牛场辣椒的全基因组SNP标记分析

合集下载

辣椒全基因组WRKY 转录因子的分析

辣椒全基因组WRKY 转录因子的分析

园艺学报,2015,42 (11):2183–2196.Acta Horticulturae Sinicadoi:10.16420/j.issn.0513-353x.2015-0436;http://www. ahs. ac. cn 2183辣椒全基因组WRKY转录因子的分析刁卫平,王述彬*,刘金兵,潘宝贵,郭广君,戈伟(江苏省农业科学院蔬菜研究所,江苏省高效园艺作物遗传改良重点实验室,南京 210014)摘 要:基于已公布的辣椒全基因组数据,利用生物信息学方法对辣椒WRKY转录因子家族进行全面鉴定和系统命名,并在此基础上对基因分类、染色体定位、系统进化关系和结构域序列保守性进行了研究。

结果表明:辣椒CaWRKY家族包含71个基因,根据WRKY结构域的数量及锌指结构的特征可将其分为GroupⅠ、GroupⅡ和GroupⅢ等3大类,GroupⅡ又可分为Ⅱ(a)、Ⅱ(b)、Ⅱ(c)、Ⅱ(d)和Ⅱ(e)等5个亚类。

辣椒12条染色体上均有WRKY转录因子分布,其中第1号染色体上分布最多,共有10个,第4号染色体上分布最少,仅有2个。

辣椒每类/亚类WRKY几乎含有相同的保守基序。

辣椒WRKY编码的蛋白在132 ~ 869个氨基酸范围内,平均氨基酸数量为373个。

关键词:辣椒;WRKY;转录因子;生物信息学中图分类号:S 641.3 文献标志码:A 文章编号:0513-353X(2015)11-2183-14 Genome-wide Analysis of the WRKY Transcription Factor Family in PepperDIAO Wei-ping,WANG Shu-bin*,LIU Jin-bing,PAN Bao-gui,GUO Guang-jun,and GE Wei (Institute of Vegetable Crops,Jiangsu Academy of Agricultural Sciences,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement,Nanjing 210014,China)Abstract:In the present study,based on the recently released pepper whole-genome sequences,CaWRKY gene family identification,gene classification,chromosome location,sequence alignment and conserved structure domains of CaWRKY proteins were predicted and analyzed with bioinformatics methods. The results showed that 71 CaWRKY genes were identified which were classified into three main groups(Ⅰ,Ⅱand Ⅲ),with the second group further divided five subgroups[Ⅱ(a),Ⅱ(b),Ⅱ(c),Ⅱ(d)and Ⅱ(e)]. A total of 70 CaWRKY genes were mapped to 12 chromosomes,whereas only CaWRKY70 was not mapped to any particular chromosome. Genome mapping analysis revealed that pepper WRKY genes were enriched on several chromosomes(1,2,3 and 7),especially on chromosome 1 which encompasses the largest number of 10 CaWRKY genes,while chromosome 4 only contained 2 CaWRKY genes. The pepper WRKYs from each group or subgroup were shown to share similar motif compositions,and CaWRKY proteins contained 132–869 amino acids and 373 in average. Our results will provide a platform for functional identification and molecular breeding tudy of WRKY genes in pepper.Key words:pepper;WRKY;transcription factor;bioinformatic收稿日期:2015–08–03;修回日期:2015–11–09基金项目:国家高技术研究发展计划(‘863’计划)项目(2012AA100103);江苏省自然科学基金项目(2014 BK1380);国家现代农业产业技术体系建设专项资金项目(CARS-25);江苏省农业科技自主创新资金体系类项目[CX(12)1004]* 通信作者Author for correspondence(E-mail:wangsbpep@)Diao Wei-ping,Wang Shu-bin,Liu Jin-bing,Pan Bao-gui,Guo Guang-jun,Ge Wei.Genome-wide analysis of the WRKY transcription factor family in pepper. 2184Acta Horticulturae Sinica,2015,42 (11):2183–2196.转录因子(transcription factor)是指能够结合在基因上游特异核苷酸序列上的蛋白质,以特定的强度在特定的时间与空间调控基因的转录。

辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析

辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析

热带作物学报2021, 42(11): 3101 3110 Chinese Journal of Tropical Crops收稿日期 2020-12-15;修回日期 2021-04-09基金项目 福建省自然科学基金项目(No. 2017J01431);福建农林大学校级创新训练项目(No. 202010389154)。

作者简介 刘卓毅(1995—),男,硕士,研究方向:花卉与景观园艺。

*通信作者(Corresponding author ):吕美玲(LYU Meiling ),E-mail :**************.cn 。

辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析刘卓毅,于文菲,蔡文丽,刘子珊,张 雨,袁 媛,伍炳华,吕美玲*福建农林大学园艺学院花卉与景观园艺实验室,福建福州 350002摘 要:几丁质酶(chitinase, EC 3.2.1.14)是一种降解几丁质的糖苷酶,在植物应对非生物和生物胁迫中起重要作用。

本研究对辣椒几丁质酶类(Capsicum annuum chitinase-like, CaCTL )基因家族成员进行了全基因组注释、进化分析和基因表达模式分析。

从最新的辣椒基因组数据库中鉴定出31个CaCTL 成员。

根据系统发育进化树将这些成员分为GH18和GH19亚家族,并进一步分为5个亚类(Ⅰ~Ⅴ类)。

保守基序分析结果表明,每个亚类中的成员存在功能相关性。

对辣椒、矮牵牛以及番茄的CTL 基因家族成员同源性分析表明,在矮牵牛和番茄中分别有7个和11个辣椒CaCTL 的同源基因。

通过qRT-PCR 分析发现,在正常环境生长的辣椒植株中,64.2%的GH18亚家族的CaCTL 成员表达水平很低,有64.7%的GH19亚家族成员在不同组织中存在差异表达。

顺式作用元件分析表明,CaCTL 成员启动子区域存在许多激素反应以及生物和非生物应激相关元件。

当植物遭受不同的非生物胁迫时,qRT-PCR 结果显示,多数CaCTL 成员表达上调。

基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因

基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因

畜牧兽医学报 2023,54(7):2848-2857A c t a V e t e r i n a r i a e t Z o o t e c h n i c a S i n i c ad o i :10.11843/j.i s s n .0366-6964.2023.07.017开放科学(资源服务)标识码(O S I D ):基于S N P 芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因王振宇1,张赛博1,刘文慧1,梁 栋1,任小丽2,闫 磊2,闫跃飞2,高腾云1,张 震2,3*,黄河天1*(1.河南农业大学动物科技学院,郑州450046;2.河南省奶牛生产性能测定中心,郑州450045;3.河南省种业发展中心,郑州450046)摘 要:旨在利用基因组长纯合片段(r u n s o f h o m o z y g o s i t y,R OH )信息评估河南省不同中国荷斯坦牛群体的全基因组近交水平,并通过R OH 检测鉴定基因组R OH 富集区域,筛选与奶牛经济性状相关的候选基因㊂本研究基于G G P B o v i n e 150K 芯片对来自河南省7个牧场900头荷斯坦牛进行全基因组R OH 检测,统计R OH 在荷斯坦群体中的数目㊁长度及频率,根据R OH 计算基因组近交系数(F R O H ),并对高频R OH 区域进行基因注释㊂结果表明,在全部900个体中共检测出55908个R OH 片段,平均长度4.23M b ㊂7个牧场平均近交系数(F R O H )的变化范围从0.082(H 7)到0.123(H 2),平均F R O H 为0.106㊂在R OH 的高频区域内共鉴定到79个与奶牛经济性状相关的基因,如与牛体型㊁体高有关的基因A K A P 3㊁C 5H 12o r f 4㊁F G F 6,与胴体及繁殖性状相关的基因C A P N 3,与妊娠维持和胎儿生长直接相关的基因C H S T 14,影响牛奶蛋白质组成的基因I L 5R A ,参与调节胎儿卵泡生成的基因F G F 10㊂其中,在14号染色体上检测到一个高频率的R OH 区域(22.78~23.38M b ),超过80%的个体都在该区域内发生R OH 片段,并在此区域鉴定到与生长和饲料转化率相关的基因T G S 1㊁L Y N ㊁C H C HD 7㊂基于R OH 信息的奶牛近交评估可为奶牛场的选种选配提供指导,在高频R OH 区域鉴定到的候选基因可作为奶牛分子育种中进行标记辅助选择的基因㊂关键词:长纯合片段(R OH );基因组近交系数;候选基因;中国荷斯坦牛中图分类号:S 823.91 文献标志码:A 文章编号:0366-6964(2023)07-2848-10收稿日期:2022-11-22基金项目:国家现代农业产业技术体系(C A R S 36);河南省现代农业(奶牛)产业技术体系建设专项资金(H A R S -22-14-S );河南省重点研发专项(221111111100);河南省科技攻关项目(222102110342;222102110254)作者简介:王振宇(1996-),男,河南永城人,硕士生,主要从事动物遗传育种研究,E -m a i l :w z yh a n 2017@163.c o m *通信作者:黄河天,主要从事动物遗传育种研究,E -m a i l :h u a n gh t @h e n a u .e d u .c n ;张 震,主要从事动物遗传育种与繁育研究,E -m a i l :z z gx u @163.c o m G e n o m i c I n b r e e d i n g C o e f f i c i e n t A n a l y s i s a n d F u n c t i o n a l G e n e S c r e e n i n gi n D i f f e r e n t D a i r y F a r m s B a s e d o n S N P C h i p Da t a WA N G Z h e n y u 1,Z H A N G S a i b o 1,L I U W e n h u i 1,L I A N G D o n g 1,R E N X i a o l i 2,Y A N L e i 2,Y A N Y u e f e i 2,G A O T e n g yu n 1,Z H A N G Z h e n 2,3*,HU A N G H e t i a n 1*(1.C o l l e g e o f A n i m a l S c i e n c e a n d T e c h n o l o g y ,H e n a n A g r i c u l t u r a l U n i v e r s i t y ,Z h e n g z h o u 450046,C h i n a ;2.H e n a n D a i r y H e r d I m p r o v e m e n t C e n t e r ,Z h e n gz h o u 450045,C h i n a ;3.H e n a n S e e d I n d u s t r y D e v e l o p m e n t C e n t e r ,Z h e n gz h o u 450046,C h i n a )A b s t r a c t :T h i s s t u d y a i m e d t o e s t i m a t e w h o l e -g e n o m e i n b r e e d i n gl e v e l s o f C h i n e s e H o l s t e i n c a t t l e f r o m d i f f e r e n t h e r d s i n H e n a n p r o v i n c e b y u s i n g t h e r u n s o f h o m o z y g o s i t y (R O H ),a n d i d e n t i f yR O H e n r i c h e d r e gi o n s a n d s c r e e n c a n d i d a t e g e n e s a s s o c i a t e d w i t h t h e t r a i t s o f e c o n o m i c i n t e r e s t .7期王振宇等:基于S N P芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因A t o t a l o f900C h i n e s e H o l s t e i n c a t t l e f o r m7d a i r y h e r d s i n H e n a n p r o v i n c e w e r e u s e d t o d e t e c t g e n o m e-w i d e R OH b y t h e G G PB o v i n e150K B e a d c h i p.T h e n u m b e r,l e n g t h a n d f r e q u e n c y o f R O H i n H o l s t e i n p o p u l a t i o n w a s c o u n t e d.T h e g e n o m e i n b r e e d i n g c o e f f i c i e n t(F R O H)w a s c a l c u-l a t e d a c c o r d i n g t o R O H,a n d t h e h i g h f r e q u e n c y R O H r e g i o n s w e r e a n n o t a t e d.R O H w a s i d e n t i-f i e d i n a l l a n i m a l s,55908R O H w e r e i d e n t i f i e d,w i t h a m e a n l e n g t h o f4.23M b.T h e e s t i m a t e d i n b r e e d i n g c o e f f i c i e n t s o f R O H i n7h e r d s r a n g e d f r o m0.082(H7)t o0.123(H2),w i t h a n a v e r-a g e F R O H o f0.106i n a l l a n i m a l s.M o r e o v e r,79g e n e s r e l a t e d t o t h e e c o n o m i c t r a i t s o f d a i r y c o w s i n t h e g e n o m i c r e g i o n w i t h h i g h f r e q u e n c y R O H w e r e i d e n t i f i e d.A m o n g t h e s e g e n e s,A K A P3, C5H12o r f4,a n d F G F6w e r e r e l a t e d t o t h e b o d y s i z e a n d h e i g h t o f c a t t l e,C A P N3w a s a s s o c i a t e d w i t h c a r c a s s a n d r e p r o d u c t i v e t r a i t s,C H S T14w a s d i r e c t l y r e l a t e d t o p r e g n a n c y m a i n t e n a n c e a n d f e t a l g r o w t h,t h e t r a i t s o f m i l k p r o t e i n c o m p o s i t i o n w e r e a f f e c t e d b y I L5R A,a n d F G F10w a s i n-v o l v e d i n r e g u l a t i n g f e t a l f o l l i c u l o g e n e s i s.N o t a b l y,a h i g h-f r e q u e n c y R O H r e g i o n w a s d e t e c t e d o n c h r o m o s o m e14(22.78-23.38M b),w h e r e m o r e t h a n80%o f i n d i v i d u a l s c a r r i e d R O H f r a g-m e n t s.T h e g e n e s T G S1,L Y N a n d C H C HD7r e l a t e d t o g r o w t h a n d f e e d c o n v e r s i o n w e r e i d e n t i-f i e d i n t h i s r e g i o n.E v a l u a t i o n o f d a i r y c a t t l e i n b r e e d i n g b a s e d o n R O H i n f o r m a t i o n c o u l d b e a u s e f u l t o o l f o r s e l e c t i o n a n d m a t i n g s t r a t e g i e s.T h e c a n d i d a t e g e n e s i d e n t i f i e d c o u l d b e u s e d f o r m a r k e r-a s s i s t e d s e l e c t i o n i n d a i r y c a t t l e b r e e d i n g.K e y w o r d s:r u n s o f h o m o z y g o s i t y(R O H);g e n o m i c i n b r e e d i n g c o e f f i c i e n t;c a n d i d a t e g e n e;C h i-n e s e H o l s t e i n c a t t l e*C o r r e s p o n d i n g a u t h o r s:HU A N G H e t i a n,E-m a i l:h u a n g h t@h e n a u.e d u.c n;Z H A N G Z h e n,E-m a i l:z z g x u@163.c o m基因组长纯合片段(r u n s o f h o m o z y g o s i t y, R OH)一般存在于二倍体生物中,它是亲代将单倍型基因中同源相同(i d e n t i t y b y d e s c e n t,I B D)的片段遗传给子代,并且在子代的基因组中形成连续性的纯合片段[1],即子代从亲代继承了同源的染色体片段,从而导致后代基因组中的纯合片段产生并上升到R O H[2]㊂连锁不平衡㊁种群瓶颈㊁遗传漂变㊁近亲交配和选择都可能是引起R O H产生的因素[1,3-4]㊂不同的群体历史会产生不同长短的R OH,长片段R O H通常由群体近几个世代近交产生,短片段R O H通常来自更远的祖先[5-7]㊂因此,通过全基因组R OH特征的检测,可以了解种群历史㊁结构㊁近交情况㊂R O H最早在人类染色体基因组发现,并被认为可能对人类健康有重要影响㊂随着R O H在人类群体遗传学中研究的深入[8-10],不同畜禽的R O H 分析研究也逐渐开展[11-13]㊂基于R O H估计基因组近交系数已成为利用全基因组信息评估近交的常用方法,即利用R O H计算基因组近交系数F R O H(i n-b r e e d i n g c a l c u l a t e d f r o m R O H),它可以准确计算个体近交系数㊂现已有多项研究证明了基于系谱信息计算的近交系数要低于真实的近交系数㊂杨湛澄等[14]利用牛54K S N P芯片数据对北京地区2107头荷斯坦牛基因组R O H分布进行了统计,并计算了基因组近交系数和系谱近交系数,发现基于R O H 计算的基因组近交系数能更准确地反映个体的真实近交情况㊂P e r i p o l l i等[15]利用770K S N P芯片数据比较了2908头吉尔牛(G y r)基于R O H(F R O H)㊁基因组关系矩阵(g e n o m i c r e l a t i o n s h i p m a t r i x, F G R M)㊁基因组纯合子百分比(h o m o z y g o s i t y, F H OM)㊁系谱信息(p e d i g r e e,F P E D)4种方法计算的近交系数,结果表明在没有系谱记录的情况下, F R O H可用作近交估计的替代方法㊂此外,通过识别群体的高频R O H片段,鉴定到了与产奶量㊁乳成分㊁热适应相关的基因㊂N a n i和P eña g a r i c a n o[16]研究发现,基因组R O H与荷斯坦公牛繁殖性状显著相关,公牛群体中高度纯合的基因组区域与公牛繁殖性状呈现负相关,并在低繁殖力公牛R O H富集区域鉴定到与精子生物学和雄性生育能力密切相关的基因㊂L i u等[17]利用简化基因组测序的方法,通过R O H与综合单倍型评分(i n t e g r a t e d h a p l o t y p e s c o r e,i H S)分析,检测到与上海荷斯坦奶牛群体健9482畜牧兽医学报54卷康㊁繁殖㊁环境适应等有关的候选基因㊂通过对全基因组R O H进行检测,可以更准确地掌握群体的近交程度,帮助研究者在育种实践中制定科学合理的选种选配方案㊂鉴定全基因组的R O H也可以更好的了解R O H在染色体上的分布规律,进而挖掘可能影响畜禽重要性状的候选基因[18-20]㊂在我国,北京[14]㊁上海[17]㊁宁夏[21]基于荷斯坦牛群体基因组R OH估算群体近交系数㊁检测与经济性状相关候选基因及选育过程中的选择信号等的研究,为中国荷斯坦奶牛育种提供了重要数据参考㊂然而,通过基因组R O H信息估计不同牧场荷斯坦奶牛群体近交水平和检测群体选择特征的研究仍然较少㊂本研究旨在利用奶牛150K S N P芯片数据对河南省7个奶牛场荷斯坦牛进行全基因组R O H检测,计算R O H的长度㊁频率㊁数目和分布以及基因组近交系数F R O H,比较不同牧场荷斯坦牛基因组近交程度,并在高频R O H区域注释与荷斯坦牛经济性状相关的候选基因㊂以期为详细了解河南省荷斯坦牛群体基因组R O H分布特征及基因组近交程度,为牧场今后选种选配提供参考㊂也可通过R OH富集区域鉴定一些与奶牛经济性状相关的基因,为奶牛标记辅助选择提供候选基因信息,为奶牛场科学选种选配提供指导㊂1材料与方法1.1试验动物根据系谱㊁生产数据记录的完整性,筛选出7个存栏量在150~5000头的规模化牧场,按存栏量10%的比例抽取牧场核心群个体进行血液样本采集,最终共采集了900头荷斯坦牛㊂具体样本分布情况详见表1㊂1.2S N P芯片分型及数据质量控制采集尾椎静脉血,提取D N A,利用G G P B o v i n e 150K芯片进行基因分型㊂用P L I N K(v1.90)[22]对原始数据进行质控,设定条件:1)S N P检出率大于95%;2)个体检出率大于99%;3)最小等位基因频率大于0.01;4)哈迪-温伯格平衡P值大于10-6;5)保留常染色体数据㊂1.3群体结构及连锁不平衡分析基于S N P信息,使用G C T A(v1.93)软件[23]对900头荷斯坦牛群体进行主成分分析(p r i n c i p a l c o m p o n e n t a n a l y s i s,P C A)㊂采用P o p L D d e c a y (v3.42)软件[24]计算每个牧场的连锁不平衡(l i n k-a g e d i s e q u i l i b r i u m,L D)程度,并使用软件自带的P l o t_M u l t i P o p.p l脚本绘制L D衰减曲线图㊂1.4R O H检测及基因组近交系数的计算R O H检测使用P L I N K软件[22],使用滑动窗口的方法对常染色体进行检测,具体检测参数如下: 1)滑动窗口阈值使用0.05;2)滑动窗口设置50个S N P s位点;3)每一个滑动窗口中允许丢失的基因型为5个;4)每一个滑动窗口中允许的杂合子数目为1个;5)组成R O H的S N P的最大间隔为1M b;6)组成R O H的S N P的最低密度为每50k b1个S N P;7)R O H片段的最小长度设为500k b;8)每个R O H至少由50个S N P s组成㊂利用R OH计算近交系数(F R O H),公式如下:F R O H=ðL R O HL g e n o m e其中,ðL R O H为常染色体上R OH片段长度之和,L g e n o m e为常染色体基因组物理长度之和(2.49G b)㊂1.5高频R O H区域候选基因鉴定使用R语言统计每个S N P在奶牛群体中参与组成R O H的次数占样本数的比例,并将前1%的S N P s区域作为高频的R O H区域㊂基于高频R O H 区段的物理位置,并通过生物数据库E n s e m b l[25]中的B i o M a r t模块与牛参考基因组(B o s_t a u r u s.A R S-U C D1.2)进行比对,检索基因,然后依据N CB I (h t t p s://w w w.n c b i.n l m.n i h.g o v/)㊁G e n eC a r d s (h t t p s://w w w.g e n e c a r d s.o r g/)网站及文献查询基因功能㊂运用K O B A S(h t t p://b i o i n f o.o r g/k o-b a s/)[26]在线数据库对注释到的基因进行K E G G 通路富集分析,当P<0.05时,则表示显著富集㊂2结果2.1S N P质控结果及群体遗传结构和连锁不平衡分析在质控后每个个体保留了96789个S N P s位点,相邻S N P s之间的平均距离为25.72k b,以供后续分析㊂图1A显示了7个牧场荷斯坦牛群体的P C A分析结果㊂从图1可以看出,7个牛场主要分为了5个亚群㊂采用P o p L D d e c a y分别计算各牧场群体的成对r2值,用于比较不同荷斯坦牛群体的L D 水平(图1B)㊂L D分析显示,7个牧场奶牛群体L D 衰减的顺序为:H7>H4&H5>H2&H3&H6>H1㊂05827期王振宇等:基于S N P芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因A.主成分分析图;B .L D 衰减图㊂H 1~H 7代表牧场编号A.P r i n c i p a l c o m p o n e n t a n a l y s i s o f H o l s t e i n c a t t l e p o p u l a t i o n ;B .L D d e c a y o f H o l s t e i n c a t t l e p o p u l a t i o n .H 1-H 7r e pr e s e n t s pa s t u r e n u mb e r 图1 群体遗传结构及连锁不平衡F i g .1 P o p u l a t i o n g e n e t ic s t r u c t u r e a nd l i n k a ge d i s e qu i l i b r i u m 2.2 R O H 数目㊁长度及分布的统计由表1可以看出,在7个牧场荷斯坦牛群体中共检测出55908个R O H ,R O H 的平均长度为4.23M b ,范围在1.90~14.07M b ㊂其中H 6号牛场R O H 平均长度最小,为3.27M b ;H 2号牛场R OH 平均长度最大为4.49M b ㊂在0~5M b 长度上,R O H 总体比例占76.21%,其中H 1㊁H 6牧场R OH 比例较大(83.70%㊁84.30%),其余牧场R O H 比例范围为73.33%~76.52%;在5~10M b长度上,R O H 总体比例占15.14%,其中H 1㊁H 6牧场R O H 比例较小(10.26%㊁10.67%),其余牧场R O H 比例范围为14.89%~17.06%;在>10M b长度上,R O H 总体比例占8.64%,其中H 1㊁H 6牧场R O H 比例较小(6.03%,5.04%),其余牧场R O H 比例范围为7.61%~9.61%㊂图2展示了常染色体上不同长度R O H 的数目㊂表1 不同奶牛场荷斯坦牛R O H 长度和数量T a b l e 1 T h e m e a n l e n g t h a n d n u m b e r o f r u n s o f h o m o z y g o s i t y (R O H )i n H o l s t e i n o f d i f f e r e n t d a i r y f a r m s 牛场编号F a r m n u m b e r 牛群数量N u m b e ro f c a t t l e 成母牛数量N u m b e ro f c o w s样本数S a m pl e s i z e 总R OH 数量T o t a l n u m b e ro f R OHR OH 平均长度/M bT h e m e a n l e n gt h o f R OH 均值M e a n标准差S D最小值M i n最大值M a xH 1152721411163.470.442.754.26H 23631983624634.490.523.575.71H 3185991912234.380.653.525.91H 451522600530325494.361.262.1014.07H 513106*********4.400.872.676.50H 610055019371663.270.622.185.41H 711265109747404.211.061.908.52平均A v e r a ge 132866212979874.080.782.677.20合计T o t a l92934632900559084.231.161.9014.072.3 基因组近交系数评估不同牧场荷斯坦牛群体基于R O H 的近交系数及变化范围见表2㊂全群中基于R O H 的基因组F R O H 范围为0.021~0.447,近交系数平均值为0.106,标准差为0.040㊂其中H 2号牧场平均F R O H最高(0.123),H 7号牧场平均F R O H 最低(0.082),其他牧场分别为0.112㊁0.114㊁0.109㊁0.108㊁0.103㊂在个体层面中,F R O H 最低的个体出现在H 71582畜 牧 兽 医 学 报54卷图2 染色体上不同长度R O H 的数目F i g .2 N u m b e r o f R O H w i t h d i f f e r e n t l e n gt h o n c h r o m o s o m e 号牛场中(0.021),F R O H 最高的个体出现在H 4号牛场中(0.447)㊂2.4 高频R O H 区域及候选基因鉴定与注释㊁富集图3展示了在1~29号染色体上组成R O H 的S N P s 占群体的百分率㊂通过选择组成R O H 中前1%S N P s ,以确定统计阈值,本研究选取频率大于29.78%作为高频率的R O H 区域阈值㊂共检测到8个高频区域,并通过E n s e m b l 数据库对R O H 中的高频区域进行基因注释,共注释到79个基因,见表3㊂其中,14号染色体上22.78~23.38M b 位置的区域,80%的个体都在该区域内发生R O H 片段,并注释到3个基因㊂利用K O B A S 对注释到的基因进行K E G G 通路富集分析,结果见表4㊂分析得出表2 基于R O H 的不同奶牛场的近交系数(F R O H )T a b l e 2 I n b r e e d i n g c o e f f i c i e n t (F R O H )o f d i f f e r e n t d a i r yf a r m s b a s e d o n R O H 牛场编号F a r m n u m b e r 样本数S a m pl e s i z e 近交系数(F R O H )I n b r e e d i n g co e f f i c i e n t 均值M e a n标准差S D最小值M i n最大值M a xH 1140.1120.0260.0620.156H 2360.1230.0190.0840.163H 3190.1140.0680.0680.173H 45300.1090.0430.0290.447H 51110.1080.0360.0280.213H 6930.1030.0310.0410.196H 7970.0820.0350.0210.226平均A v e r a ge 1290.1070.0370.0470.225合计T o t a l9000.1060.0400.0210.447图3 R O H s 中S N P s 百分比曼哈顿图F i g .3 M a n h a t t a n p l o t o f S N P s p e r c e n t a ge s i n R O H s 25827期王振宇等:基于S N P 芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因79个基因显著富集于酮体的合成与降解(s yn t h e s i s a n d d e gr a d a t i o n o f k e t o n e b o d i e s )㊁缬氨酸㊁亮氨酸和异亮氨酸降解(v a l i n e ,l e u c i n e a n d i s o l e u c i n ed e gr a d a t i o n )㊁丁酸代谢(b u t a n o a t e m e t a b o l i s m )㊁R a s 信号通路(r a s s i g n a l i n g p a t h w a y)等11个信号通路㊂表3 荷斯坦牛高频R O H 区域及候选基因T a b l e 3 H i g h -f r e q u e n c y R O H r e gi o n s a n d c a n d i d a t e g e n e s i n H o l s t e i n c a t t l e 染色体C h r o m o s o m e物理位置/M b P h ys i c a l d i s t a n c e S N P s 数目N u m b e r o f S N P s 基因G e n e5105.514~105.77639A K A P 3㊁C 5H 12o r f 4㊁F G F 23㊁F G F 61035.989~38.53083B A H D 1㊁C 10H 15o r f 62㊁C A P N 3㊁C C ND B P 1㊁C H A C 1㊁C H P 1㊁C H S T 14㊁D L L 4㊁G A N C ㊁G C H F R ㊁H A U S 2㊁I T P K A ㊁I V D ㊁J M J D 7㊁K N L 1㊁K N S T R N ㊁M A P K B P 1㊁M G A ㊁P L A 2G 4B ㊁R A D 51㊁R P U S D 2㊁R T F 1㊁S N A P 23㊁S P I N T 1㊁T M E M 62㊁T Y R O 3㊁Z F Y V E 19㊁V P S 181421.726~25.698323R G S 20㊁M R P L 15㊁S O X 17㊁R P 1㊁X K R 4㊁T G S 1㊁L Y N ㊁C H C HD 7㊁F AM 110B ㊁U B XN 2B ㊁S D C B P1710.153~10.55516P R M T 9205.444~6.070134C P E B 4㊁C 20H 5o r f 47㊁N S G 224.070~33.323299E S M 1㊁C S P G 4B ㊁A R L 15㊁M O C S 2㊁E M B ㊁H C N 1㊁F G F 10㊁P A I P 1㊁C 20H 5o r f 34㊁C C L 28㊁T M E M 267㊁HM G C S 1㊁S E L E N O P ㊁O X C T 1㊁P L C X D 3㊁C 62222.914~23.31715C R B N ㊁I L 5R A2937.108~39.90862M S 4A 15㊁M S 4A 10㊁C C D C 86㊁T M E M 109㊁T M E M 132A ㊁C D 6㊁C D 5㊁P A G 10㊁P A G 12㊁P A G 8㊁P G A 5㊁T K F C ㊁T M E M 138㊁T M E M 216表4 高频R O H 区域基因的K E G G 通路富集分析(P <0.05)T a b l e 4 K E G G p a t h w a y e n r i c h m e n t a n a l y s i s o f g e n e s i n h i g h -f r e q u e n c y R O H r e gi o n s (P <0.05)通路P a t h w a y注释D e s c r i pt i o n 基因数NP 值P v a l u e基因G e n eb t a 04974:P r o t e i n d i g e s t i o n a n d a b s o r pt i o n 蛋白质消化吸收42.99ˑ10-4P A G 8㊁P A G 12㊁P A G 10㊁P G A 5b t a 00280:V a l i n e ,l e u c i n e a n di s o l e u c i n e d e gr a d a t i o n 缬氨酸㊁亮氨酸和异亮氨酸降解34.36ˑ10-4I V D ㊁HM G C S 1㊁O X C T 1b t a 00072:S y n t h e s i s a n d d e gr a d a t i o n o f k e t o n e b o d i e s酮体的合成与降解25.60ˑ10-4HM G C S 1㊁O X C T 1b t a 05224:B r e a s t c a n c e r乳腺癌48.42ˑ10-4F G F 6㊁F G F 10㊁D L L 4㊁F G F 23b t a 05218:M e l a n o m a黑色素瘤31.18ˑ10-3F G F 6㊁F G F 10㊁F G F 23b t a 00650:B u t a n o a t e m e t a b o l i s m 丁酸代谢23.03ˑ10-3HM G C S 1㊁O X C T 1b t a 05200:P a t h w a ys i n c a n c e r 癌症的通路63.73ˑ10-3I L 5R A ㊁D L L 4㊁R A D 51㊁F G F 6㊁F G F 10㊁F G F 23b t a 04014:R a s s i g n a l i n g p a t h w a y R a s 信号通路44.61ˑ10-3P L A 2G 4B ㊁F G F 10㊁F G F 23㊁F G F 6b t a 04611:P l a t e l e t ac t i v a t i o n血小板活化34.76ˑ10-3P L A 2G 4B ㊁L Y N ㊁S N A P 23b t a 04010:MA P K s i g n a l i n g p a t h w a y MA P K 信号通路48.76ˑ10-3P L A 2G 4B ㊁F G F 10㊁F G F 23㊁F G F 6b t a 05226:G a s t r ic c a n c e r胃癌38.95ˑ10-3F G F 6㊁F G F 10㊁F G F 233 讨 论3.1 荷斯坦牛群体基因组R O H 基本统计分析不同育种目标及选择强度会引起不同荷斯坦牛群体中R O H 数目㊁长度及分布情况的差异[5-6,27]㊂K i m 等[7]通过比较3个北美荷斯坦牛群体在产奶性状不同选择强度下基因组R O H 的变化,揭示了总体R O H 频率和分布方面的显著差异,结果显示3582畜牧兽医学报54卷群体内R OH平均长度约为6M b,小于5M b的R OH片段数目占总片段数目的53%㊂而与K i m 等[7]的研究结果相比,本研究中荷斯坦牛群体R OH平均长度为4.23M b,小于5M b的R O H片段的数目占总片段数目的76.21%㊂另外对比不同牧场群体,小于5M b的R O H片段数目所占比例也有差异㊂在基因组R O H长度上,M a r r a s等[28]利用50K S N P芯片对5个意大利公牛品种进行R O H分析,结果表明相较于其他品种,乳用品种荷斯坦牛和意大利布朗牛的平均R O H长度更大(3.6㊁3.9M b),其中荷斯坦牛群体的R OH平均长度与本研究的结果相近㊂在牧场群体方面,H1和H6号牧场群体在小于5M b的R O H片段数目占总片段数目最高(83.70%㊁84.30%),而大于10M b的R O H片段数目占总片段数目比例最低(6.03%㊁5.04%)㊂研究显示,较近世代的共同祖先会造成长R O H片段的形成,短的R OH来源于关系较远的共同祖先[7,29]㊂此外,各个牧场奶牛群体R O H平均长度㊁变化范围也有差异,这与不同牧场奶牛群体来源以及选配过程中使用不同国别的冷冻精液有关㊂因此,本研究基于对不同牧场群体基因组R O H的数目㊁长度及分布的研究,评估群体近交情况,为牧场今后的选种选配提供参考㊂3.2基于R O H的基因组近交系数目前,R OH常用来计算个体近交系数,且具有较高的准确性[15,30-33]㊂本研究中,河南荷斯坦牛群体总平均F R O H(0.106)与宁夏[21](0.101)㊁北京[14] (0.007~0.312)荷斯坦牛群体F R O H相近,与上海[17]荷斯坦牛群体(0.363)相差较大㊂上海与北京作为我国的南㊁北奶牛养殖业的代表地区,由于选育目标㊁强度㊁气候等因素的影响,群体近交程度出现差异,河南地理位置上属于中原地区,在奶牛育种策略和群体近交情况上与北方更相近㊂近交水平在一定程度上也可以反映牧场选种选配管理状况㊂在牧场选配管理上,由表2可以看到,H1㊁H2㊁H3号牧场平均F R O H较高(0.112㊁0.123㊁0.114),H7号牧场平均F R O H较低(0.082),不同牧场之间的差异侧面反映出这些牧场在选配过程中对群体近交问题的管理程度;在牧场规模上,H1㊁H2㊁H3号牧场规模较小,群体数量较少,平均F R O H较高(0.112㊁0.123㊁0.114),H4号牧场规模较大,群体数量多,平均F R O H较低(0.109)㊂此外,在H4号牧场中有些个体的F R O H明显较高(>0.285),最大F R O H达到0.458,反映出该牧场在个体选种选配过程中未充分考虑近交问题㊂因此,通过对近交系数的计算可以了解不同牧场群体近交状况,从而在实际选种选配工作中能更有效的避免近交,减少经济损失㊂3.3基因组高频R O H区域的候选基因分析本研究在高频R O H区域中共鉴定到了79个基因,其中包含与奶牛经济性状有关的基因,如A K A P3㊁C5H12o r f4㊁C A P N3㊁A R L15㊁X K R4㊁C R B N㊁I L5R A等㊂5号染色体上A K A P3㊁C5H12o r f4㊁F G F6基因与体型㊁体高有关[34-36]㊂10号染色体上C A P N3基因与胴体㊁繁殖性状相关[37-38]㊂C H S T14基因与妊娠维持和胎儿生长直接相关[39]㊂22号染色体上I L5R A基因影响牛奶蛋白质组成[40]㊂此外还有一些基因与繁殖㊁生长等性状有关,如F G F10基因参与调节胎儿卵泡生成[41]㊂值得注意的是,14号染色体上22.78~ 23.38M b区域是R O H频率最高的区域,80%的个体都在该区域内发生R O H片段(图3)㊂发现该区域与宁夏[21]荷斯坦牛群体高频区域(21.61~ 24.99M b)高度重合,这可能与不同地区育种目标及选择强度有关,并随着选育的推进,在基因组中出现相近的长纯合区域㊂这个高频区域注释到T G S1㊁L Y N㊁C H C HD7基因,这些基因与生长㊁胴体相关性状[42-43]和饲料效率有关[35,44-45]㊂因此,本研究在R O H富集区域鉴定的基因可以为荷斯坦奶牛分子育种提供候选基因信息㊂4结论本研究对河南省荷斯坦牛群体进行全基因组R O H检测与分析,发现R OH在不同牧场群体中的数目㊁长度及频率存在差异,基于R OH计算的近交系数范围在0.082~0.123,反映出不同牧场近交水平存在差异,这有助于了解河南省荷斯坦牛群体近交程度,为牧场选育过程中避免近交提供指导㊂在全基因组范围内检测到8个高频R O H富集区域,共筛选出79个与奶牛经济性状相关的基因,如A K A P3㊁C5H12o r f4㊁C A P N3㊁A R L15㊁X K R4㊁C R B N㊁I L5R A等,可作为奶牛分子育种中进行标记辅助选择的候选基因㊂参考文献(R e f e r e n c e s):[1] C E B A L L O S F C,J O S H I P K,C L A R K D W,e t a l.R u n s o f h o m o z y g o s i t y:w i n d o w s i n t o p o p u l a t i o n45827期王振宇等:基于S N P芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因h i s t o r y a n d t r a i t a r c h i t e c t u r e[J].N a t R e v G e n e t,2018,19(4):220-234.[2] B R OMA N K W,W E B E R J L.L o n g h o m o z y g o u sc h r o m o s o m a l s e g m e n t s i n r e f e r e n c e f a m i l i e s f r o m t h eC e n t r e d E t u d e d u P o l y m o r p h i s m e H u m a i n[J].A m JH u m G e n e t,1999,65(6):1493-1500.[3] C U R I K I,F E R E N㊅C A K O V I C'M,SÖL K N E R J.I n b r e e d i n g a n d r u n s o f h o m o z y g o s i t y:a p o s s i b l es o l u t i o n t o a n o l d p r o b l e m[J].L i v e s t S c i,2014,166:26-34.[4] MU L I M H A,B R I T O L F,P I N T O L F B,e t a l.C h a r a c t e r i z a t i o n o f r u n s o f h o m o z y g o s i t y,h e t e r o z y g o s i t y-e n r i c h e d r e g i o n s,a n d p o p u l a t i o ns t r u c t u r e i n c a t t l e p o p u l a t i o n s s e l e c t e d f o r d i f f e r e n tb r e e d i n g g o a l s[J].B M C G e n o m ic s,2022,23(1):209.[5] Z HA N G Q Q,G U L D B R A N D T S E N B,B O S S E M,e ta l.R u n s o f h o m o z y g o s i t y a n d d i s t r ib u t i o n o ff u n c t i o n a l v a r i a n t s i n t h e c a t t l eg e n o m e[J].B M CG e n o m i c s,2015,16(1):542.[6] P U R F I E L D D C,B E R R Y D P,M C P A R L A N D S,e ta l.R u n s o f h o m o z y g o s i t y a n d p o p u l a t i o n h i s t o r y i nc a t t l e[J].B M C G e n e t,2012,13:70.[7] K I M E S,C O L E J B,HU S O N H,e t a l.E f f e c t o fa r t i f i c i a l s e l e c t i o n o n r u n s o f h o m o z y g o s i t y i n U.S.H o l s t e i n c a t t l e[J].P L o S O n e,2013,8(11):e80813.[8] L E N C Z T,L AM B E R T C,D E R O S S E P,e t a l.R u n s o fh o m o z y g o s i t y r e v e a l h i g h l y p e n e t r a n t r e c e s s i v e l o c i i ns c h i z o p h r e n i a[J].P r o c N a t l A c a d S c i U S A,2007,104(50):19942-19947.[9] C O R R E I A-C O S T A G R,S G A R D I O L I I C,S A N T O SA P D,e t a l.I n c r e a s e d r u n s o f h o m o z y g o s i t y i n t h ea u t o s o m a l g e n o m e o f B r a z i l i a n i n d i v i d u a l s w i t hn e u r o d e v e l o p m e n t a l d e l a y/i n t e l l e c t u a l d i s a b i l i t y a n d/o r m u l t i p l e c o n g e n i t a l a n o m a l i e s i n v e s t i g a t e d b yc h r o m o s o m a l m i c r o a r r a y a n a l y s i s[J].G e n e t M o lB i o l,2022,45(1):e20200480.[10] D A C R U Z P R S,A N A N I N A G,S E C O L I N R,e t a l.D e m o g r a p h i c h i s t o r y d i f f e r e n c e s b e t w e e n H i s p a n i c sa n d B r a z i l i a n s i m p r i n t h a p l o t y p e f e a t u r e s[J].G3(B e t h e s d a),2022,12(7):j k a c111.[11]刘家鑫,魏霞,邓天宇,等.绵羊全基因组R OH检测及候选基因鉴定[J].畜牧兽医学报,2019,50(8):1554-1566.L I U J X,W E I X,D E N G T Y,e t a l.G e n o m e-w i d e s c a nf o r r u n o f h o m o z yg o s i t y a n d i d e n t i f i c a t i o n o fc o r r e s p o nd i n g c a n d i d a te g e n e s i n s h e e p p o p u l a t i o n s[J].A c t a V e t e r i n a r i a e t Z o o t e c h n i c a S i n i c a,2019,50(8):1554-1566.(i n C h i n e s e)[12] G O R S S E N W,M E Y E R MA N S R,J A N S S E N S S,e ta l.A p ub l ic l y a v a i l a b l e r e p o s i t o r y o f R OH i s l a nd sr e v e a l s s i g n a t u r e s o f s e l e c t i o n i n d i f f e r e n t l i v e s t o c ka n d p e t s p e c i e s[J].G e n e t S e l E v o l,2021,53(1):2.[13]赵国耀.基于肉牛基因组纯合片段的性状关联与预测[D].北京;中国农业科学院,2021.Z HA O G Y.A s s o c i a t i o n a n d p r e d i c t i o n o f t r a i t s b a s e do n g e n o m i c h o m o z y g o u s s e g m e n t s i n b e e f c a t t l e[D].B e i j i n g:C h i n e s e A c a d e m y o f A g r i c u l t u r a l S c i e n c e s,2021.(i n C h i n e s e)[14]杨湛澄,黄河天,闫青霞,等.利用高密度S N P标记分析中国荷斯坦牛基因组近交[J].遗传,2017,39(1):41-47.Y A N G Z C,HU A N G H T,Y A N Q X,e t a l.E s t i m a t i o n o f g e n o m i c i n b r e e d i n g c o e f f i c i e n t s b a s e do n h i g h-d e n s i t y S N P m a r k e r s i n C h i n e s e H o l s t e i nc a t t l e[J].H e r ed i t a s,2017,39(1):41-47.(i n C h i ne s e)[15] P E R I P O L L I E,S T A F U Z Z A N B,MU N A R I D P,e ta l.A s s e s s m e n t o f r u n s o f h o m o z y g o s i t y i s l a n d s a n de s t i m a t e s ofg e n o m i c i n b r e e d i n g i n G y r(B o s i n d i c u s)d a i r y c a t t l e[J].B M C Ge n o m i c s,2018,19(1):34.[16] N A N I J P,P EÑA G A R I C A N O F.W h o l e-g e n o m eh o m o z y g o s i t y m a p p i n g r e v e a l s c a n d i d a t e r e g i o n sa f f e c t i n gb u l l f e r t i l i t y i n U S H o l s t e i nc a t t l e[J].B M CG e n o m i c s,2020,21(1):338.[17] L I U D Y,C H E N Z L,Z HA O W,e t a l.G e n o m e-w i d es e l e c t i o n s i g n a t u r e s d e t e c t i o n i n S h a n g h a i H o l s t e i nc a t t l e p o p u l a t i o n ide n t if i e dg e n e s r e l a t e d t o a d a p t i o n,h e a l t h a n d r e p r o d u c t i o n t r a i t s[J].B M C G e n o m i c s,2021,22(1):747.[18] MA K A N J U O L A B O,MA L T E C C A C,M I G L I O R F,e t a l.I d e n t if i c a t i o n o f u n i q u e R OH r eg i o n s w i t hu n f a v o r a b l e e f f e c t s o n p r o d u c t i o n a n d f e r t i l i t y t r a i t s i nC a n a d i a n H o l s t e i n s[J].G e n e t S e l E v o l,2021,53(1):68.[19] L I U J X,S H I L Y,L I Y,e t a l.E s t i m a t e s o f g e n o m i ci n b r e e d i n g a n d i d e n t i f i c a t i o n o f c a n d i d a t e r e g i o n s t h a td i f fe r b e t w e e n C h i n e s e i n d i g e n o u s s h e e p b r e e d s[J].JA n i m S c iB i o t e c h n o l,2021,12(1):95.[20]史良玉,王立刚,张鹏飞,等.不同来源大白猪总产仔数近交衰退评估[J].畜牧兽医学报,2021,52(10):2772-2782.S H I L Y,WA N G L G,Z HA N G P F,e t a l.E v a l u a t i o no f i n b r e e d i n g d e p r e s s i o n o n t h e t o t a l n u m b e r s o fp i g l e t s b o r n i n d i f f e r e n t g r o u p s o f l a r g e w h i t e p i g s[J].A c t a V e t e r i n a r i a e t Z o o t e c h n i c a S i n i c a,2021,525582畜牧兽医学报54卷(10):2772-2782.(i n C h i n e s e)[21]刘丽元.GWA S㊁C N V及R OH挖掘宁夏地区荷斯坦奶牛重要性状候选基因的研究[D].银川:宁夏大学,2021.L I U L Y.I n t e g r a t i n g GWA S,C N V a n d R OH a n a l y s i sr e v e a l s c a n d i d a t e g e n e s o f i m p o r t a n t t r a i t s i n N i n g x i ah o l s t e i n c o w[D].Y i n c h u a n:N i n g x i a U n i v e r s i t y,2021.(i n C h i n e s e)[22] C HA N G C C,C HOW C C,T E L L I E R L C A M,e ta l.S e c o n d-g e n e r a t i o n P L I N K:r i s i n g t o t h e c h a l l e n g eo f l a r g e r a n d r i c h e r d a t a s e t s[J].G i g a s c i e n c e,2015,4(1):7.[23] Y A N G J A,L E E S H,G O D D A R D M E,e t a l.G C T A:a t o o l f o r g e n o m e-w i d e c o m p l e x t r a i t a n a l y s i s[J].A m J H u m G e n e t,2011,88(1):76-82.[24] Z HA N G C,D O N G S S,X U J Y,e t a l.P o p L D d e c a y:af a s t a n d e f f e c t i v e t o o l f o r l i n k ag e d i s e q u i l i b r i u m d e c a ya n a l y s i sb a s e d o n v a r i a n tc a l l f o r m a t f i l e s[J].B i o i n f o r m a t i c s,2019,35(10):1786-1788.[25] C U N N I N G HAM F,A L L E N J E,A L L E N J,e t a l.E n s e m b l2022[J].N u c l e i c A c i d s R e s,2022,50(D1):D988-D995.[26] B U D C,L U O H T,HU O P P,e t a l.K O B A S-i:i n t e l l i g e n t p r i o r i t i z a t i o n a n d e x p l o r a t o r y v i s u a l i z a t i o no f b i o l o g i c a l f u n c t i o n s f o r g e n e e n r i c h m e n t a n a l y s i s[J].N u c l e i c A c i d s R e s,2021,49(W1):W317-W325.[27] HOWA R D J T,MA L T E C C A C,HA I L E-MA R I AMM,e t a l.C h a r a c t e r i z i n g h o m o z y g o s i t y a c r o s s U n i t e dS t a t e s,N e w Z e a l a n d a n d A u s t r a l i a n J e r s e y c o w a n db u l l p o p u l a t i o n s[J].B M C G e n o m ic s,2015,16(1):187.[28] MA R R A S G,G A S P A G,S O R B O L I N I S,e t a l.A n a l y s i s o f r u n s o f h o m o z y g o s i t y a n d t h e i rr e l a t i o n s h i p w i t h i n b r e e d i n g i n f i v e c a t t l e b r e e d sf a r m e d i n I t a l y[J].A n i m G e n e t,2015,46(2):110-121.[29] K E L L E R M C,V I S S C H E R P M,G O D D A R D M E.Q u a n t i f i c a t i o n o f i n b r e e d i n g d u e t o d i s t a n t a n c e s t o r sa n d i t s d e t e c t i o n u s i n g d e n s e s i n g l e n u c l e o t i d ep o l y m o r p h i s m d a t a[J].G e n e t i c s,2012,189(1):237-249.[30] F E R E N C A K O V I C M,HAM Z I C E,G R E D L E R B,e ta l.R u n s o f h o m o z y g o s i t y r e v e a l g e n o m e-w i d ea u t o z y g o s i t y i n t h e A u s t r i a n F l e c k v i e h c a t t l e[J].A g r i c C o n s p e c S c i,2011,76(4):325-329.[31] Z HA N G Q Q,C A L U S M P L,G U L D B R A N D T S E NB,e t a l.E s t i m a t i o n o f i n b r e e d i n g u s i n g p e d i g r e e,50kS N P c h i p g e n o t y p e s a n d f u l l s e q u e n c e d a t a i n t h r e ec a t t l e b r e ed s[J].B M C Ge n e t,2015,16:88.[32] F O R U T A N M,MA H Y A R I S A,B A E S C,e t a l.I n b r e e d i n g a n d r u n s o f h o m o z y g o s i t y b e f o r e a n d a f t e rg e n o m i c s e l e c t i o n i n N o r t h A m e r i c a n H o l s t e i n c a t t l e[J].B M C G e n o m i c s,2018,19(1):98.[33] L O Z A D A-S O T O E A,T I E Z Z I F,J I A N G J C,e t a l.G e n o m i c c h a r a c t e r i z a t i o n o f a u t o z y g o s i t y a n d r e c e n ti n b r e e d i n g t r e n d s i n a l l m a j o r b r e e d s o f U S d a i r yc a t t l e[J].J D a i r y S c i,2022,105(11):8956-8971.[34]J I A N G J C,C O L E J B,F R E E B E R N E,e t a l.F u n c t i o n a l a n n o t a t i o n a n d B a y e s i a n f i n e-m a p p i n gr e v e a l s c a n d i d a t e g e n e s f o r i m p o r t a n t a g r o n o m i c t r a i t si n H o l s t e i n b u l l s[J].C o m m u n B i o l,2019,2(1):212.[35] G HO R E I S H I F A R S M,E R I K S S O N S,J OHA N S S O N A M,e t a l.S i g n a t u r e s o f s e l e c t i o nr e v e a l c a n d i d a t e g e n e s i n v o l v e d i n e c o n o m i c t r a i t s a n dc o ld a c c l i m a t i o n i n f i ve S w e d i s h c a t t l e b r e e d s[J].G e n e t S e l E v o l,2020,52(1):52.[36] F A N G L Z,C A I W T,L I U S L,e t a l.C o m p r e h e n s i v ea n a l y s e s o f723t r a n s c r i p t o m e s e n h a n c e g e n e t i c a n db i o l o g ic a l i n t e r p r e t a t i o n s f o r c o m p l e x t r a i t s i n c a t t l e[J].G e n o m e R e s,2020,30(5):790-801.[37] Z HA N G Y Y,X U E X L,L I U Y,e t a l.G e n o m e-w i d ec o m p a r a t i v e a n a l y s e s r e v e a l s e l e c t i o n s i g n a t u r e su n d e r l y i n g a d a p t a t i o n a n d p r o d u c t i o n i n T i b e t a n a n dP o l l D o r s e t s h e e p[J].S c i R e p,2021,11(1):2466.[38] WA N G J F,L I B Z,Y A N G X R,e t a l.I n t e g r a t i o n o fR N A-s e q a n d A T A C-s e q i d e n t i f i e s m u s c l e-r e g u l a t e dh u b g e n e s i n c a t t l e[J].F r o n t V e t S c i,2022,9:925590.[39] S I G D E L A,B I S I N O T T O R S,P EÑA G A R I C A N O F.G e n e s a n d p a t h w a y s a s s o c i a t e d w i t h p r e g n a n c y l o s s i nd a i r y c a t t l e[J].S c i Re p,2021,11(1):13329.[40] Z HO U C H,L I C,C A I W T,e t a l.G e n o m e-w i d ea s s o c i a t i o n s t u d y f o r m i l k p r o t e i n c o m p o s i t i o n t r a i t si n a c h i n e s e h o l s t e i n p o p u l a t i o n u s i n g a s i n g l e-s t e pa p p r o a c h[J].F r o n t G e n e t,2019,10:72.[41] F R E I T A S P H F,O L I V E I R A H R,S I L V A F F,e ta l.S h o r t c o mm u n i c a t i o n:t i m e-d e p e n d e n t g e n e t i cp a r a m e t e r s a n d s i n g l e-s t e p g e n o m e-w i d e a s s o c i a t i o na n a l y s e s f o r p r e d i c t e d m i l k f a t t y a c i d c o m p o s i t i o n i nA y r s h i r e a n d J e r s e y d a i r y c a t t l e[J].J D a i r y S c i,2020,103(6):5263-5269.[42] C H E R U I Y O T E K,B E T T R C,AM I MO J O,e t a l.S i g n a t u r e s o f s e l e c t i o n i n a d m i x e d d a i r y c a t t l e i nt a n z a n i a[J].F r o n t G e n e t,2018,9:607.6582。

植物全基因组关联分析及其在遗传改良中的应用

植物全基因组关联分析及其在遗传改良中的应用

植物全基因组关联分析及其在遗传改良中的应用随着生物技术的快速发展,全基因组关联分析(GWAS)成为了植物遗传学中的一个关键工具。

其可以帮助我们在大规模的基因组中寻找与重要性状相关的位点。

这为植物育种和遗传改良提供了重要的指导,许多研究表明,这种方法可以有效地提高植物的产量、抗病性、耐逆性和品质等重要性状,为农业生产做出了重要的贡献。

什么是全基因组关联分析?全基因组关联分析(GWAS)是一种基于单核苷酸多态性(SNP)的遗传分析方法。

SNP是一种常见的基因多态性标记,它们通常分布在基因组中。

在GWAS 中,研究者会测量一组个体的SNP,然后将这些数据与这些个体的某种性状进行比较,从而鉴定SNP与某种性状的关联关系。

研究者可以利用这些关联关系确定可能有助于某种性状的基因。

在研究中,研究者必须遵循严格的方法论来确保结果的准确性。

首先,GWAS需要大量个体的基因数据和性状数据。

其次,研究者需要使用适当的分析方法来控制潜在的混淆因素,例如种群结构和家系效应。

最后,研究者需要验证其结果,以确保其可以在不同的环境和种群中得到重复。

为什么全基因组关联分析对遗传改良非常重要植物基因组的测序技术正在快速发展,这使我们能够在广泛的物种中进行全基因组SNP数据的生成。

这就提供了在遗传改良中应用全基因组关联分析的巨大机会。

全基因组关联分析可以鉴定一些难以加工或评估其他方式的基因,这些基因可能对复杂的农业性状贡献良多。

例如植物的抗病性、耐旱性和生物量等。

它还可以帮助我们识别有利特征的基因型,这些基因型可能包括多个基因,对特定性状有不同的影响。

通过应用模型,我们可以预测这些基因型的表现,从而为育种计划提供指导。

如何使用全基因组关联分析改良植物在实践中,我们通常使用多种方法来使用全基因组关联分析来改良植物。

例如,一些研究组将关联结果与分子标记相结合,开发特异的代表单个或多个位点的标记,然后通过分子重组选育(MAS)的方案来进行育种计划。

辣椒产量性状的遗传分析

辣椒产量性状的遗传分析

辣椒产量性状的遗传分析隋益虎;苗永美;胡能兵;赵岩;周玉丽【期刊名称】《南京农业大学学报》【年(卷),期】2014(37)4【摘要】研究辣椒产量性状即单株果实数量、单果鲜质量以及单株果实干质量的遗传规律,为辣椒育种提供选择参考。

以干制型辣椒材料9007-2和干、鲜兼用型材料1110B作亲本,采用多世代联合分离分析法,构建P1、P2、F1、B1、B2和F26个世代群体。

结果表明:3个性状的分离群体均表现为多峰分布,呈现数量遗传特征;辣椒单株果实数量性状符合2对加性-显性-上位性主基因(B-1)模型,单个果实鲜质量性状符合2对加性-显性-上位性主基因+加性-显性-上位性多基因(E-0)模型,单株果实干质量性状符合2对加性-显性-上位性主基因+加性-显性多基因(E-1)模型。

辣椒单株果实数量B1、B2和F2主基因遗传率分别为55.03%、57.05%和71.03%,单果鲜质量B1、B2和F2主基因遗传率分别为2.27%、24.79%和57.13%,单株果实干质量B1、B2和F2主基因遗传率分别为10.91%、78.92%和80.04%。

单果鲜质量和单株果实干质量各分离世代多基因遗传率变幅分别为0~47.86%和0~50.01%。

结论:育种实践中,对辣椒单株果实干质量和单株果实数量的遗传选择宜在较早世代进行,而单果鲜质量可在稍晚的分离世代进行。

【总页数】7页(P46-52)【关键词】辣椒;产量性状;多世代联合分析;遗传【作者】隋益虎;苗永美;胡能兵;赵岩;周玉丽【作者单位】安徽科技学院生命科学学院【正文语种】中文【中图分类】Q348【相关文献】1.辣椒主要产量性状遗传相关研究 [J], 方荣;陈学军;缪南生;陈萍;张美良2.利用重组自交系(RILs)群体进行质量数量性状的遗传分析遗传模型和小麦产量性状遗传 [J], 李斯深;陈茂学;王洪刚3.基于全基因组SNP分析辣椒亲本间遗传距离与产量性状杂种优势的关系 [J], 王昆; 张宝玺; 张正海; 曹亚从; 于海龙; 王立浩4.辣椒产量相关性状配合力及其遗传效应分析 [J], 韩娅楠;常晓轲;程志芳;张涛;姚秋菊5.辣椒产量和品质性状Hayman遗传分析 [J], 邹学校;陈文超;张竹青;戴雄泽;马艳青;李雪峰因版权原因,仅展示原文概要,查看原文内容请购买。

辣椒全基因组测序

辣椒全基因组测序

Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specializationCheng Qin a,b,c,1,Changshui Yu b,1,Yaou Shen a,1,Xiaodong Fang d,e,1,Lang Chen b,1,Jiumeng Min d,1,Jiaowen Cheng c ,Shancen Zhao d ,Meng Xu d ,Yong Luo b ,Yulan Yang d ,Zhiming Wu f ,Likai Mao d ,Haiyang Wu d ,Changying Ling-Hu b ,Huangkai Zhou d ,Haijian Lin a ,Sandra González-Morales g ,Diana L.Trejo-Saavedra h ,Hao Tian b ,Xin Tang c ,Maojun Zhao i ,Zhiyong Huang d ,Anwei Zhou b ,Xiaoming Yao d ,Junjie Cui c ,Wenqi Li d ,Zhe Chen a ,Yongqiang Feng b ,Yongchao Niu d ,Shimin Bi b ,Xiuwei Yang b ,Weipeng Li c ,Huimin Cai d ,Xirong Luo b ,Salvador Montes-Hernández j ,Marco A.Leyva-González g ,Zhiqiang Xiong d ,Xiujing He a ,Lijun Bai d ,Shu Tan c ,Xiangqun Tang b ,Dan Liu d ,Jinwen Liu d ,Shangxing Zhang b ,Maoshan Chen d ,Lu Zhang d,k ,Li Zhang c ,Yinchao Zhang a ,Weiqin Liao b ,Yan Zhang d ,Min Wang b ,Xiaodan Lv d ,Bo Wen d ,Hongjun Liu a ,Hemi Luan d ,Yonggang Zhang b ,Shuang Yang d ,Xiaodian Wang b ,Jiaohui Xu d ,Xueqin Li b ,Shuaicheng Li k ,Junyi Wang d ,Alain Palloix l ,Paul W.Bosland m ,Yingrui Li d ,Anders Krogh e ,Rafael F.Rivera-Bustamante h ,Luis Herrera-Estrella g,2,Ye Yin d,2,Jiping Yu b,2,Kailin Hu c,2,and Zhiming Zhang a,2aKey Laboratory of Biology and Genetic Improvement of Maize in Southwest Region,Ministry of Agriculture,Maize Research Institute of Sichuan Agricultural University,Wenjiang 611130,China;b Pepper Institute,Zunyi Academy of Agricultural Sciences,Zunyi 563102,China;c College of Horticulture,South China Agricultural University,Guangzhou 510642,China;d Beijing Genomics Institute-Shenzhen,Shenzhen 518083,China;e Department of Biology,University of Copenhagen,DK-2200Copenhagen,Denmark;f College of Horticulture and Landscape Architecture,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China;g Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)del Centro de Investigación y de Estudios Avanzados (Cinvestav),Irapuato,36821,Mexico;h Departamento de Ingeniería Genética,Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)-Unidad Irapuato,Irapuato,36821,México;i College of Biology and Science,Sichuan Agricultural University,Ya ’an 625014,China;j Instituto Nacional de Investigaciones Forestales,Agrícolas y Pecuarias,Campo Experimental Bajío,Celaya,38010,México;k Department of Computer Science,City University of Hong Kong,Hong Kong 999077,China;l INRA Provence-Alpes-Côte d ’Azur,UR1052,Unitéde Génétique et Amélioration des Fruits et Légumes,CS 60094,F-84140Montfavet Cedex,France;and m Chile Pepper Institute,New Mexico State University,Las Cruces,NM 88003Contributed by Luis Herrera-Estrella,January 19,2014(sent for review December 12,2013)As an economic crop,pepper satisfies people ’s spicy taste and has medicinal uses worldwide.To gain a better understanding of Cap-sicum evolution,domestication,and specialization,we present here the genome sequence of the cultivated pepper Zunla-1(C.annuum L.)and its wild progenitor Chiltepin (C.annuum var.glabriusculum ).We estimate that the pepper genome expanded ∼0.3Mya (with respect to the genome ofother Solanaceae)by a rapid amplification of retrotransposons elements,resulting in a genome comprised of ∼81%repetitive sequences.Approximately 79%of 3.48-Gb scaffolds containing 34,476protein-coding genes were anchored to chromo-somes by a high-density genetic parison of cultivated and wild pepper genomes with 20resequencing accessions revealed molecular footprints of artificial selection,providing us with a list of candidate domestication genes.We also found that dosage compen-sation effect of tandem duplication genes probably contributed to the pungent diversification in pepper.The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also,the Solanaceae family,and it will facil-itate the establishment of more effective pepper breeding programs.de novo genome sequence|genome expansion |Solanaceae evolutionPepper (Capsicum )is an economically important genus of the Solanaceae family,which also includes tomato and potato.The genus includes at least 32species native to tropical America (1),of which C.annuum L.,C.baccatum L.,C.chinense Jacq.,C.fru-tescens L.,and C.pubescens (Ruiz &Pavon)were domesticated as far back as 6000B.C.by Native Americans (2).Peppers have a wide diversity of fruit shape,size,and color.Pungent peppers are used as spices,and sweet peppers are used as vegetables.After the return of Columbus from America in 1492and subsequent voyages of exploration,peppers spread around the world because of adap-tation to different agroclimatic regions and rapid adoption of pep-per in different cultures as food,medicine,and ornamentals (3,4).Pepper global production in 2011reached 34.6million tons fresh fruit and 3.5million tons dried pods harvested in 3.9million hec-tares ( ).Despite the growing commercial importanceof pepper,the molecular mechanisms that modulate fruit size,shape,and yield are mostly unknown.Since the 1990s,genetic diversity and allelic shifts among cultivars,domesticated landraces,and wild accessions have been partially explored using restricted sets of anonymous or neutral Author contributions:C.Q.,R.F.R.-B.,L.H.-E.,Y.Yin,J.Y.,K.H.,and Z.Z.designed research;C.Q.,C.Y.,Y.S.,X.F.,L.C.,J.Cheng,S.Zhao,Y.Luo,Z.W.,C.L.-H.,H.Lin,S.G.-M.,D.L.T.-S.,H.T.,Xin Tang,M.Z.,A.Z.,J.Cui,Z.C.,Y.F.,Y.N.,S.B.,X.Yang,Weipeng Li,H.C.,X.Luo,S.M.-H.,M.A.L.-G.,Z.X.,S.T.,Xiangqun Tang,J.L.,S.Zhang,M.C.,Li Zhang,W.Liao,Yan Zhang,M.W.,B.W.,H.Liu,H.Luan,Yonggang Zhang,X.W.,X.Li,S.L.,A.P.,P.W.B.,A.K.,R.F.R.-B.,L.H.-E.,J.Y.,K.H.,and Z.Z.performed research;Wenqi Li,L.B.,X.Lv,S.Y.,J.X.,J.W.,and Y.Li contributed new reagents/analytic tools;C.Q.,J.M.,J.Cheng,M.X.,Y.Yang,Z.W.,L.M.,H.W.,H.Z.,Z.H.,A.Z.,X.Yao,J.Cui,S.B.,X.Luo,S.M.-H.,M.A.L.-G.,X.H.,Xiangqun Tang,D.L.,Lu Zhang,and Yinchao Zhang analyzed data;and C.Q.,X.F.,S.Zhao,and L.H.-E.wrote the paper.The authors declare no conflict of interest.Freely available online through the PNAS open access option.Data deposition:The C.annuum cv.Zunla-1and C.annuum var.glabriusculum whole-genome shotgun sequences reported in this paper have been deposited in the GenBank database (accession nos.ASJU00000000and ASJV00000000,respectively).The RNA-sequence reads and small RNA-sequence reads data reported in this paper have been deposited in the Gene Expression Omnibus (GEO)database,/geo (accession nos.GSE45037,GSE45040,and GSE45154).Additional information is accessible through the Pep-per Genome Database website ( ).See Commentary on page 5069.1C.Q.,C.Y.,Y.S.,X.F.,L.C.,and J.M.contributed equally to this work.2To whom correspondence may be addressed.E-mail:lherrera@langebio.cinvestav.mx,yinye@,yujiping62@,hukailin@,or zzmmaize@.This article contains supporting information online at /lookup/suppl/doi:10.1073/pnas.1400975111/-/DCSupplemental ./cgi/doi/10.1073/pnas.1400975111PNAS |April 8,2014|vol.111|no.14|5135–5140A G R I C U L T U R A L S C I E N C E SS E E C O M M E N T A R Ymolecular markers(5–9)and annotated DNA sequences(10). These studies reported that the genetic variability among sweet and large-fruited C.annuum cultivars was very restricted and sug-gested that changes in the allelic frequencies and a subsequent loss of diversity during the transition from wild to cultivated popu-lations occurred even in areas of species cohabitation.The rela-tively low levels of genetic diversity in the primary gene pool have constrained pepper genetic improvement.Another primary reason for limited applied and basic research in pepper has been lack of a reference genome sequence of∼3.3Gb(11).Recent work comparing two members of the Solanaceae family(pepper and tomato)has begun to shed light on the processes that influence the dynamics of genome size in angiosperms(12,13).To contribute to the understanding of pepper biology and evolution and accelerate agricultural applications,we generated and analyzed two reference genome sequences of cultivated Zunla-1and wild Chiltepin(2n=2x=24).The two pepper genomes together with20resequencing accessions,including3accessions that are classified as semiwild/wild,provide a better understand-ing of the evolution,domestication,and divergence of various pepper species and ultimately,will enhance future genetic im-provement of this important worldwide crop.Results and DiscussionLarge Genome Assembly and Chromosome Anchoring.Because of their commercial and genetic advantages,we selected the widely cultivated C.annuum accession Zunla-1and it wild progenitor Chiltepin for genome sequencing(SI Appendix,SI Text).Using the whole-genome shotgun approach,we generated a total of 325-and205-Gb high-quality reads from various Illumina se-quencing libraries for Zunla-1and Chiltepin,respectively(SI Appendix,Tables S1and S2).As expected,the genome size of Zunla-1was estimated to be3.26Gb,which is slightly larger than the3.07-Gb size of Chiltepin by K-mer analysis(SI Appendix,Fig. S1and Table S3);estimations are consistent with a previous report(11).Short sequencing reads,corresponding to99-and 67-fold genomic depths(SI Appendix,Fig.S2),were hierarchi-cally and iteratively assembled into contigs with N50lengths (50%of the genome is in fragments of this length or longer)of 55and52kb for Zunla-1and Chiltepin,respectively(Table1). Pair-end information was used sequentially in assembler SOAP-denovo(14)to generate scaffolds comprising3.48-and3.35-Gb scaffolds with N50lengths of1.23Mb and445kb,respectively (Table1and SI Appendix,Table S4).The smaller N50scaffold length for Chiltepin was primarily caused by a lower sequencing depth and the lack of40-kb libraries.In our analysis,we refer to the Zunla-1assembly as a reference for the C.annuum genome. We assessed the quality and coverage of the two genomes using Sanger-derived BACs and ESTs from public databases.Of1.7-Mb sequences from15BACs,∼97%could be covered by the scaffolds with identity of0.95and E value of1e-20,indicating reliable local assembly(SI Appendix,Table S5).More than98%of83,029ESTs could be aligned to the genomes by the criteria of length>200bp and hit>97%,which showed extensive genomic coverage(SI Ap-pendix,Table S6).In addition,23and18large nuclear regions matching the chloroplast genome(>2kb and>98%sequence identity)were identified in the reference and Chiltepin genomes, respectively(Dataset S1).This phenomenon is similar to that observed in tomato(15)and tobacco(16),suggesting active gene transfer from the choloroplast into the nuclear genome of the Solanaceae.The scaffolds were then anchored to12linkage groups by7,657 SNP markers in our newly developed high-density genetic map (SI Appendix,SI Text)(17),and they could be assigned as chro-mosomes1–12(Chr01–Chr12)according to the cytological analysis(1,18)(Fig.1,track A).The pseudochromosomes consist of4,956scaffolds with31,201genes located,corre-sponding to79%of the reference(Table1and SI Appendix, Fig.S3and Table S7).It has been reported that,during do-mestication,chromosome translocation events differentiate cultivars from wild progenitors(19),which helped us to precisely anchor29,081scaffolds(2.42Gb;30,123genes)of Chiltepin to chromosomes(Table1and SI Appendix,Table S7).We also ob-served S shape when the genetic and physical distances were an-alyzed(SI Appendix,Fig.S3),reflecting extensive recombination suppression around the centromeres(Fig.1,tracks A and B). Interestingly,Chr08showed a short terminal arm(Fig.1,track A and SI Appendix,Fig.S3),supporting the conclusion that the chromosome is acrocentric(19).Repetitive Elements and Genome ing a combination of homology-based searches and ab initio modeling,we found that more than81%(∼2.7Gb)of the pepper genomes were composed of different transposable elements(TEs),which is significantly higher than TEs(∼61%)in potato and tomato (Table1and Dataset S2).Most of the plant TE categories were identified in pepper,including70.3%LTR retrotransposons and 4.5%DNA transposons(Table1).Clearly,LTR retrotrans-posons contributed more to the genome expansion than those in potato(47.2%),tomato(50.3%),and grape(46.2%),which parallels the genomic topology of the maize genome(75%)(20).parison of features of pepper,tomato,and potato genomesGenome features Cultivated pepper Wild pepper Tomato*Potato†Assembled genome size(Mb)‡3,3493,480760727Number of scaffolds§967,0171,973,483NA NAContig N50(bp){55,43652,229NA NAScaffold N50(bp){1,226,833445,585NA NAGC content(%)34.935.034.034.8Repeat rate(%)80.981.461.361.6LTR rate(%)70.370.150.347.2Predicted protein-coding genes35,33634,47633,72638,492Average gene length(bp)3,3633,2353,0062,476Average CDS length(bp)1,0201,0061,063928Average exon number per gene 4.27 4.04 4.6 3.49Sequence anchored on chromosome(%)78.9569.68NA NAGenes anchored on chromosome(%)88.2987.37NA NANA,not available;GC,guanine-cytosine;CDS,coding DNA sequence.*Modified from ref.15.†Modified from ref.27.‡The fragments of the ungapped genome assembly.§The length shorter than100bp was not included in the statistics.{N50values of the genome assembly were calculated using the fragments longer than100bp.5136|/cgi/doi/10.1073/pnas.1400975111Qin et al.The most abundant LTR retrotransposons were the Gypsy clade (54.5%)followed by Copia (8.6%)(Fig.1,track C and Dataset S2).This scenario is quite different from some monocots,such as wheat (21,22),in which the Copia clade is usually the pre-dominant component of repetitive DNA.In the TEs identified,23.1%and 16.2%are ancestral repeats that predate the divergence of pepper with tomato and potato,respectively (Dataset S2),whereas other lineage-specific TEs emerged during the genome expansion and account for 50.8%of the pepper genome (Dataset S3and SI Appendix ,Table S10).To investigate the genome expansion event in pepper,we dated the insertion time of all LTRs based on divergence analysis (23).A peak of increased insertion activity was found ∼0.3Mya (SI Ap-pendix ,Fig.S4A ),suggesting that the expansion of the pepper genome was quite recent during the evolution of the Solanaceae family.Analysis of the insertion time and phylogenetic topology of Copia and Gypsy clades also supported this conclusion (SI Ap-pendix ,Figs.S4B and S5).Obviously,Gypsy had the highest in-sertion activity recently after Solanaceae species divergence,which made it the most abundant in pepper genome.Gene Annotation and Transcription.To facilitate gene annotation,we generated 90.5-Gb RNA sequencing (RNA-Seq)data from 30libraries representing all primary developmental stages and tissue types,including various fruits (Dataset S4).A combination of evidence-based and de novo approaches predicted 35,336and 34,476high-confidence protein-coding loci in the reference and Chiltepin genomes,respectively (SI Appendix ,Table S9);over 90%of predicted genes were supported by ESTs,RNA-Seq entries,or homologous proteins (SI Appendix ,Fig.S6).Genedensity is relatively low surrounding centromeres where the TEs are inversely high,indicating that the repetitive sequences are unevenly scattered along chromosomes (Fig.1,track C).For in-stance,the Gypsy clade filled in the gene-sparse deserts of the genome,but in contrast,the Copia elements usually accompanied genes in regions that exhibited high recombination rates.We also obtained 2,717,180unique tags by sequencing the flower buds and identified 6,527long noncoding (lnc)RNAs by a self-developed program (Dataset S5).Among lnc-RNAs,5,976are intergenic,222are intron-overlapping,and the others are bidirectional.Sequencing of small RNAs from five different tissues allowed the identification of 5,581phased siRNAs (Fig.1,track E and SI Appendix ,Table S10).Based on the plant micro-RNAs (miRNAs)miRBase database,176miRNAs were discov-ered in pepper and classified into 64families (Dataset S6).Comparison with miRNAs of other Solanaceae members and plant species showed that 141miRNAs are conserved and 35miRNAs are specific to pepper (Fig.1,track F and Dataset S6).We predicted 1,104target genes for these miRNAs,of which 78%have putative functions (Dataset S7).Significantly,about one-half of the pepper miRNA families potentially plays an im-portant role in posttranscriptional regulation by targeting mRNAs encoding transcription factors (TFs)(Dataset S8).In addition,target gene Dihydrolipoamide dehydrogenase (Capana12g000245)of can-miR5303and α-CT (Capana09g001602),which are part of the capsaicinoid biosynthetic pathway,are potential targets of miRNAs (Dataset S7),suggesting the regulation of capsaicinoid biosynthesis by miRNAs.Overall,miRNA target genes are involved in a wide spectrum of regulatory functions and bi-ological processes,including apoptosis,defense responses,and ATP binding (Dataset S9).RNA-Seq expression profiles showed that over 31%of the protein-coding genes were constitutively expressed in the various tissues examined.We also identified 3,670tissue-specific genes distributed in root (740),stem (113),leaf (197),fruit (835),and flower (1,785)(Fig.1,track D).In blooming flowers,599tissue-specific genes were exclusively expressed (P <0.001)and mainly involved in cell construction (enzyme regulator and inhibitor activity,pectinesterase activity,or cell wall and cytoskeleton modification)(Dataset S10).Insights into Solanaceae Evolution.Sequence-based analysis ofpepper gene families was conducted using OrthoMCL (24)and compared with those families in tomato,potato,and Arabidopsis (SI Appendix ,Table S11).We identified 10,279gene families shared among the four species and a total of 17,671in pepper with more than one orthologous gene (SI Appendix ,Fig.S7).Another 1,257gene families,containing 3,143genes,were specific to the pepper genome (Dataset S11).These pepper-specific genes have various biological functions;however,they are particularly over-represented in the gene ontology category of biotic stimulus,in-dicating that the pepper has rapid and strong response to better face fluctuating environmental conditions (Dataset S12).In total,5,231single copy orthologous genes identified in grape,papaya,pepper,tomato,potato,and Arabidopsis were used to construct a phylogenetic tree (Fig.2A and B ).It showed that pepper separated from tomato and potato ∼36Mya,during which time the Capsicum genus evolved in Solanaceae.We also observed that Solanaceae appeared nearly 156Mya,very soon after the differentiation of monocots from dicots (15,25).Ap-proximately 38-Mb genomic sequences of pepper can be aligned to potato and tomato with 14%nucleotide divergence,whereas only 9.76%nucleotide divergence was detected within 106-Mb synteny regions between potato and tomato with the same ap-proach previously described (15)(SI Appendix ,Table S12).In the pepper genome,we identified 1,052and 799large syntenic blocks,involving 12,601and 10,596genes compared with tomato and potato,respectively (Datasets S13–S15).However,612and 430chromosomal translocation events occurred during the di-vergence of Capsicum relative to tomato and potato,respectively (Dataset S13).These translocations are distributed extensivelyh r 012C h r03000hr 04C h r 06C h r 07C h r092C h r 101C h r 1220 2.0B. Density of recombination Fig.1.Global view of the pepper genome.Track A denotes the 12pseudo-chromosomes of pepper (megabases).The positions of the effective markers in the genetic map are shown as vertical gray lines.The loci of inferred centromeres are denoted by vertical red bars.Track B shows density of recombination.Track C shows density distribution of Gypsy (green),Copia (light blue),and protein-coding genes (navy).Track D shows distribution of tissue-specific expression genes,including root (red),stem (green),leaf (dark magenta),flower (blue),and fruit (gold).Track E shows genome-wide distribution of total small RNA loci (blue and green lines).The histograms plot small RNA reads from 20to 25nt,and they were normalized to account for the appearance of opposite strand inverse sequences.Track F shows distribution of the identified miRNA families denoted by different colors (Dataset S6).Track G shows connections of the triplicate loci denoted by different colors (Dataset S16).Qin et al.PNAS |April 8,2014|vol.111|no.14|5137A G R I C U L T U R A L S C I E N C E SS E E C O M M E N T A R Yon all pepper chromosomes,providing evidence for generalized chromosomal rearrangements (Fig.2C ,Datasets S14and S15,and SI Appendix ,Fig.S8).The following translocations were proposed to happen between pepper and the common ancestor of tomato and potato:Chr01vs.Chr01/Chr08,Chr03vs.Chr03/Chr09,Chr04vs.Chr02/Chr04,Chr05vs.Chr04/Chr05,Chr08vs.Chr01/Chr08,Chr09vs.Chr09/Chr12,Chr11vs.Chr05/Chr11,and Chr12vs.Chr11/Chr12[supporting previous reports (19,26)with more precise details].Meanwhile,468and 367inversions were identified in pepper compared with tomato and potato,respectively (Datasets S14and S15).In addition,comparison with the grape genomes revealed that a whole-genome triplication happened in the pepper genome,suggesting a common event among the Solanaceae (15)(Fig.1,track G and SI Appendix ,Table S13).Considerable gene loss of one or two copies of duplicated genes occurred after the triplication,resulting in few remaining triplicated genes in the pepper genome (Datasets S16and SI Appendix ,Table S14).We then calculated the time of whole-genome duplication (WGD)events in Solanaceae lineages based on the distribution of distance –transversion rate at fourfold degenerate sites (4DTv methods)of paralogous gene pairs (Fig.2D ).Peaks at around 0.48and 0.1elaborated that the ancestral pepper –grape and pepper –tomato divergences occurred ∼89and 20Mya (15,27),respectively;these findings are consistent with the phylogenetic analysis.The peak at ∼0.3proved a recent WGD in the ancestral pepper –tomato lineage (15).As observed,there is no evidence of Capsicum -specific WGD after the pepper –tomato/pepper –potato divergence,again confirming the notion that proliferation of TEs primarily contributed to pepper genome expansion.Molecular Footprints of Artificial Selection.Artificial selection,in-volved in two breeding processes of early domestication and mod-ern intensive improvement (28),played an important role in the origin of cultivated peppers.We selected 18cultivated accessions representing the major varieties of C.annuum and two semiwild/wild peppers for whole-genome resequencing (SI Appendix ,Table S15).After alignment of the sequencing reads corresponding to 10-to 30-fold depth to the reference (SI Appendix ,Table S16),we identified an average of 9,826,526single nucleotide variations and 237,509small insertions/deletions (SI Appendix ,Table S17).Asexpected,the wild accessions possessed higher genetic diversity than the cultivars (SI Appendix ,Table S17).The neighbor-joining tree and population structure further revealed that the wild and do-mesticated peppers are genetically distinguishable at an overall genomic level (SI Appendix ,Figs.S9and S10).We next scanned the genome of these accessions to identify genome-wide signatures of artificial selection using the genetic bottleneck approach (29).To detect the reduction of genetic diversity of the pepper population caused by domestication,we used a sliding window strategy to estimate θπ-and θw -values (Fig.3A and SI Appendix ,Fig.S11).The regions that showed signifi-cantly lower θπ(Z test,P <0.005)and θw (Z test,P <0.005)in cultivars relative to the wild group were considered as potential artificial selection regions (Fig.3B ).We identified a total of 115regions with strong selective sweep signals in the cultivated peppers (85.2Mb or 2.6%of the genome and containing 511genes)(Dataset S17and SI Appendix ,Fig.S12).The length of these se-lected regions ranged from 0.3to 61.9kb,and the polymorphism levels of these selected regions relative to the whole genome were relatively low (Fig.3B ),indicating that these regions seemed to have been affected by selection during domestication.In total,511genes embedded in selected regions for domestic peppers were related mainly to transcription regulation,stress,and/or defense response,protein –DNA complex assembly,growth,and fruit development (Datasets S18and S19).Of these genes,34TFs,including activating protein (AP2),ethylene-responsive-element-binding factor (ERF),and basic helix-loop-helix (bHLH)families,and 10disease resistance protein containing the NB-ARC domain were identified (Dataset S20).This set of genes may contribute to the morphological and physiological differences be-tween cultivated and wild peppers.For example,Capana11g001329,a homolog of the tomato gene (Solyc05g005680)encoding a Xylo-glucan endotransglucosylase/hydrolase (XTH),was identified in our putative artificial selection genes (SI Appendix ,Fig.S13).Sol-yc05g005680showed significantly differential expression during fruit ripening (15),whereas Capana11g001329was only expressed in early growing stages,suggesting that the gene may account for nonclimacteric fruits with a slower softening process (discussed below).The gene Capana09g001426is homologous to the rice Rc gene (30),which was a well-known domestication gene and thought to be associated with seed dormancy and pericarp color in rice (31).The region containing Capana09g001426showed a very strong se-lective sweep signal in the domesticated pepper genome (SI Ap-pendix ,Fig.S13).This finding suggested that the gene might play a role in shortening seed dormancy,a trait expected to be under strong artificial selection during domestication.We also identified the three genes PepEST ,CALTPI ,and RGA15(Capana04g001148,Capana10g001225,and Capana01g004043,respectively)that en-hanced pepper resistance to pathogen and environmental stresses (32–34)(SI Appendix ,Fig.S13).Comparison of Fruit Development Between Pepper and Tomato.Theripening process greatly influences fruit quality and shelf life and differs significantly between climacteric fruits,such as tomato,and nonclimacteric fruits,such as pepper,which have a slower soft-ening process and no response to ethylene (35)(SI Appendix ,Fig.S14).We compared gene expression profiles between tomato and pepper during fruit ripening.Tomato had 2,281differential genes,whereas pepper had 1,440differential genes (Datasets S21and S22),including in both cases,genes involved in cell wall remod-eling,hormone signaling and metabolism,carbohydrate metabo-lism,protein degradation,and abiotic stress responses.However,important differences were identified.For instance,the number of genes involved in ethylene biosynthesis was lower in pepper (Datasets S21and S22);zero of eight pepper genes encoding 1-aminocyclopropane-1-carboxylate synthase (the key enzyme in ethylene production)were up-regulated during ripening,whereas two 1-aminocyclopropane-1-carboxylate synthase genes were strongly induced in tomato,consistent with lower ethylene production in pepper (36).Similarly,the number of differentially expressed genes related to ethylene signaling and jasmonicacidChr01Chr02Chr03Chr04Chr05Chr06Chr07Chr08Chr09Chr10Chr11Chr12O. s a tivaC. annuumS. lycopersicumA. thaliana C. p apaya V. viniferaS. tuberosum P e r c e n t a g e o f g e n e p a i r s4DTvMillion years agoT o m a t oPepperP o t a t o(x1000 genes)ABDCparative analysis and evolution of the pepper genome.(A )Ge-nomic differences among C.annuum ,Solanum lycopersicum ,Solanum tuber-osum ,Arabidopsis thaliana ,Carica papaya ,Vitis vinifera ,and Oryza sativa .Neighbor-joining phylogenetic analysis was performed with orthologous genes and all coding DNA sequence (CDS)in C.annuum and the other six plants.(B )Clusters of orthologous and paralogous gene families in the seven plant species identified by OrthoMCL.(C )Syntenic blocks in the cultivated pepper,tomato,and potato show that genome rearrangements have occurred among these taxa.(D )Genome duplication in dicot genomes (pepper,tomato,potato,and grape)revealed by 4DTv analyses.5138|/cgi/doi/10.1073/pnas.1400975111Qin et al.。

辣椒的品种稳定和遗传纯度检测方法

辣椒的品种稳定和遗传纯度检测方法

辣椒的品种稳定和遗传纯度检测方法目前辣椒作为一种重要的经济作物和热门的调味品,其种植和研究已经成为农业科技领域的热点。

为了确保辣椒品种的稳定和遗传纯度,科学家们需要进行品种稳定性和遗传纯度检测。

本文将介绍辣椒的品种稳定性和遗传纯度检测方法。

首先,品种稳定性检测是指确定辣椒种质资源的遗传稳定性和一致性。

辣椒的品种稳定性直接影响到其种子和种苗的市场价值和质量。

一种品种的稳定性高,即遗传变异性小,种子和种苗之间的遗传一致性较高。

为了进行品种稳定性检测,可以利用分子标记技术,比如SSR(简单序列重复)和SNP(单核苷酸多态性)等。

这些技术可以通过分析辣椒种质资源的DNA序列变异来确定品种间的相似性和遗传一致性。

其次,遗传纯度检测是指确定种子或种苗中杂种的存在程度。

杂种会导致辣椒品种的不稳定和不一致性,从而影响辣椒的产量和质量。

为了进行遗传纯度检测,可以利用分子标记技术和传统的遗传学方法。

分子标记技术可以通过分析种子或种苗中的DNA序列来确定其亲本品种和可能的杂种来源。

传统的遗传学方法则包括了对花粉形态、花粉活力和遗传性状等的观察和分析。

在实际应用中,对于辣椒品种的稳定性和遗传纯度检测常常采用综合方法。

首先,通过外部观察和分类对辣椒种质资源进行筛选。

这可以通过观察植株的生长习性、叶片形态、花朵形态等来判断不同品种之间的差异。

然后,在确定了一些潜在的稳定品种后,可以使用分子标记技术对这些品种进行分析。

这些分子标记技术可以通过特定的引物识别辣椒品种的遗传特征,从而判断其遗传一致性和亲本品种。

此外,为了进一步确保辣椒品种的稳定性和遗传纯度,还可以采用田间试验和温室试验。

通过在不同环境条件下观察和比较种子或种苗的生长情况和产量表现,可以评估辣椒品种的稳定性和遗传纯度。

综上所述,辣椒的品种稳定性和遗传纯度检测是非常重要的,可以通过综合应用外部观察、分子标记技术和田间试验来进行。

这些检测方法可以帮助农户和科学家们确保辣椒品种的质量和产量,推动辣椒产业的发展。

全基因组范围内SNP关联分析(GWAS)技术

全基因组范围内SNP关联分析(GWAS)技术
单核苷酸多态的测定及数据格式
(1)PCR (2)SNP芯片 (3)新一代测序技术
1
AGATACGGCTAAACTTGGGGGTTTTTAAACCCCTT AGATAAGGCTAAACTTGGGGGTTTTTAAGCCCCTT
chr6
2
AGATAAGGCTAAACTTGGGGGTTTTTAAGCCCCTT AGATAAGGCTAAACTTGGGGGTTTTTAAACCCCTT
chr6
3
chr6
4
AGATAAGGCTAAACTTGGGGGTTTTTAAACCCCTT AGATAAGGCTAAACTTGGGGGTTTTTAAACCCCTT
chr6
突变率低,一次突变,遗传+自然选择使得等位扩增,snp多为二态Biblioteka 一、单核苷酸多态及数据格式
注:
(1)理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多 态性,但实际上,后两者非常少见,几乎可以忽略。
chr6
dbSNP &array:
AGATA[A/C]GGCTAAAC
GTTTTTAA[A/G]CCCCTT
PCR data
or
PCR和芯 芯片技术
or
PCR
A/C SNP1
A/G SNP2
1
AGATACGGCTAAACTTGGGGGTTTTTAAACCCCTT AGATAAGGCTAAACTTGGGGGTTTTTAAGCCCCTT
当我们检测该SNP位点与疾病的关系时,我们不知道等位以何种 方式起作用(等位、基因型、显性、隐性)。
关联检验
关联检验的模型
1、Genotypic Model Hypothesis: all 3 different genotypes have different effects

基于snps全基因组测序技术对泰国辣椒地方品种遗传多样性分析和辣

基于snps全基因组测序技术对泰国辣椒地方品种遗传多样性分析和辣

2019.2JOURNAL OF CHINA CAPSICUM国外瞭望基于SNPs 全基因组测序技术对泰国辣椒地方品种遗传多样性分析和辣椒素含量关联分析Wassana Kethom 1, 2 Pumipat Tongyoo 1, 2 Orarat Mongkolporn 1, 2, 3(1.泰国农业大学农业生物技术中心, 佛统府 73140, 泰国; 2.农业生物技术卓越中心:(AG-BIO / PERDO-CHE ), 曼谷 10900, 泰国; 3.泰国农业大学卡姆范桑农业学院园艺系, 佛统府 73140, 泰国)摘 要 泰国的辣椒地方品种是非常重要的种质资源,由于其独特的香气和风味,被广泛应用于新鲜食用和食品行业。

本研究收集了243份辣椒地方品种,对其遗传多样性和辣椒素含量进行鉴定。

利用多样性微阵列基因分型技术或DArTseq 技术从泰国辣椒地方品种中筛选到22 000多个SNPs 。

经过滤得到9 610个SNPs 用于多样性鉴定和全基因组关联分析。

聚类分析将辣椒地方品种分为两个不同的组,分别对应于辣椒品种中的一年生辣椒种(C. annuum )和野生灌木辣椒种(C. frutescens ),相异指数为0.009 2~0.841 0。

然而,经检测每个辣椒种的种间遗传背景非常狭窄。

通过全基因组关联分析,鉴定出与辣椒素类物质含量显著相关的7个SNPs ,其中5个位于辣椒素类物质生物合成途径相关基因的附近。

关键词 一年生辣椒种(Capsicum annuum );野生灌木辣椒种(C. frutescens );多样性微阵列基因分型技术;全基因组关联分析;单核苷酸多态性;SNP1 背景辣椒(Capsicum spp.)是重要的蔬菜和香料。

它起源于南美洲,随后传入欧洲,后来又被引入非洲和亚洲[1-3]。

自1989年以来,泰国Kasetsart 大学园艺系(Kamphaeng Saen 校区)收集了大量来自世界各地约3 000份的辣椒种质资源[4-6],其中250份种质是泰国辣椒地方品种。

辣椒全基因组序列测定完成

辣椒全基因组序列测定完成

上 再给点 资金扶 持 .回收公 司再新 购置一 批大 型加工 设

动态 资讯 ・
辣椒全 基 因组序列测定 完成
近1 3,由贵州省遵 义市农科所 牵头 。四川 农业大学 、 华 南农 业大学 、深圳华 大基 因和 墨西哥生 物 多样性基 因
在这些 基 因中有 一些可 能与种 子休 眠缩短 、抗病原 体和 抗逆性 增强 以及储 存 寿命增 加有联 系 。另外 ,研究 人员 还 对辣椒 和西 红柿 果实 的发 育 进行 了深 入 的 比较 分析 . 获得 了辣椒果 实成熟后 仍然 坚硬等 生物学 特性相 关的候
重要的基因资源 。
辣 1号 ” ( Z u n l a 一 1 ) 和 其 来 自 墨 西 哥 的 野 生 种 “ C h i l t e p i n ”的基因组 .研 究成果 以论 文形式于 2 0 1 4年 3 月在 国际著名期 刊 《 美 国国家科学 院院刊》 ( P N A S )上 发 表 .该论文 标志着辣 椒基 因组 序列成 功解 码 。贵州辣 椒 基础性研究取得重大进展 .进入分子育种 阶段 。
轮拖拉 机一 台可清理 6 h m = .清理废1 1 3 地膜 2 5 0 k g ,每个作
业 组按 1 0 0 0元计 算 ,每 回收地 膜需 4元/ I 【 g ,再 加上 收 购 站点 费用 、亏 损费用 、人 员工 资费用 等 .回收地膜 至
少 需 6元 / k g 。 2 . 2 全 县 预 计 可 回 收 量
础 生物学研究 。 ( 本刊辑 )
供 了宝贵 的新 资源。在该项研 究 中,对 1 8 个栽 培品种和
两个其 他野生 种 的重测 序数据 分析 鉴定得 到 5 l 1 个 候选 的驯化基 因 .这可能解释野生 和栽培种辣 椒之间 的差异 :

辣椒全基因组SSR标记多态性的筛选及应用

辣椒全基因组SSR标记多态性的筛选及应用

辣椒全基因组SSR标记多态性的筛选及应用李艳;赵红星;王勇;姜俊;魏小春;田士林【期刊名称】《中国农学通报》【年(卷),期】2018(34)17【摘要】为进一步了解辣椒种质资源的遗传多样性,利用基于辣椒全基因组编码区序列设计的152对SSR标记引物,对4份不同辣椒资源材料的152对SSR引物进行筛选,从中筛选出条带清晰、稳定性好的14对SSR多态性引物。

并利用其对26份辣椒种质资源进行遗传多样性分析。

结果表明:14对SSR引物共扩增出39个多态性条带,平均每对引物扩增出2.79个位点,说明SSR引物在辣椒遗传分析中具有较高的实用性。

利用Phylip软件将26份辣椒资源材料进行聚类分析,结果将不同的26份辣椒材料聚为7类,基本与辣椒种类相符。

研究为后续辣椒种质资源的研究及合理利用提供了理论依据。

【总页数】6页(P56-61)【关键词】辣椒;SSR分子标记;筛选;多态性【作者】李艳;赵红星;王勇;姜俊;魏小春;田士林【作者单位】驻马店市农业科学院/驻马店市蔬菜遗传育种工程技术研究中心;河南省农业科学院园艺研究所;黄淮学院【正文语种】中文【中图分类】S602.4【相关文献】1.线辣椒SSR-PCR反应体系优化及多态性标记筛选 [J], 李全辉;李江;邵登魁;王亚艺;侯全刚;钟启文2.西花蓟马EST-SSR信息分析、标记筛选及其与Genomic-SSR的多态性比较 [J], 段惠生;张安盛;赵传志;于毅;褚栋3.基于香菇全基因组序列开发的部分SSR标记多态性分析与品种鉴定初探 [J], 张丹;巫萍;章炉军;唐利华;宋春艳;尚晓冬;鲍大鹏;谭琦4.小麦全基因组抗赤霉病QTL关联位点特异性SSR标记的筛选、等位变异及效应解析 [J], 吴迪;郑彤;李磊;李韬5.基于基因组重测序数据高效筛选梨SSR标记多态性引物 [J], 蒋爽;骆军;王晓庆;施春晖因版权原因,仅展示原文概要,查看原文内容请购买。

全基因组snp分型步骤

全基因组snp分型步骤

全基因组snp分型步骤1.引言1.1 概述全基因组SNP分型是一种用于分析人类基因组中的单核苷酸多态性(Single Nucleotide Polymorphism,SNP)的方法。

SNP是指基因组中单个核苷酸的变异,这种变异可能与遗传疾病、药物反应等多种生物学特征相关。

全基因组SNP分型通过对整个基因组中的SNP进行分析,可以帮助我们了解人类基因组的个体差异,从而更好地理解遗传病理学、个体化医疗以及演化等方面的问题。

全基因组SNP分型的研究步骤包括样本准备、DNA提取和测序、数据处理和质量控制以及SNP分型算法。

首先,我们需要准备研究所需的样本,并对样本进行处理以获取所需的DNA。

接着,通过测序技术对DNA 进行测序,得到原始的测序数据。

在数据处理和质量控制阶段,我们需要对原始数据进行处理和过滤,以确保数据的准确性和可靠性。

最后,我们使用各种SNP分型算法对处理后的数据进行分析和解读,以获取SNP位点的基因型信息。

全基因组SNP分型具有广泛的应用前景。

在科学研究领域,它可以帮助我们研究遗传病理学、复杂疾病的致病机制以及人类演化历史等重要问题。

在临床医学中,全基因组SNP分型可以帮助医生进行个体化医疗决策,根据患者的基因信息选择最适合的治疗方案,提高治疗效果。

此外,全基因组SNP分型还可以应用于人口遗传学研究、药物研发与评价等方面,为我们提供更多关于人类基因组的信息。

本文将详细介绍全基因组SNP分型的步骤,希望能够为读者提供一个清晰的了解和入门指南,并展示全基因组SNP分型在生命科学领域的重要性和应用前景。

1.2 文章结构文章结构部分的内容可以包括以下内容:本文将按照以下顺序介绍全基因组SNP分型的步骤。

首先,我们将在引言部分进行概述,介绍全基因组SNP分型的定义、背景知识和研究目的。

接下来,在正文部分,我们将详细介绍全基因组SNP分型的步骤。

其中,包括样本准备、DNA提取和测序、数据处理和质量控制以及SNP 分型算法的介绍。

一种与辣椒核不育相关的SNP分子标记及其应用[发明专利]

一种与辣椒核不育相关的SNP分子标记及其应用[发明专利]

专利名称:一种与辣椒核不育相关的SNP分子标记及其应用专利类型:发明专利
发明人:程蛟文,吴智明,董骥驰,胡开林
申请号:CN201910114021.9
申请日:20190214
公开号:CN109750118A
公开日:
20190514
专利内容由知识产权出版社提供
摘要:本发明属于蔬菜分子育种技术领域,具体涉及一种与辣椒核不育相关的SNP分子标记及其应用。

所述的与辣椒核不育相关的SNP分子标记为SNP2、SNP3、SNP4、SNP7或SNP8,其SNP位点的核苷酸序列如SEQ ID NO.1~5所示,该分子标记与辣椒育性表型共分离或紧密连锁。

本发明还提供了一种鉴定上述SNP分子标记的KASP引物,该引物可以用于快速鉴定辣椒育性表型,能够极大地加快新的辣椒核雄性不育系的转育进程。

而本发明开发的与辣椒核不育相关的SNP分子标记属于核不育基因共分离SNP标记,可以实现在辣椒幼苗期判定植株育性,从而减少制种成本。

同时,也可以加速新的辣椒核雄性不育系的转育进程。

申请人:华南农业大学
地址:510642 广东省广州市天河区五山路483号
国籍:CN
代理机构:广东广信君达律师事务所
代理人:杨晓松
更多信息请下载全文后查看。

一种与辣椒疫病抗性连锁的SNP分子标记及其应用[发明专利]

一种与辣椒疫病抗性连锁的SNP分子标记及其应用[发明专利]

专利名称:一种与辣椒疫病抗性连锁的SNP分子标记及其应用专利类型:发明专利
发明人:贾佩陇,刘发万,叶昌荣,彭佩,田冰川,郭铭凯,唐顺学
申请号:CN202111647310.9
申请日:20211229
公开号:CN114292944A
公开日:
20220408
专利内容由知识产权出版社提供
摘要:本发明公开了一种与辣椒疫病抗性连锁的SNP分子标记及其应用,所述SNP分子标记位于如SEQIDNO.1所示的核苷酸序列的132bp处,多态性为G/T。

本发明方案利用所述分子标记,可以快速准确的检测辣椒的疫病抗性,可用于分子标记辅助选择育种,无需琼脂糖凝胶电泳,可快速、准确、高效、高通量的筛选抗性品种,加快辣椒抗疫病新品种的选育进程。

申请人:华智生物技术有限公司,云南省农业科学院园艺作物研究所
地址:410000 湖南省长沙市芙蓉区合平路618号
国籍:CN
代理机构:广州嘉权专利商标事务所有限公司
代理人:马俊
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛场辣椒的全基因组SNP标记分析
黄冬福;何建文;江叶莎;付文婷;范高领;吴迪;詹永发;石燕金;王楠艺
【期刊名称】《种子》
【年(卷),期】2022(41)4
【摘要】本试验以牛场辣椒为研究对象,利用Illumina HiSeq 2000平台进行全基因组重测序,通过生物信息学软件分析测序质量、SNP在染色体和基因组上的分布规律和特征。

结果表明,本研究获得了783349390条clean reads,基因组覆盖率98.23%,测序深度36.35×;12条染色体上共获得9141358个SNP,10号染色体上的纯合SNP最多,9号染色体上的纯合SNP最少;不同染色体上SNP密度分布不同;SNP分布在基因组上5个位置且数量不同,基因间(94.68%)>基因内(3.64%)>基因上游(0.9%)>基因下游(0.74%)>基因上游/下游;基因内SNP数量依次为内含子(281002)>外显子(51242)>剪接位点(288);外显子上有4种类型的SNP变异且数量不同,非同义突变(31265)>同义突变(19079)>终止子获得(710)>终止子缺失(188);发生转换的SNP数量是颠换的1.99倍。

牛场辣椒SNP的出现频率为1个/366 bp,其中外显子上的51242个SNP具有开发成功能标记的潜力,外显子上SNP产生的710处终止子获得对基因功能研究具有重要意义。

【总页数】6页(P100-105)
【关键词】辣椒;重测序;SNP;分子标记数量;分布特征
【作者】黄冬福;何建文;江叶莎;付文婷;范高领;吴迪;詹永发;石燕金;王楠艺
【作者单位】贵州省农业科学院辣椒研究所;遵义市农业农村局
【正文语种】中文
【中图分类】S641.3
【相关文献】
1.利用高密度SNP标记分析中国荷斯坦牛基因组近交
2.基于SNPs全基因组测序技术对泰国辣椒地方品种遗传多样性分析和辣椒素含量关联分析
3.基于全基因组SNP分析辣椒亲本间遗传距离与产量性状杂种优势的关系
4.基于SNP标记的小麦籽粒性状全基因组关联分析
5.基于全基因组重测序SNP标记的148份马铃薯种质遗传多样性分析
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档