病菌等都具有显著的杀菌活性。
因此,在农业生产中,壳聚糖可以被用于制备杀菌剂,用于控制庄稼病害。
此外,壳聚糖还对病毒具有一定的抑制作用。
研究发现,壳聚糖可以阻断病毒对细胞的感染,减少病毒的复制和扩散。
因此,在农业领域,可以利用壳聚糖来预防和治疗病毒性病害,保护农作物的生长。
在农业中,壳聚糖具有广泛的应用前景。
首先,壳聚糖可以用作优良的植物病害防治剂。
与传统的化学农药相比,壳聚糖具有更低的毒性和环境影响,可以减少对土壤和水环境的污染。
同时,壳聚糖还具有较长的残留期,能够持续抑制病原体的生长,从而提高防治效果。
其次,壳聚糖可以增强植物的抗病性。
研究表明,壳聚糖可以诱导植物产生一系列防御物质,如抗菌肽和抗氧化物质,提高植物的自我抵抗能力,减少病害的发生。
此外,壳聚糖还可以用于植物的根际修复,促进土壤健康和植物生长。
最后,壳聚糖可以用于解决农产品的保鲜和贮藏问题。
壳聚糖具有良好的保湿性和抗氧化性,可以延长农产品的保鲜期和贮藏寿命,减少废品和损失。
壳聚糖的抑菌作用及在农业中的应用

2.4 可降解壳聚糖地膜
使用地膜可以增加土壤温度, 保水保墒, 促进农作物早熟, 提高产量, 但 地膜使作物丰收的同时, 也造成了严重的环境污染, 残留在土壤中不能分解的 废膜, 导致土壤结构恶化, 土地透气性变差, 植物的生长和对水的吸收都受到阻 碍, “白色革命”附带来了“白色公害”, 利用壳聚糖的成膜性及生物可降解性, 可 制成具有良好粘附性、通透性和一定抗拉强度的农用地膜。代替现在广泛使 用的聚乙烯地膜, 这种地膜无污染、成本低、强度高, 并且具有改良土壤的作 用。研究发现, 壳聚糖应用在种衣剂中具有较好的成膜性能, 且通过优化助剂, 可以有效地降低药剂在水中的溶解淋失率, 提高药剂在种子表面的附着力。近 年来, 日本利用壳聚糖具有的良好成膜性能开发出壳聚糖塑料降解地膜、生物 可降解地膜, 壳聚糖的生物可降解性在工业上也具有广泛的应用前景, 如制作 可降解饭盒、包装材料等。
增强植物细胞壁
1.1 诱导植物抗性蛋白的产生
壳聚糖及其衍生物可诱导植物产生抵御病原物质的抗性蛋 白——致病相关蛋白PR(pathogenesis -related proteins) 。 壳聚糖所诱导的抗性蛋白主要为植物抗毒素(phtoalexin)、几 丁质酶(chitinase)、壳聚糖酶(chitosanase)和 1, 3一葡聚糖酶 ( l, 3一glucanase)等。许多研究都表明, 壳聚糖可诱导植株产 生几丁质酶、壳聚糖酶和 l, 3-葡聚糖酶, 这些酶的底物是真菌 细胞壁的主要组分, 几丁质酶特别是在与1, 3-葡聚糖酶的共同 作用下可在体外抑制真菌的生长。壳聚糖诱导出的几丁质酶、 壳聚糖酶和l, 3-葡聚糖酶彼此之间还有协同效应, 以致抗菌作 用更为明显。
壳聚糖的抑菌作用及在农 业中的应用
壳聚糖(chltosan)是甲壳素(chitin)的一种重要 衍生物,是甲壳素脱乙酰基转化而成的产物。甲壳素 来源于甲壳类动物,甲壳素(Chitin)也叫甲壳质、几 丁、几丁质、蟹壳素、明角壳蛋白、壳多糖,广泛存 在于低等动物(如甲壳纲、昆虫纲和蛛形纲等节肢动物 外壳)和低等植物(如真菌、藻类、酵母等)的细胞壁中。 是自然界中最丰富的天然高分子化合物之一(仅次于纤 维素)和第二大含氮化合物(仅次于蛋白质)。 据估计, 地球上每年由生物合成的甲壳素约有100亿吨,是一种 取之不尽、用之不竭的再生资源。人们利用和研究甲 壳素已有近百年的历史. 因为它的安全无毒性、可生 物降解性及生物相容性和独特的理化性质和生物活性。 应用范围扩展到化妆品、膜材料、纤维材料、催化剂、 混凝剂、酶和细胞的固定化载体、药物载体、吸附剂 等多个领域和农业、环境保护、食品工业、医药、分 析化学及轻纺工业 。
壳聚糖对五种食物中毒菌生长的影响

壳聚糖对五种食物中毒菌生长的影响
张燕婉;王光华
【期刊名称】《微生物学通报》
【年(卷),期】1991(18)6
【摘要】本文报道了在pH5.5和pH6.5条件下,不同浓度的壳聚糖对五种主要的
食物中毒菌:大肠杆菌、金黄色葡萄球菌、鼠伤寒沙门氏菌、李斯特单核细胞增生
菌和小肠结肠炎耶尔森氏菌生长的影响。
结果表明:在这两种pH条件下,壳聚糖对
五种细菌有不同程度的抑制作用,而且在pH5.5比在pH6.5的条件下抑制作用更强。
【总页数】4页(P344-347)
【作者】张燕婉;王光华
【作者单位】不详;不详
【正文语种】中文
【中图分类】TS201.3
【相关文献】
1.壳聚糖等生防制剂对香蕉尖孢镰刀菌和植株生长的影响 [J], 张荣萍;颜彩燕;张磊;杨毅敏;樊俊华;陈萍
2.低聚壳聚糖对鹌鹑生长、免疫和肠道菌群的影响 [J], 李丽;刘哲
3.微量热法研究壳聚糖铜对核桃内生菌生长代谢的影响 [J], 胡帆;罗晓洁;刘玉青;
卢垚;夏彩芬
4.微量热法研究壳聚糖铜对核桃内生菌生长代谢的影响 [J], 胡帆;罗晓洁;刘玉青;
卢垚;夏彩芬;
5.壳聚糖对青枯劳尔氏菌生长及其生物膜形成的影响 [J], 苏婷;王桂跃;谢关林因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文资料翻译CHITOSAN ON ANDRAEANUM TISSUE INHIBITIONOF BACTERIACONTAMINATIONAbstract: The fungi was isolated and purified from polluted anthurium subculture medium, identified to be DeuteromycotinaHyphpmycetesHyphomycetalesDematiaceae and trichoderma. The inhibition effect of the three kinds of chitosan on the fungi wasconducted.The results showed that the chitosan had inhibition effect on the fungi. The higher concentrations of chitosan had a betteinhibition effect than the lower ones.The inhibition effect of 50000 and 250000 molecular weight chitosan is better than that of the3000 molecular weight. It is preliminarily proved that chitosan had good inhibition effect on the fungi from polluted tissue culture ,andwill have good application value in the fields of pollution prevention in flowers tissue culture.Key words: tissue culture; contamination; Chitosan; inhibition effectPlant tissue culture, not only in plant breeding, rapid propagation of seedlings and the production of useful secondary metabolites, such as the use of a wide range of plant genetic engineering is and Plant Molecular Biology, one of the important foundation for the study [1]. Pollution, browning, glass and tissue culture are the main problems, including pollution of the most common[2]. Therefore take effective prevention and control measures to reduce the chance of contamination occurred, tissue culture is an important guarantee for success. Chitosan (chitosan) is the chitin in strong alkaline conditions from BAfter the formation of acyl an important derivative is determined by a number of N-acetyl glucosamine through β-(1-4) glycosidic bond linking the nature of it more lively. Has natural antibacterial properties of chitosan, and a broad spectrum antimicrobial, in recent years, chitosan in various fields such as agriculture,medicine [3], manufacture [4], food [5], etc. The use of great importance. Tissue culture of the chitosan in the application of inhibition has not been reported. This experiment to be from the contaminated medium subculture andraeanum extraction, purification and identification of bacteria contamination, with different molecular weight chitosan and different concentrations of their inhibition, and explore the best inhibitory effect of chitosan molecular weight and the best inhibitory concentration, in order to explore the chitosan as a new type of antimicrobial agent to provide specific information.1 Materials and Methods1.1 Test materials1.1.1 IsolatesStreptomyces bacteria pollution (code-named WCHPA), separated from the laboratory contamination andraeanum subculture medium.1.1.2 Test for DrugsChitosan, a Zhejiang Xing Biotechnology Australia Limited, a molecular weight of 3kd (degree of deacetylation> 80%), 50kd (degree of deacetylation> 90%), 25kd (degree of deacetylation> 90%)[6].1.1.3 Medium PDA mediumPotatoes 200g, glucose 20g, agar 20g, distilled water 1000ml, pH value of the natural.1.2 Test Method1.2.1 Isolation and purificationClean out the work in Taichung andraeanum subculture medium pollution fungi, from PDA medium. Repeat several times until the colony characteristics and morphology changes are no longer, we can identify bacteria have been purified.1.2.2 Identification of bacteria contaminationContinuous observation of colony morphology after purification. Film production equipment to further observe the shape strain, mycelium, spores, spore cell spore cell morphology and conidiation of the ways and forms and so on, taking pictures with a digital microscope.1.2.3 Bacteriostatic TestThat the different molecular weight chitosan with 1M solution of acetic acid dissolved mixed with PDA medium to produce a final concentration of chitosan (0.5,1.0,1.5,2.0,2.5,3.0)mg/ml of culture medium, 1M solution of sodium hydroxide by adjusting pH value of 6.0, in addition to the control without chitosan, the other with the addition of chitosan in the same medium[7]. To eliminate all high-pressure cooker sterilization 30min under 121 ℃and pour plate. Mycelium white to green after 24h and then into a brown, hyphae developed, velvet-like, 3d training around the middle of the brown and white flocculent mycelium of fimbriae produced. Hyphae are separated from a long stalk conidia to produce lateral branches whorled branches meristematicconidiation short bottles. Single-cell conidia oval, smooth.2 Results and Analysis2.1 Andraeanum symptoms subculture medium pollutionAndraeanum subculture in growth medium brown Fimbriae, medium surface was black, brown and white mycelium on the flocculation between the hyphae.2.2 fungal pure culture and identification of the resultsPDA medium in the upper colony diameter, edge neatly, spore germination of the PDA medium by adding chitosan, 4d clearly observed after the colony is surrounded by a black halo, black halo and colony growth as to the relocation of . The better the general inhibitory effect of the more obvious black halo[8]. Colony has no control this phenomenon. Chitosan molecular weight and concentration of the bacteriostatic effect.2.3. The same three concentrations of the bacteriostatic effect of chitosan molecularweight comparedConcentration of 0.5mg/ml 3 species of molecular weight chitosan WCHPA colony inhibitory effect of six concentrations of three kinds of molecular weight of chitosan on the inhibition rate of colony WCHPA results 0.5mg/ml concentration of three kinds of molecular weight chitosan there is no clear law, the maximum inhibitory rate of 50,000 in molecular weight of chitosan for the culture medium for 20.45%. Inhibitory rate and the time and no close ties. The results show that the concentration of 0.5mg/ml of the three kinds of molecular weight of the antibacterial effect of chitosan has not been satisfactory[9]. 5d prior to the first three kinds of chitosan molecular weight the greater the inhibitory rate of the higher molecular weight, and are extended over time to reduce the rate of inhibition. In paragraph 5d, 3000 molecular weight inhibitory rate of more than two other inhibitory rate of molecular weight, molecular weight and inhibition rate of 3000 also reached the highest value. At its bacteriostatic effect after 7d and 5d is similar to before, the greater the inhibitory rate of the higher molecular weight.3 Discussion and conclusions3.1 Chitosan as a potential new antibacterial agentsPollution plant tissue can be broadly divided into two types of operations may produce air pollution mainly mold contamination; explants is itself brought about by bacteria primarily by fungal and bacterial contamination[10]. High inhibitory rate was as high as 79.55%. Antibiotics in tissue culture is now the most common molecular weight of chitosan and 3.2 have an important impact on antimicrobial properties of the experimental results from the 50,000 and 250,000 the bacteriostatic effect of chitosan molecular weight than that of 3000; the highest inhibitory rate in the 250,000 molecular weight concentration of 3.0mg/ml and 2.0mg/ml of the two. But on the whole, taking into account the factors of price and its operation to the conclusion that the experimental molecular weight of 50,000 as the best concentration of 1.5mg/ml. 3.2 Concentration on the antimicrobial properties of chitosan have a significant impactQiu-ping [11], The results show that the antimicrobial effect of chitosan with its concentration increases, the experimental results support the results of the study. A wide range of applications of chitin, chitosan in the medical, food, environmental protection, in areas such as chemical products have wide-ranging and important applications. Chitosan flowers will be used for tissue culture would be very good prospects.References[1]MK.Razdan. Zun-Xiao-an, ZHU Yang translation.Introduction to Plant Tissue Culture [M]. Beijing: Chemical Industry Press ,2006:1-2.[2]Hu, ZHANG Li-jun,baixuemei, et al. Plant Tissue Culture Pollution Analysis and the disinfection of explants [J]. Anhui Agricultural Science, 2007,35 (3) :680-681.[3]Yi-Ting Wang,wanglianping , Mou Hero, et al. Industrial production of tissue culture studies of pollution and its control [J]. Anhui Agricultural Science, 2005, 33 (12): 2357 - 2358.[4]Chiang big.Chitin [M]. Beijing: China Environmental Science Press, 1996.[5]Fu Tian Xia, LIU Xiao-yu, Liu Zhiheng.Chitosan's antibacterial properties of the progress of applied research [J]. Liaoning Chemical, 2005,1234 (12) :541-544. [6]Yu Hanshou, Wu Zhang, Yang Bing. Chitosan inhibit research progress of plant diseases[J].Natural products research and development,1999,12 (3) :94-97.[7]Li Fang,shishaowei. Chitosan Preparation and application in the food industry Mechanism [J]. Food and Drug, 2006 (03A) :19-22.[8]Wu, Xia water.Non-biological factors on the antibacterial activity of chitosan [J]. Food Science, 2004,25 (7) :53-55.[9]wuxiaoyong, Qing-Xiao Zeng, MOshaofang. Several of the antibacterial properties of chitosan [J]. Food and Fermentation Industry, 2005,206 (2) :18-21. [10]Hu, ZHANG Li-jun,baixuemei, et al. Plant Tissue Culture PollutionAnalysis and the disinfection of explants [J]. Anhui Agricultural Science, 2007,35(3) :680-681.[11]Qiu-ping, Chitosan on mango Colletotrichumgloeosporioides, Diplodiaantagonism bacteria [J]. Food and machinery, 2005,21, (1) :25-27.壳聚糖对红掌组培污染菌的抑制作用摘要:在污染的红掌继代培养基中提取污染菌并进行了分离及纯化,初步鉴定为为半知菌亚门(Deuteromycotina),丝孢纲(Hyphpmycetes),丝孢目(Hyphomycetales),淡色孢科(Dematiaceae),木霉属(trichoderma)。