壳聚糖
壳聚糖的化学名称
![壳聚糖的化学名称](https://img.taocdn.com/s3/m/379a11cd82d049649b6648d7c1c708a1284a0a85.png)
壳聚糖的化学名称
壳聚糖的化学名称为N-乙酰葡聚糖,是一种天然的多糖类化合物。
它由葡萄糖分子通过β-1,4-糖苷键连接而成。
壳聚糖在自然界中广泛存在,包括虾壳、蟹壳、贝壳等海洋生物的外壳中。
壳聚糖具有多种独特的化学性质和生物功能。
首先,壳聚糖具有良好的生物相容性和生物可降解性,可被人体内的酶降解成无毒的物质,不会对人体造成任何不良反应。
其次,壳聚糖具有优秀的吸附性能和离子交换性能,能够吸附和去除水中的金属离子、染料、有机物等污染物。
此外,壳聚糖还具有良好的膜形成性能,可用于制备膜材料,广泛应用于水处理、生物医学、食品工业等领域。
壳聚糖还可以通过化学修饰或改性得到不同的功能材料。
例如,通过引入阳离子官能团,可以制备具有吸附和杀菌功能的壳聚糖材料;通过引入羟基磷酸根,可以制备具有骨组织工程应用潜力的壳聚糖材料。
此外,壳聚糖还可以与其他功能材料复合,形成具有多种功能的复合材料,例如壳聚糖/明胶复合凝胶用于药物缓释、壳聚糖/纳米颗粒复合材料用于生物成像等。
壳聚糖作为一种重要的天然多糖类化合物,具有多种独特的化学性质和生物功能,广泛应用于水处理、生物医学、食品工业等领域。
通过化学修饰和复合等手段,可以获得不同功能的壳聚糖材料,为解决环境污染、药物缓释、组织工程等问题提供了新的思路和方法。
壳聚糖的研究和应用前景广阔,对于推动相关领域的发展具有重要
意义。
壳聚糖
![壳聚糖](https://img.taocdn.com/s3/m/24b7e463168884868762d6cc.png)
性质
主要物理性质
不能完全溶解于水和碱溶液中,但可溶于稀 酸,游离氨基质子化促进溶解。溶于稀酸呈 粘稠状,在稀酸中壳聚糖的B-1,4糖苷键会慢 慢水解,生成相对分子质量的壳聚糖。 壳聚糖在溶液中市带正电荷多聚电解质,具 有很强的吸附性。
主要化学反应
酰化反应
羧基化反应
烷基化反应度、相对分子质量、 黏度有关,脱乙酰度越高、相对分子质量越 其他化学反应(如shiff碱反应 接枝共聚反应 小,越易溶于水。 交联反应) 壳聚糖具有很好的吸附性、成膜性、通透性、 成纤性、吸湿性和保湿性。
来源
壳聚糖是甲壳素脱N-乙酰基的产物,一般而言,N-乙酰基脱去 55%以上的就可称之为壳聚糖,或者说,能在1%乙酸或1%盐 酸中溶解1%的脱乙酰甲壳素,这种脱乙酰甲壳素被称之为壳聚 糖。事实上,N-脱乙酰度为55%以上的甲壳素,就能在这种稀 酸中溶解。
自然界中的来源
甲壳素在自然界中广泛存在于低等生物菌类,藻类的细胞,节支 动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和 软骨,高等植物的细胞壁等
应用
药物载体 缓释药物 抗菌 功能性药物
1. 提高肽类药物的吸收 2. 制取抗癌药剂
絮凝剂 废水处理
壳聚糖(CHITOSAN)
定义
壳聚糖(chitosan),又名 脱乙酰甲壳素,是自然界广泛 存在的几丁质(chitin)经过 脱乙酰作用得到的,属于高分 子直链型多糖,是自然界唯一 的碱性多糖,壳聚糖作为一种 天然、绿色的环保高分子物质, 具有可生物降解性、可食用性 及生物相容性等特点,且安全 无毒,对环境无公害。
壳聚糖
![壳聚糖](https://img.taocdn.com/s3/m/a098e010e87101f69e3195f1.png)
文献综述钟士亮 041511130壳聚糖(chitosan)是甲壳素N-脱乙酰基的产物,是由β-(1,4)-2-氨基-2-脱氧-D-葡萄糖单元和β-(1,4)-2-乙酰胺基-2-脱氧-D-葡萄糖单元组成的共聚体[1]。
而甲壳素是地球上最丰富的高分子化合物之一,每年的天然产量达上百亿吨,仅次于纤维素。
甲壳素与Ca2+是虾、蟹、昆虫的外壳、藻类、菌类细胞壁的主要构成成分[2]。
壳聚糖是迄今发现的唯一具有明显碱性、带正电荷的天然多糖类有机高分子。
壳聚糖分子结构中含有氨基、羟基、氧桥以及富含电子的吡喃环活性基团,通常在生物体内表现出极强的亲和性,同时具有抗菌活性等,但是,壳聚糖结构上大量的羟基和氨基,使得壳聚糖分子间与分子内有强烈的氢键作用,所以壳聚糖不溶于一般溶剂和水,但可以溶解于稀酸,如醋酸,盐酸等,这使得壳聚糖的推广应用受到很大程度上的限制,因此改善壳聚糖的溶解性能特别是改善其水溶性,是壳聚糖改性研究中最重要的方向之一[3-4]。
壳聚糖在生物学和医学上都具有潜在的应用价值。
据报道壳聚糖单体,有许多独特的生理活性,促进脾脏抗体生长,抑制肿瘤细胞[5];强化肝脏功能,降低血压,吸附胆固醇;在微酸环境中具有较强的抗菌作用和显著的吸湿保湿力;活化植物细胞,促进植物快速生长[6]。
壳聚糖能促进血液凝固,可用作止血剂。
它还可用于伤口填料物质,良好的生物相容性和生物可降解性,还具有消炎、减少创面渗出和促进创伤组织再生、修复和愈合的作用。
壳聚糖结构如下图1.1:图 1.1 壳聚糖的结构式它分子链上的胺基和羟基都是很好的配位基团。
1 壳聚糖的性质1.1壳聚糖物理化学性质1811年法国科学家Braconno提取得到的甲壳素,甲壳素通过脱乙酰化得到壳聚糖,从此人们对它的研究越来越多。
壳聚糖呈白色或灰白色,略有金属光泽,为透明且无定形固体。
在185 ℃下开始分解,不溶于水和稀碱,可溶于大多数有机酸和部分无机酸中,壳聚糖分子中同时存在大量的氨基和羟基,因此可以进行相应的修饰、接枝、以及活化等[7]壳聚糖以其氢键相互交联成网状结构,利用适当的溶剂,可制成透明的的薄膜,壳聚糖的溶液具有粘性是一种理想的成膜物。
壳 聚 糖 介 绍
![壳 聚 糖 介 绍](https://img.taocdn.com/s3/m/3473bfd63186bceb19e8bbb3.png)
≥85%, 90%, 95%
粘度(Mpa.S)Viscosity
≤100(1%CTS,1%HAC,25℃)
PH值PH value
7.0-9.0
重金属(pb)(ppm)
≤10
砷(As) (ppm)
≤0.5
细菌总数Total plate count
≤1000/g
大肠杆菌E. Coli
阴性Absent
致病菌Germs
不得检出No finding
包装Packing
10/25Kg纸箱纸板箱Carton
高密度壳聚糖(High Density Chitosan)
高密度壳聚糖
标准Specification(Food grade)
外观Appearance
原白色Original white
几丁质Chitin
标准Specification
外观Appearance
原白色Original white
粒度Particle
片状Slice
水分Moisture content
<10%
灰分Ash content
1.0%; <2.0%
蛋白质Protein
<1.0%
PH(1%)
7-9
包装Packing
10Kg
粒度Particle
80目粉末80Mesh powder
水分Moisture
≤10%
灰分Ash
≤1.0%
不溶物Insoluble
≤1.0%
脱乙酰度Deacetylation (DAC)
≥85%, 90%, 95%
粘度(Mpa.S)Viscosity
什么是壳聚糖
![什么是壳聚糖](https://img.taocdn.com/s3/m/cac91982af45b307e9719740.png)
一、壳聚糖是什么壳聚糖是一种广泛存在于甲壳类动物和肢节昆虫体内,自然界中至今为止发现的带阳离子性质的碱性多糖体,是一种天然海洋生物提取物,是含有氨基的带阳离子性质的天然高分子动物食物纤维。
二、壳聚糖的研究发展它经过高科技生物手段脱乙酰基后显示多种特殊生理功能。
在1991年被欧、美、日等国营养学家誉为除蛋白质、脂肪、碳水化合物、矿物质、维生素之外的“人体第六大生命要素”。
壳聚糖在国外最早被发现于1811年(法国),有近200年的科研历史。
美国最早从事壳聚糖生产,20世纪90年代始广泛用于医疗保健领域。
在日、韩、美、法、俄等国家都已开发成保健食品,在欧美、日本、中国台湾已得到广泛运用。
壳聚糖在日本的销量占健康食品的首位,是日本厚生省(相当于我国卫生部)准许宣传疗效的机能性食品,能从食品跃升为药品的机能性食品,日本政府还把壳聚糖加在面包、牛奶、饮料里,作为增强国民体质的膳食补充剂。
《科技日报》《中国消费者报》《中国医药报》《健康报》《经济日报》《联合晚报》《中国时报》《每日新闻》《民生报》《光明日报》《解放日报》中央二台《健康之路》栏目等等都对壳聚糖有过详细的报道。
在我国,传统医学对壳聚糖的研究有记载的最早的医学著作《神农本草》,魏晋南北朝时的医学专著《本草经集注》,唐代医药学孙思邈的《千金要方食治》,明代医药学泰斗李时珍的《本草纲目》和现代的《中药大辞典》对蟹、蟹爪、蟹壳均存有详细的药用记载。
三、壳聚糖的特殊生理功能特性1、在稀酸条件下形成带正电荷的阳离子基团,如在胃酸中发生反应;2、可在人体内经酶分解后吸收或直接吸收;壳聚糖在人体内可由溶菌酶、分解酶以及卵磷脂分解为低分子物质。
研究结果表明,当壳聚糖被分解为六个葡萄糖胺分子组成的聚合体后,从而穿透人体组织,显示生理活性,其生理调节作用最为显著;3、对细胞有良好的亲和性;裂解后的寡聚葡萄糖胺和葡萄糖胺与人体细胞的固有成分——透明质酸极相似,因而具有良好的亲和性,对人体不产生排斥反应;4、具有很强的吸附性和螯合作用;遇酸溶解的壳聚糖呈凝胶状态具有很强的吸附能力。
壳聚糖的结构_性质和应用
![壳聚糖的结构_性质和应用](https://img.taocdn.com/s3/m/02b1485ba9114431b90d6c85ec3a87c240288aae.png)
壳聚糖的结构_性质和应用壳聚糖(Chitosan)是一种重要的生物高分子材料,在生物医学、食品、环境和农业领域有广泛的应用。
它是由葡萄糖与脱乙酰化合而成的线性共聚物,具有多种独特的化学性质和生物功能。
下面将详细介绍壳聚糖的结构、性质和应用。
壳聚糖的性质:1.可降解性:壳聚糖是可生物降解的材料,可以通过酶或微生物的作用在自然环境中迅速降解,不会对环境造成污染。
2.生物相容性:壳聚糖具有良好的生物相容性,能够与生物体组织亲和,不会引起免疫反应和排斥反应,适用于生物医学领域的应用。
3.凝胶性:壳聚糖在酸性溶液中易形成凝胶,可以通过调节pH或温度控制凝胶的形成和溶解,具有良好的胶体稳定性。
4.亲水性:壳聚糖具有较强的亲水性,能够吸附水分并保持水分平衡,可以用于保湿剂和水凝胶材料的制备。
5.电荷性:壳聚糖是一种阳离子高分子,表面带正电荷,可以与带负电荷的物质发生吸附和离子交换反应。
6.生物活性:壳聚糖具有抗菌、抗氧化、促进伤口愈合、增强细胞黏附和生长等生物活性,有助于促进组织修复和治疗。
壳聚糖的应用:1.医药领域:壳聚糖具有良好的生物相容性和生物活性,可以用于制备药物输送系统、伤口敷料、组织工程支架、缓控释药物等。
其独特的凝胶性质可以用于制备药物凝胶和水凝胶材料。
2.食品工业:壳聚糖具有保湿、抗菌和稳定乳化等性质,在食品加工中常用作食品包装材料的抗菌涂层、保湿剂、稳定剂和乳化剂等。
此外,壳聚糖还可以用于食品油脂的净化、脱色和脱臭等处理过程。
3.环境保护:壳聚糖具有吸附重金属离子、有机物和染料等的能力,在环境污染的治理中有广泛应用。
壳聚糖还可以用于水处理、土壤修复、污水处理和废气处理等领域。
4.农业领域:壳聚糖可以作为植物生长调节剂和农药增效剂等农业化学品的新载体和添加剂。
壳聚糖也可以制备水凝胶耕作剂、农药缓控释剂和土壤调理剂等。
总结:壳聚糖是一种重要的生物高分子材料,具有多种独特的化学性质和生物功能。
它在医药、食品、环境和农业等领域有广泛的应用,如药物输送系统、伤口敷料、食品包装材料、环境污染治理和农业化学品等。
壳聚糖的结构与性质研究
![壳聚糖的结构与性质研究](https://img.taocdn.com/s3/m/f91bb1ed81eb6294dd88d0d233d4b14e85243e19.png)
壳聚糖的结构与性质研究壳聚糖(Chitosan)是一种天然聚合物,由甲壳贝类的外壳中提取而来。
它具有广泛的应用领域,包括医药、食品、化妆品、纺织品和环境保护等方面。
本文将重点探讨壳聚糖的结构和性质。
一、壳聚糖的结构壳聚糖是由N-乙酰葡萄糖胺和D-葡萄糖胺分子通过1,4-β-型醣苷键连接而成的聚合物。
在壳聚糖结构中,N-乙酰葡萄糖胺的乙酰基部分部分或完全被去除,生成去乙酰壳聚糖。
壳聚糖的分子量范围广泛,从几千到几十万不等。
二、壳聚糖的性质1. 可溶性:壳聚糖在酸性溶液中可溶解,但在碱性或中性条件下会凝胶化。
这种可溶性的特点使得壳聚糖在医药和化妆品领域具有良好的应用前景。
2. 生物相容性:壳聚糖是一种天然的生物大分子,与人体组织兼容性好,可降低药物和化学物质对人体的毒性和副作用。
3. 生物可降解性:壳聚糖可通过微生物酶的作用迅速降解,产生二聚体和单体,最终被人体代谢掉。
这一性质使其成为环境友好的替代材料。
4. 凝胶形成能力:在适当条件下,如酸性pH和低温,壳聚糖能形成凝胶。
这种凝胶具有可调控的孔隙结构和高比表面积,有助于药物包埋和释放。
5. 抗菌性能:壳聚糖具有一定的抗菌性能,可以抑制某些细菌和真菌的生长。
这使得壳聚糖在医药、食品和农业领域有广泛的应用。
三、壳聚糖的应用1. 医药领域:壳聚糖在医药领域的应用包括药物缓释、创伤敷料、骨修复材料和生物胶原膜等。
由于其生物相容性和可降解性,壳聚糖在药物传递系统中得到广泛应用,可以控制药物的释放速率和提高生物利用度。
2. 食品领域:壳聚糖因其结构独特、生物活性和可溶性,被广泛用于食品工业中作为稳定剂、增稠剂和乳化剂等。
此外,壳聚糖还可以用于食品保鲜、防腐和抗氧化等。
3. 环境保护:壳聚糖可用于废水处理,可以吸附重金属离子和有机物,起到净化水质的作用。
此外,壳聚糖还可用于制备生物降解塑料,有助于减少对环境的污染。
4. 纺织品领域:将壳聚糖修饰在纺织品上,可以赋予纺织品良好的吸湿性和抗菌性能,提高穿着舒适度和卫生性。
壳聚糖的制备方法
![壳聚糖的制备方法](https://img.taocdn.com/s3/m/1fc469a19a89680203d8ce2f0066f5335a8167f2.png)
壳聚糖的制备方法
壳聚糖可以通过多种方法制备,以下是一些常见的制备方法:
1. 天然提取法:天然提取法是直接从自然界中提取壳聚糖的方法。
例如,从虾、蟹等甲壳类动物的外壳中提取壳聚糖。
这种方法得到的壳聚糖纯度较高,但产量较低。
2. 化学合成法:化学合成法是通过化学反应在实验室里制备壳聚糖的方法。
这种方法可以大规模生产壳聚糖,但需要使用大量化学试剂,且产物的纯度可能不如天然提取法。
3. 生物合成法:生物合成法是利用微生物发酵的方法生产壳聚糖。
这种方法可以大规模生产壳聚糖,且不需要使用化学试剂,因此对环境友好。
但需要选择合适的微生物和发酵条件,以确保产物的纯度和产量。
4. 酶促合成法:酶促合成法是利用酶催化反应制备壳聚糖的方法。
这种方法可以在温和的条件下进行,且使用的酶通常对环境友好。
但需要选择合适的酶和反应条件,以确保产物的纯度和产量。
总的来说,制备壳聚糖的方法有很多种,可以根据实际需求选择合适的方法。
什么是壳聚糖壳聚糖主要功效和作用机理
![什么是壳聚糖壳聚糖主要功效和作用机理](https://img.taocdn.com/s3/m/aa20792d1fb91a37f111f18583d049649b660ef2.png)
什么是壳聚糖壳聚糖主要功效和作用机理壳聚糖是一种具有多种生物活性的聚合物,它由葡萄糖分子通过β-1,4-糖苷键链接而成。
壳聚糖可分为两个主要类型:壳聚糖和壳寡糖。
壳聚糖分子较大,分子量较高,壳寡糖则较小,分子量较低。
壳聚糖主要存在于甲壳动物(如虾、蟹、龙虾等)的外骨骼、貉腹、蚕茧、蘑菇等生物体中。
它具有多种生物功能,包括抗菌、抗氧化、抗肿瘤、免疫增强和生物黏附等。
壳聚糖还具有良好的生物相容性和生物可降解性,因此被广泛应用于医药、食品、化妆品及其他领域。
壳聚糖的主要功效包括以下几个方面:1.抗菌作用:壳聚糖具有广谱的抗菌活性,能够抑制多种细菌、真菌和病毒的生长。
其抗菌机理主要有两种:一是通过改变细胞膜结构,影响物质的渗透和转运;二是通过释放出的阳离子与细菌细胞的负离子结合,破坏细菌的结构和功能。
2.抗氧化作用:壳聚糖具有良好的抗氧化活性,可以清除自由基,减少氧自由基对细胞和组织的损伤,起到抗衰老和抗病变作用。
3.抗肿瘤作用:壳聚糖对多种肿瘤细胞具有抑制作用,可以通过抑制肿瘤细胞的增殖、促进肿瘤细胞凋亡和抑制肿瘤细胞侵袭和转移等方式起到抗肿瘤作用。
4.免疫增强作用:壳聚糖能够增强机体的免疫功能,包括增强巨噬细胞的吞噬活性、促进T淋巴细胞的增殖和活化等,从而提高机体对病原体的抵抗能力。
5.保健作用:壳聚糖还具有一定的保健作用,可以调节血糖和血脂水平,改善肝脏功能,促进钙吸收和骨骼健康,调节肠道菌群平衡等。
壳聚糖的作用机理是多方面的,主要包括以下几个方面:1.细胞外反应:壳聚糖可以与细胞外基质结合,形成一种保护屏障,阻止病原体侵入机体。
同时,它还可以与胞外酶结合,抑制其活性,减少组织炎症和损伤。
2.细胞内反应:壳聚糖可以通过与细胞膜融合,改变膜的性质和功能,影响物质的传递和通道的打开。
此外,壳聚糖还可以与细胞内的一些关键蛋白相互作用,调控细胞的生理过程,如调节细胞凋亡、增殖和分化等。
3.免疫系统调节:壳聚糖可以通过与免疫细胞相互作用,提高免疫细胞的活性和功能,促进免疫细胞的分化和增殖,增强机体的免疫反应。
壳聚糖
![壳聚糖](https://img.taocdn.com/s3/m/9acfb4b3f524ccbff12184e8.png)
•
生理活性
1、化妆品专用壳聚糖 化妆品专用壳聚糖具有良好的吸湿、保湿、调理、抑菌等功能;适用于润肤霜、 淋浴露、洗面奶、摩丝、高档膏霜、乳液、胶体化妆品等;有效的弥补了一般壳聚糖 的缺陷。 2、絮凝剂专用壳聚糖 壳聚糖及其衍生物都是具有良好的絮凝、澄清作用。作为饮料的澄清剂,可使悬 浮物迅速絮凝,自然沉淀,提高原液的得率;在中药提取液中,大分子的蛋白质、鞣 酸和果胶,可以用壳聚糖溶液方便地除去,精制出纯度较高的中药有效成份;利用壳 聚糖的吸附性,在水质净化方面有良好的效果。
将甲壳素用浓碱加热处理,脱去乙酰基就得到壳聚糖。由虾、蟹壳制取甲壳素、壳聚糖 的简要流程如下: 5%HCl 10%NaOH 40%~45%NaOH ↓ ↓ ↓ 虾或蟹壳→ 脱 钙 → 脱蛋白→甲壳素 → 脱酰基→壳聚糖 ↓ ↓ ↓ CaCl2、CO2 蛋白质 CH3COONa
将虾、蟹壳洗净干燥后,以5%稀盐酸于室温浸泡2h,除去原料中的碳酸钙,然后 过滤水洗至中性,再置于10%的NaOH溶液中煮沸2h脱蛋白,过滤水洗至中性, 干燥即得甲壳素。而后置于45%~50%NaOH溶液中,在100~100水解4h或用 40 %NaOH溶液,于(84±1)℃的烘箱中保温17h,然后过滤,水洗至中性,干燥 即得壳聚糖。为加快脱乙酰反应,可进行间断性水洗。
二、水溶性壳聚糖的制备
提出两种降解制备水溶性壳聚糖的新方法: (1)UV-H_2O_2联合 制备水溶性低聚壳聚糖:
(2)在壳聚糖-水异相体系中,磷钨酸催化H_2O_2 制 备水溶性低聚壳聚糖。
降解实验结果表明:两种方法均可以有效地制备 水溶性低聚壳聚糖, 降解产物保持壳聚糖的基本 结构特征。
壳聚糖的应用价值
⑥织物的整理剂。壳聚糖可作为织物的永久整理剂,使织物耐水洗,耐磨擦,具有 固色和增强作用,提高织物的坚牢度,减少皱缩率,并使织物具有滑爽光洁和挺括 的外观和手感。衬领和衣衬垫使用壳聚糖处理后既硬挺又不怕水洗。电线的绝缘包 布用壳聚糖处理后可提高其绝缘性能及热老化性能。 此外,甲壳素和壳聚糖也可制 成具有特殊用途的纤维。 ⑦日用化学品。壳聚糖溶于稀的弱酸中即为阳离子型高分子电解质,它无色无味、 无嗅、无毒副作用,有很高的吸湿和保湿作用,因其含有氨基,与毛、发、皮肤有 很好的亲和、渗透作用,而且还有抗菌作用,因此是一种理想的化妆品用高分子化 合物。可以用于固发剂、头发调理剂、洗发香波、护肤剂、口腔卫生剂等。 此外,壳聚糖在生物大分子物质的回收,以及功能材料方面也有很好的应用。
壳聚糖的结构与性质分析
![壳聚糖的结构与性质分析](https://img.taocdn.com/s3/m/0768661a59fb770bf78a6529647d27284b733734.png)
壳聚糖的结构与性质分析壳聚糖(Chitosan)是一种天然生物高分子聚合物,由壳脲和壳贝殼的主要成分葡萄糖聚合而成。
在纳米级别的尺寸下,壳聚糖可以显示出各种独特的结构特性和物理性质。
本文将探讨壳聚糖的结构特征以及其对性质的影响。
首先,壳聚糖的结构可以分为三个方面:化学结构、分子结构和晶体结构。
化学结构方面,壳聚糖是由N-乙基葡萄糖胺单体通过β-(1-4)糖苷键连接而成。
壳聚糖分子由股基、酸基和股酸基组成,其中氨基和酸基的相对比例决定了壳聚糖的电荷性质。
此外,壳聚糖分子上的氨基和羟基官能团为其它官能团的引入提供了方便。
分子结构方面,壳聚糖的分子量和分子量分布对其特定应用的影响很大。
较高分子量的壳聚糖通常具有更好的生物相容性和凝胶性能。
此外,分子量也会影响壳聚糖的溶解性和可加工性。
晶体结构方面,壳聚糖在溶液中呈现出两种结晶形态,α-壳聚糖和β-壳聚糖。
α-壳聚糖具有不规则的螺旋结构,而β-壳聚糖则形成了具有良好结晶性的纤维状结构。
这两种结晶形态的转化与溶解度、晶体生长速率、热稳定性等性质有关。
接下来,我们将分析壳聚糖的性质,包括生物相容性、溶解性、凝胶性、吸附性和抗菌性。
这些性质使得壳聚糖在医药、食品、环境等领域具有广泛的应用前景。
壳聚糖具有良好的生物相容性,可以降低材料对生物体的刺激性和毒性。
其生物相容性主要与壳聚糖分子中氨基和羟基官能团的存在有关。
这些官能团可以与生物体中的细胞、蛋白质等相互作用,从而在医药领域中用于制备药物递送系统以及细胞支架等。
溶解性是壳聚糖的重要性质之一。
壳聚糖具有pH响应性溶解性,即在不同的pH值下溶解度不同。
例如,在酸性条件下,壳聚糖的溶解性较差,而在碱性条件下则可溶于水。
这种溶解性使得壳聚糖在胃肠道等特定环境中应用广泛,并可用于控释药物。
凝胶性是壳聚糖的典型性质之一。
在特定条件下,壳聚糖可以形成凝胶结构,具有高黏度和弹性,同时又能保持良好的生物相容性。
这种凝胶性质使得壳聚糖被广泛应用于组织工程和伤口愈合等领域。
壳聚糖
![壳聚糖](https://img.taocdn.com/s3/m/9d34c03e376baf1ffc4fadfb.png)
②羧甲基化—壳聚糖与氯乙酸反应便得羧甲基化 的衍生物。③磺酸酯化—甲壳素和壳聚糖与纤维 素一样,用碱处理后可与二硫化碳反应生成磺酸 酯。④氰乙基化—丙烯腈和壳聚糖可发生加成反 应,生成氰乙基化的衍生物。
上述反应在甲壳素和壳聚糖中引入了大的侧基, 破坏了其结晶结构,因而其溶解性提高,可溶 于水,羧甲基化衍生物在溶液中显示出聚电解 质的性质。
人类取之不竭的生物资源。人类最早利用甲壳资源始于 中国著名的《本草纲目》中的记载:蟹壳有破瘀消积的 功能。“蟹”字本身即指:解毒的虫类。1811年,法国 学 者布拉诺首先在蘑菇类中发现了甲壳质,从此人类开始 了漫长的研究与应用 。
壳聚糖的结构
壳聚糖是甲壳素的脱乙酰化产物。而甲壳素又称 甲壳多糖、几丁质。是由N-乙酰α-氨基-D-葡萄 糖胺以β1,4糖苷键连接而成的含氮多糖。 甲壳素结构 壳聚糖结构
壳聚糖在食品工业上的应用
果蔬保鲜剂:用壳聚糖 进行涂膜保鲜,其膜层 具有通透性、阻水性, 可以对各种气体分子增 加穿透阻力,形成了一 种微气调环境,可使果 蔬保鲜。
壳聚糖在食品工业上的应用
此外,壳聚糖还可以用作水的澄清剂和酶固定化剂等 领域。
谢谢观赏!
壳聚糖在食品工业上的应用
抗氧化剂:肉类食品中 由于含有高含量的不饱 和脂类化合物易被氧化 而使肉类食品腐败变质, 从而缩短肉制品的贮存 寿命和破坏肉制品的风 味。用壳聚糖处理则可 以延长肉类贮存寿命。
壳聚糖在食品工业上的应用
保健食品添加剂:壳聚糖难 被人体胃肠消化吸收,当人 把它们摄入体内后,它们可 与相当于自身质量许多倍的 甘油三酯、脂肪酸、胆汁酸 和胆固醇等脂类化合物生成 络合物,该络合物不被胃酸 水解,不被消化系统吸收, 从而阻碍人体吸收这类物质, 使之穿肠而过排出体外。因 此,壳聚糖类可以降脂,减 少食品热量。
壳聚糖和壳寡糖
![壳聚糖和壳寡糖](https://img.taocdn.com/s3/m/5c11ad475bcfa1c7aa00b52acfc789eb172d9ec9.png)
壳聚糖和壳寡糖
壳聚糖和壳寡糖是两种与壳多糖相关的化合物。
1. 壳聚糖(Chitosan):
壳聚糖是一种天然产物,由脱乙酰壳多糖(即壳寡糖)经化学或酶法去乙酰化而得到。
它是由葡萄糖和壳寡糖分子组成的聚合物,具有多种特殊的化学和生物学性质。
壳聚糖在许多领域有广泛的应用,包括食品、医药、农业和环境等。
在食品方面,壳聚糖常用作食品添加剂,具有增稠、凝胶化、稳定乳化等功能。
它还具有抗菌、抗氧化和保鲜的特性,可以用于食品包装和保鲜处理。
在医药领域,壳聚糖被用作药物传递系统的载体,可以提高药物的稳定性和生物利用度。
此外,壳聚糖还具有伤口愈合促进、抗菌和抗炎等作用,被应用于创伤敷料和药物外用制剂。
2. 壳寡糖(Chito-oligosaccharides):
壳寡糖是壳聚糖分解得到的短链寡糖,它由2-10个葡萄糖分子组成。
壳寡糖在壳聚糖中的存在形式通常是被乙酰基覆盖的形式。
壳寡糖具有多种生物活性和药理作用。
它具有良好的生物相容性,可被人体消化酶系统降解吸收。
壳寡糖具有增强免疫功能、调节肠道菌群、降低胆固醇、抗菌和抗肿瘤等特性。
因此,壳寡糖被广泛应用于保健品、功能食品和医药领域。
总的来说,壳聚糖是由壳寡糖聚合而成的聚合物,具有多种应用,而壳寡糖则是壳聚
糖分解得到的短链寡糖,具有多种生物活性和药理作用。
这两种化合物在食品、医药和其他领域都有重要的应用和研究价值。
壳聚糖
![壳聚糖](https://img.taocdn.com/s3/m/da4ef439a5e9856a56126095.png)
6.体外细胞实验结果
使用倒置荧光显微镜观察叶酸−壳聚糖 纳米载体、壳聚糖纳米粒与表达有叶酸受 体的细胞之间的相互作用,结果见图6 和 图7.可以发现:细胞荧光效果明显,且荧 光强度与纳米粒同细胞相互作用时间成正 比.
(a) 自然光;(b) 自然光+荧光 图6 荧光标记的叶酸−壳聚糖纳米粒与HepG2 细胞相互作 用的倒置荧光显微镜像
(4) 与HeLa 细胞共培养时细胞荧光效果明显, 且荧光强度同纳米粒与细胞相互作用时间 成正比。 (5) 建立并完善了叶酸修饰壳聚糖纳米载体的 制备工艺,为后续靶向性纳米制剂的研制 提供了技术手段。
图 7 荧光标记的壳聚糖纳米粒与HepG2 细胞 相互作用的倒置荧光显微镜像
实验结果表明:叶酸活性酯用量和反 应温度及试剂滴加速度是影响偶联比的主 要因素;在叶酸活性酯与壳聚糖用量质量 比为1׃1,反应温度30℃,滴加速度为 2mL/min,反应时间为12 h 的条件下可得 到偶联稳定的叶酸偶联壳聚糖;所制得的 纳米粒粒径为290 nm,形态规则,细胞荧 光效果明显;此方法能用于制备荧光标记 的叶酸修饰壳聚糖纳米粒载体。
壳聚糖
报告人 肖春羽 2010.11.
1. 壳聚糖简介
2. 壳聚糖的作用 3. 荧光标记的叶酸修饰壳聚糖
纳米载体研制
中文名称:壳聚糖
英文名称:chitosan 简 称:cs
化学名称:聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖 分 子 式 :C6H11NO4
壳聚糖是由自然界广泛存在的几 丁质(chitin)经过脱乙酰作用得到的, 是天然界多糖中唯一的碱性多糖。壳 聚糖为阳离子聚合体,不溶于普通有 机溶剂,在碱液中稳定,有很强的亲 水性,可在稀盐酸,稀醋酸溶液中膨胀 并形成凝胶,依此特性可制成各种缓 释和控释制剂0 cm−1 处有吸收峰
壳聚糖分子结构
![壳聚糖分子结构](https://img.taocdn.com/s3/m/e33ebe5f24c52cc58bd63186bceb19e8b8f6ec28.png)
壳聚糖分子结构壳聚糖是一种天然高分子,由N-乙酰葡萄糖胺和D-葡萄糖组成,是贝壳、虾、蟹等海洋生物的主要组成部分。
壳聚糖具有良好的生物相容性、可降解性和生物活性,因此在医药、食品、化妆品等领域有广泛应用。
本文将从壳聚糖的分子结构、合成方法、应用等方面进行详细介绍。
一、壳聚糖分子结构1. 壳聚糖的基本结构壳聚糖是由N-乙酰葡萄糖胺和D-葡萄糖交替排列而成的线性共价聚合物。
它与纤维素极为相似,只是在C2位上的-OH基团被-NH-COCH3取代。
因此,壳聚糖分子中既含有氨基,又含有羟基。
2. 壳聚糖的分子量壳聚糖的分子量通常在1万到10万之间,其中以10万左右为最常见。
3. 壳聚糖的空间结构壳聚糖的空间结构是由分子内的氢键、范德华力和静电作用等相互作用所决定的。
壳聚糖分子中,N-乙酰葡萄糖胺和D-葡萄糖之间通过氢键相连,形成了一个稳定的三维空间结构。
二、壳聚糖的合成方法1. 壳聚糖的提取壳聚糖可以从贝壳、虾、蟹等海洋生物中提取得到。
提取方法一般采用酸解法或碱解法。
其中,酸解法是将贝壳等材料与盐酸或硫酸等强酸进行反应,使钙化合物溶解,从而得到壳聚糖;碱解法则是将材料与氢氧化钠等强碱进行反应,使蛋白质和其他杂质溶解,从而得到纯净的壳聚糖。
2. 壳聚糖的化学合成除了从天然材料中提取外,还可以通过化学合成来得到壳聚糖。
目前常用的合成方法有离子液体催化剂法、无溶剂法和微波辅助法等。
三、壳聚糖的应用1. 壳聚糖在医药领域中的应用壳聚糖具有良好的生物相容性和可降解性,因此在医药领域中有广泛应用。
例如,壳聚糖可以用于制备药物缓释剂、骨修复材料、伤口敷料等。
2. 壳聚糖在食品领域中的应用壳聚糖可以作为食品保护剂、增稠剂、凝胶剂等。
例如,在水产品加工过程中,壳聚糖可以被用作防腐剂,以延长食品的保质期。
3. 壳聚糖在化妆品领域中的应用壳聚糖可以作为化妆品的保湿剂、抗菌剂和增稠剂等。
例如,在面霜和乳液中添加适量的壳聚糖,可以提高其保湿效果,并使皮肤更加光滑细腻。
壳聚糖的实验报告(3篇)
![壳聚糖的实验报告(3篇)](https://img.taocdn.com/s3/m/5de00f7c11a6f524ccbff121dd36a32d7375c73f.png)
第1篇一、实验目的1. 学习壳聚糖的提取方法。
2. 探究壳聚糖的性质及其应用。
3. 了解壳聚糖在食品、医药等领域的应用前景。
二、实验原理壳聚糖是一种天然的高分子多糖,由甲壳素经过脱乙酰化反应得到。
壳聚糖具有良好的生物相容性、生物降解性、抗菌性、成膜性等特性,广泛应用于食品、医药、环保等领域。
三、实验材料与仪器1. 材料:虾壳、稀盐酸、氢氧化钠、无水乙醇、氯仿、硫酸铜、硫酸锌、硫酸钠等。
2. 仪器:电子天平、恒温加热器、电热鼓风干燥箱、研钵、烧杯、滴定管、移液管、容量瓶、锥形瓶、玻璃棒等。
四、实验步骤1. 壳聚糖的提取(1)将虾壳洗净,晾干,剪碎。
(2)将虾壳放入烧杯中,加入适量的稀盐酸,加热煮沸,搅拌,使虾壳中的甲壳素溶解。
(3)过滤,取滤液,用氢氧化钠调节pH值至7-8。
(4)将调节pH值后的溶液加热煮沸,使壳聚糖析出。
(5)过滤,取滤饼,用无水乙醇洗涤,去除杂质。
(6)将洗涤后的滤饼放入电热鼓风干燥箱中,干燥至恒重。
2. 壳聚糖的性质研究(1)溶解性:将干燥后的壳聚糖加入适量的氯仿中,观察壳聚糖在氯仿中的溶解情况。
(2)成膜性:将壳聚糖溶液滴在玻璃板上,待溶液蒸发后,观察壳聚糖薄膜的形成情况。
(3)抗菌性:将壳聚糖溶液滴在含有细菌的培养基上,观察细菌的生长情况。
(4)生物降解性:将壳聚糖溶液滴在土壤中,观察壳聚糖在土壤中的降解情况。
五、实验结果与分析1. 壳聚糖的提取经过实验,成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。
2. 壳聚糖的性质研究(1)溶解性:壳聚糖在氯仿中溶解度较低,说明其具有一定的溶解性。
(2)成膜性:壳聚糖溶液在玻璃板上形成薄膜,说明其具有良好的成膜性。
(3)抗菌性:壳聚糖溶液对细菌具有一定的抑制作用,说明其具有良好的抗菌性。
(4)生物降解性:壳聚糖在土壤中逐渐降解,说明其具有良好的生物降解性。
六、结论1. 成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。
2. 壳聚糖具有良好的溶解性、成膜性、抗菌性和生物降解性。
壳 聚 糖
![壳 聚 糖](https://img.taocdn.com/s3/m/fd1c6f4f767f5acfa1c7cd09.png)
壳聚糖壳聚糖(chitosan)又称脱乙酰几丁质、聚氨基葡萄糖、可溶性甲壳素,是由甲壳素经脱乙酰化反应转化变成的分子量为12~59万的生物大分子。
壳聚糖可抑制细菌、霉菌生长,因此常加于腌制食品中或用于海产(虾)、水果(荔枝、猕猴桃)的保鲜。
由于极性基团的存在,壳聚糖对水有很高的亲和力和持水性,这对半干半潮食品的保湿有重要作用。
在保湿类化妆品中壳聚糖也已展露头脚,日本已有这类化妆品上市。
壳聚糖能溶解于弱酸中,是很方便的成膜材料,而且这种膜是可食用膜,同时又可在水和热水中保持原状,因此特别适合于固体、液体食品的包装。
香肠肠衣类的膜也是壳聚糖与其他物质复合制成的。
你身边有戴隐形眼镜的人吗?相信人数不会少。
用壳聚糖作原材料,让其溶液在聚乙烯膜上蒸发,进而在一个钢膜中加压即可形成软性接触眼睛,即隐形眼镜。
壳聚糖具有良好的生物相容性和生物降解性,降解产物一般对人体无毒副作用,在体内不积蓄,无免疫原性,因而在生物医学领域有着极广阔的前景。
已开发和潜在的应用实例包括人工皮肤(创伤敷料)、手术缝合线与骨修复材料、抗凝血剂和人工透析膜、药物制剂和药物释放剂等。
除此之外,壳聚糖曾在1991年被欧美学术界誉为继蛋白质、脂肪、糖类、维生素和无机盐之后的第六生命要素。
据文献报道,壳聚糖对疾病的预防和保健作用有:强化免疫功能;降低胆固醇;降血压,降血糖,强化肝脏机能;使血管扩张,从而改善腰酸背痛症状;治疗烧伤,烫伤,加速外伤愈合;防止胃溃疡,吸附体内有害物质并排出体外等。
此外,壳聚糖还能够用作凝胶化试剂,生物传感器,合成人工器官(人工皮肤、粘膜、腱、牙、骨)及骨固定棒材,还可作减肥药使用。
壳聚糖的应用涉及许多领域,其中化妆品、保健品、食品工业等行业对壳聚糖的需求增长最快;在医药、化工、造纸、农业、环保、轻纺等领域正在得到广泛的应用。
壳聚糖以其资源丰富、价格便宜、安全无毒等众多优点,使得各国对壳聚糖的应用研究不断深化,预计未来若干年,国内外在对壳聚糖的开发和利用上会取得更多成果。
壳聚糖鉴别试验
![壳聚糖鉴别试验](https://img.taocdn.com/s3/m/51207509326c1eb91a37f111f18583d049640fcf.png)
壳聚糖鉴别试验壳聚糖鉴别试验是一种常用的化学实验方法,用于确定样品中是否含有壳聚糖。
壳聚糖是一种多糖类物质,具有多样的应用领域,常被用于制备药物、食品添加剂和生物材料等。
通过壳聚糖鉴别试验,可以准确地确认样品中是否含有壳聚糖,以及壳聚糖的含量。
壳聚糖鉴别试验通常采用化学反应或物理性质测定的方法进行。
其中,常用的方法包括酸碱中和反应、糖酸酐化反应、氨基余量测定、粘度测定、溶解性测定等。
酸碱中和反应是壳聚糖鉴别试验中最常用的方法之一。
壳聚糖是一种碱性物质,可以与酸反应生成盐。
在此试验中,可以将样品加入酸性溶液中,如盐酸溶液,观察是否产生沉淀。
若样品中含有壳聚糖,则会出现白色沉淀,表示酸和碱发生了中和反应,从而可以判断样品中含有壳聚糖。
糖酸酐化反应也是壳聚糖鉴别试验中常用的方法之一。
壳聚糖可以与酸酐反应生成酯化产物。
在此试验中,可以将样品加入酸酐溶液中,如乙酸酐溶液,观察是否产生酯化产物。
若样品中含有壳聚糖,则会产生酯化反应,生成酯化产物。
氨基余量测定也是壳聚糖鉴别试验中常用的方法之一。
壳聚糖是一种富含氨基官能团的物质,可以通过测定样品中氨基余量来确定是否含有壳聚糖。
通常采用红外光谱法或紫外光谱法来测定样品中氨基余量的含量。
粘度测定和溶解性测定也可以用于壳聚糖鉴别试验中。
壳聚糖具有特定的粘度和溶解性,可以通过测定样品的粘度和溶解性来判断样品中是否含有壳聚糖。
壳聚糖鉴别试验是一种常用的化学实验方法,通过酸碱中和反应、糖酸酐化反应、氨基余量测定、粘度测定和溶解性测定等方法,可以准确地判断样品中是否含有壳聚糖。
这些方法可以为壳聚糖的应用提供重要的实验依据,并确保制备的产品质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
壳聚糖壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。
针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。
分子式:C56H103N9O39分子量:1526.4539简介壳聚糖是甲壳质经脱乙酰反应后的产品,脱乙酰基程度(D.D)决定了大分子链上胺基(NH2)含量的多少,而且D.D增加,由于胺基质子化而使壳聚糖在稀酸溶液中带电基团增多,聚电解质电荷密度增加,其结果必将导致其结构,性质和性能上的变化,至今壳聚糖稀溶液性质方面的研究都忽略了D.D值对方程的影响。
壳聚糖是以甲壳质为原料,再经提炼而成,不溶于水,能溶于稀酸,能被人体吸收。
壳聚糖是甲壳质的一级衍生物。
其化学结构为带阳离子的高分子碱性多糖聚合物,并具有独特的理化性能和生物活化功能。
近年来国内外的报导主要集中在吸附和絮凝方面。
也有报道表明,壳聚糖是一种很好的污泥调理剂,将其用于活性污泥法废水处理,有助于形成良好的活性污泥菌胶团,并能提高处理效率。
但研究其对活性污泥中微生物活性的影响以及其强化生物作用的机理,国内外均未见有报导。
在甲壳素分子中,因其内外氢键的相互作用,形成了有序的大分子结构.溶解性能很差,这限制了它在许多方面的应用,而甲壳素经脱乙酰化处理的产物一壳聚糖,却由于其分子结构中大量游离氨的存在,溶解性能大大改观,具有一些独特的物化性质及生理功能,在农业、医药、食品、化妆品、环保诸方面具有广阔的应用前景。
物性数据1. 性状:白色无定形透明物质,无味无臭。
2. 密度(g/mL,25℃):未确定3. 相对蒸汽密度(g/mL,空气=1):未确定4. 熔点(ºC):未确定5. 沸点(ºC,常压):未确定6. 沸点(ºC,5.2kPa):未确定7. 折射率:未确定8. 闪点(ºC):未确定9. 比旋光度(º):未确定10. 自燃点或引燃温度(ºC):未确定11. 蒸气压(kPa,20ºC):未确定12. 饱和蒸气压(kPa,60ºC):未确定13. 燃烧热(KJ/mol):未确定14. 临界温度(ºC):未确定15. 临界压力(KPa):未确定16. 油水(辛醇/水)分配系数的对数值:未确定17. 爆炸上限(%,V/V):未确定18. 爆炸下限(%,V/V):未确定19. 溶解性:溶于PH<6.5的稀酸,不溶于水和碱溶液.主要用途1.主要应用于食品、医药、农业种子、日用化工、工业废水处理等行业。
壳寡糖具有提高免疫、活化细胞、预防癌症、降血脂、降血压、抗衰老,调节机体环境等作用,可用于医药、保健、食品领域。
在环保领域壳聚糖可用于污水处理,蛋白回收,水净化等。
功能材料领域,壳聚糖可用于膜材料、载体、吸附剂、纤维、医用材料等。
轻纺领域,壳聚糖可用于织物整理、保健内衣、造纸助剂等。
农业领域可应用于饲料添加、种子处理、土壤改良、水果保鲜等。
在烟草领域,壳聚糖是性能良好的烟草薄片胶,而且具有改善口感,燃烧无毒无异味等特点。
2.用于皮毛的直毛固定后,毛被松散度好。
染色均匀、鲜艳。
具有增色作用,节省染料,提高皮毛档次。
降低成本,提高经济效益。
环保型直毛固定剂,对角阮蛋白有很强的吸附力。
3.工业中用作黏结剂、增稠剂、稳定剂、胶凝剂等。
也用作酸性物质的防霉剂,用于腌制品、焙烤制品、面包、含油食品等,在其表面形成透明的半渗透膜。
壳聚糖不与体液反应,对细胞有亲和性,可生物降解。
还可用作保健品添加剂,具有调节血脂、降血压、提高免疫力、调节血糖及排除体内有害重金属等作用,但不适于患有肠道吸收综合征的人使用。
在废水处理中,可用作高分子絮凝剂而有效地捕集重金属离子及处理食品加工厂废水;用于处理含多氯联苯废水的效果优于活性炭,也可与活性炭及纤维素混合制成染料吸附剂。
利用它对溶菌酶的吸附作用,可用来对溶菌酶进行分离和精制。
壳聚糖对皮肤及头发有较好亲和作用,能形成透明的保护膜,可用来制造香波、护发素、发胶、摩丝、口红、膏霜等制品。
还可用作香料、染料和活性剂胶囊的成膜剂,核酸清除剂,降低胆醇制剂,抗菌剂,植物种子涂覆粘接剂,以及用作固相合成和酶固定化载体等。
4.在化妆品中应用广泛,可用于香波、护发素、浴液、发胶、摩丝、香水、晚露、水剂、膏霜、口红等化妆品,还用于医药、食品和卷烟等工业。
化妆品中的加入量一般为0 . 2%~0 . 5%。
性质与稳定性有很强的吸湿性,仅次于甘油,高于聚乙二醇、山梨醇。
具有良好的成膜性、透气性和生物相溶性。
乙酸乙酸,也叫醋酸、冰醋酸,化学式CH₃COOH,是一种有机一元酸,为食醋内酸味及刺激性气味的来源。
纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.7℃(62℉),凝固后为无色晶体。
尽管根据乙酸在水溶液中的解离能力它是一种弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。
基本成分要含氧衍生物。
分子式C2H4O₂,结构简式CH₃COOH,HAC。
结构式官能团为羧基。
因是醋的主要成分,又称醋酸。
例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在。
普通食醋中含有3%-5%的乙酸。
乙酸是无色液体,有强烈刺激性气味。
相对分子量60.05,熔点16 .6℃,沸点117 .9℃,相对密度1.0492(20/4℃)密度比水大,折光率1.3716。
纯乙酸在16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。
易溶于水、乙醇、乙醚和四氯化碳。
当水加到乙酸中,混合后的总体积变小,密度却增加,直至分子比为1:1 ,相当于形成一元酸的原乙酸CH3C(OH)₃,进一步稀释,体积不再变化。
物理性质相对密度(水为1):1.050相对分子量:60.05凝固点(℃):16.6沸点(℃):117.9粘度(mPa.s):1.22(20℃)20℃时蒸气压(KPa):1.5外观及气味:无色液体,有刺鼻的醋味。
溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂。
相容性:材料:稀释后对金属有强烈腐蚀性,316#和318#不锈钢及铝可作良好的结构材料。
国家产品标准号:GB/T 676-2007乙酸在常温下是一种有强烈刺激性酸味的无色液体。
乙酸的熔点为16.6℃(289.6 K)。
沸点117.9℃ (391.2 K)。
相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。
纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。
乙酸易溶于水和乙醇,其水溶液呈弱酸性。
乙酸盐也易溶于水,水溶液呈碱性。
化学性质折叠酸性羧酸中,例如乙酸的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。
乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。
乙酸酸性的体现:CH3COOH<==>CH3COO- + H+1、与指示剂作用:可使紫色石蕊试液变为红色,使甲基橙变为红色。
2、与碱反应:CH3COOH + NaOH = CH3COONa + H2O2CH3COOH + Cu(OH)2=Cu(CH3COO)2 + 2H2O3、与某些活泼金属反应:Mg + 2CH3COOH = Mg(CH3COO)2 + H2↑Zn + 2CH3COOH = Zn(CH3COO)2 + H2↑Fe + 2CH3COOH = Fe(CH3CO O)2 + H2↑4、与某些氧化物反应:CaO + 2CH3COOH = (CH3COO)2Ca + H2OMgO + 2CH3COOH = Mg(CH3COO)2 + H2OPbO + 2CH3COOH = Pb(CH3COO)2 + H2O5、与某些弱酸盐反应:2CH3COOH + Na2CO3 =2CH3COONa + CO2 ↑+ H2O2CH3COOH + Na2S = 2CH3COONa + H2S↑2CH3COOH + Na2SiO3 =2CH3COONa + H2SiO3↓CH3COOH + C6H5ONa =C6H5OH (苯酚)+ CH3COONa折叠二聚物乙酸的二聚体,虚线表示氢键乙酸的晶体结构显示,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。
二聚体有较高的稳定性,现在已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。
当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。
其它的羧酸也有类似的二聚现象。
(两端连接H)折叠溶剂液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。
因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。
它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。
乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。
折叠化学反应对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。
因为铝在空气中表面会形成氧化铝保护层,所以铝制容器能用来运输乙酸。
金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。
除了醋酸铬(II),几乎所有的醋酸盐能溶于水。
Mg(s)+ 2 CH3COOH(aq)→ (CH3COO)2Mg(aq) + H2(g)NaHCO3(s)+ CH3COOH(aq) →CH3COONa(aq) + CO2(g) +H2O(l)乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。
同样,乙酸也可以成酯或氨基化合物。
如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。
CH3COOH + CH3CH2OH<==> CH3COOCH2CH3 + H2O440℃的高温下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。
乙酸的典型化学反应:乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O乙酸与碳酸钙:2CH3COOH+CaCO3→(CH3COO)2Ca+CO2↑+H2O乙酸与碳酸氢钠:NaHCO3+CH3COOH→CH3COONa+H2O+CO2↑乙酸与碱反应:CH3COOH+-OH-=CH3COO- +H2O乙酸与弱酸盐反应:2CH3COOH+CO32-=2CH3COO- +H2O+CO2↑乙酸与活泼金属单质反应:Fe+2CH3COOH→(CH3COO)2Fe+H2↑乙酸与氧化锌反应:2CH3COOH+ZnO→(CH3COO)2Zn+H2O乙酸与醇反应:CH3COOH+C2H5OH→CH3COOC2H5+H2O(条件是加热,浓硫酸催化,可逆反应)乙酸与锌反应:2CH3COOH +Zn →(CH3COO)2Zn +H2↑乙酸与钠反应:2CH3COOH+2Na→2CH3COONa+H2↑毒理学数据1.急性毒性[17]LD50:3530mg/kg(大鼠经口);1060mg/kg(兔经皮)LC50:13791mg/m3(小鼠吸入,1h)2.刺激性[18]家兔经皮,50mg(24h),轻度刺激。