关于复数的一个充要条件及其应用
复数相等的充要条件及应用
复数相等的充要条件及应用一.复数相等的充要条件1.充要条件如果两个复数的实部与虚部分别相等,我们就说这两个复数相等.即复数z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ),那么z 1=z 2 a 1=a 2且b 1=b 2.2.注意点(1)一般地说,两个复数只能说是相等或不相等,而不能比较大小.(2)利用复数相等的充要条件解答问题时,这类问题往往容易忽略题意中给出的条件,得出错误的结论.应引起重视,认真审题,理清题目中给出的条件后再加以分析求解.二.复数相等的充要条件的应用复数相等的充要条件的用途非常广泛,是复数问题实数化的主要解题途径之一,要加以切实地掌握.1.参数取值问题例1.已知abib a b a b ab a +++++22222=i i 23827+-,求实数a ,b 的值. 分析:通过复数的四则运算,结合两个复数相等的充要条件加以求解实数a ,b 的值.解析:已知等式左边=abib a abi b a ++-+)()()(22=abi b a abi b a abi b a ++-+++)())((=a+b -abi , 而等式右边=i i 23827+-=)23)(23()23)(827(i i i i -+--=137865i -=5-6i , 那么有a+b -abi=5-6i ,由两个复数相等的充要条件可得⎩⎨⎧==+65ab b a ,解得⎩⎨⎧==23b a 或⎩⎨⎧==32b a . 点评:要求两个未知数的值,必须列出两个方程,这可以由两个复数相等的充要条件而得到.其关键是对式子进行变形.在变形中,可以结合复数的四则运算,也可以结合相应的公式加以变形.变式练习1:若(2x -y )-(x+2y )i=-1+2i (x ,y ∈R ),则x+y 等于______. 答案:-57. 2.二次方程问题例2.若方程(1+i )x 2-2(a+i )x+(5-3i )=0(a ∈R )有实数解,求实数a 的值. 分析:设原方程的实数解为x 0,代入后整理,利用复数相等的充要条件可得有关x 0的解,并结合题目条件求解对应的实数a 的值.解析:由原方程整理可得(x 2-2ax+5)+(x 2-2x -3)i=0,设原方程的实数解为x 0,代入上式可得(x 02-2ax 0+5)+(x 02-2x 0-3)i=0,根据复数相等的充要条件,可得⎩⎨⎧=--=+-032052020020x x ax x ,由方程x 02-2x 0-3=0,解得x 0=3或x 0=-1,把x 0=3或x 0=-1分别代入方程x 02-2ax 0+5=0,可得a=37或a=-3. 点评:对于复系数(系数不全为实数)的一元二次方程的实根问题,一般把实根代入方程,再利用复数相等的充要条件建立相应的关系式来分析与求解.变式练习2:关于x 的方程3x 2-a 2x -1=10i -ix -2ix 2有实数根,求实数a 的值. 答案:a=11或a=-715. 3.方程组问题例3.已知关于x ,y 的方程组⎩⎨⎧-=+--+--=+-ii b y x ay x i y y i x 89)4()2()3()12(有实数解,求实数a ,b 的值.分析:把问题中的方程组有实数解问题转化为复数相等的问题,根据复数相等的充要条件加以判断求值.解析:由方程(2x -1)i=y -(3-y )i 可得⎩⎨⎧--==-)3(112y y x ,解得⎪⎩⎪⎨⎧==425y x , 把⎪⎩⎪⎨⎧==425y x 代入方程(2x+ay )-(4x -y+b )i=9-8i ,可得(5+4a )-(6+b )i=9-8i ,则有⎩⎨⎧-=+-=+8)6(945b a ,解得⎩⎨⎧==21b a .点评:一般情况下,一个有关复数的方程,相当于两个实数方程,能求出两个未知数.而用复数相等的条件,将复数问题转化为实数来解决,这是解决复数问题最基本也是最重要的思想方法.变式练习3:满足方程组⎪⎩⎪⎨⎧-=+=|23||21|1||z z z 的复数z 的集合是______. 答案:{21+23i ,21-23i}. 4.不等问题例4.使不等式m 2-(m 2-3m )i<(m 2-4m+3)i+10成立的实数m 的取值集合为______. 分析:要使两个复数可以比较大小,那么这两个复数都是实数,根据复数的实部与虚部的关系及不等式条件,从而联立不等式求解.解析:因为只有两个复数均为实数时,才能比较大小,所以由条件得⎪⎩⎪⎨⎧<=+-=-1003403222m m m m m ,即⎪⎩⎪⎨⎧<<-====10103130m m m m m 或或,解得m=3,故填答案:{3}.点评:只有两个复数均为实数时才能比较大小,所以问题中的不等式就转化为两端必须同时为实数,并比较大小.把复数问题实数化是解决此类不等问题的关键所在.变式练习4:已知复数z=k2-3k+(k2-5k+6)i<0,则实数k=______.答案:2.。
复数用法
1.A和AN的用法:词第一个字母是原音字母(a e i o u)用an.没有的话就用a2.关于复数的用法:一、最常见的名词复数(Plural)就是在单数(Singular)名词后边加上一个sboy boyscat catsroom roomshorse horsestree treesrose roses二、如果名词是以sh,ch,s或x结尾的话,那就要在单数的后面加上eslash lashes 鞭子push pushesbranch branchesmatch matchescoach coaches 教练gas gasesass asses驴子class classesbox boxesfox foxes三、如果名词结尾是一个子音(consonant,就是除了a,e,i,o,u之外的字母)加一个y,那就要将y换成i,再加上esbaby babiesfamily familiespony poniescity citiescountry countries四、可是,如果名词结尾是一个母音(vowel,就是a,e,i,o,u)加一个y,那只要在单数词后加一个s就成了play playsway waysvalley valleys 山谷donkey donkeystoy toysboy boysguy guys五、当单数名词的结尾是f或fe时,复数的写法就是将f改为v,再加esthief thievesshelf shelvesleaf leavescalf calveshalf halveswolf wolveswife wiveslife lives可是,f结尾的单数字,有许多只需加个s就成复数(你看,这又是英文的bugs)roof roofshoof hoofschief chiefscliff cliffsgulf gulfs六、结尾是o的单数词,一部份只加s就成复数词,但有的却需加es,真令人捉摸不定呀piano pianosphoto photosbamboo bambooszoo zooskangaroo kangaroos 袋鼠mulatto mulattos白黑混血儿hero heroesmango mangoespotato potatoesvolcano volcanoesnegro negroes黑人cargo cargoesecho echoesbuffalo buffaloestomato tomatoesmosquito mosquitoes七、由于古老传统的原因,一些单数词得加en才能变成复数词(鬼知道是什么原因):ox oxenchild children (你看,这个就不守规矩了,不是加en ,是ren呀)brother brethren (哎呀,这个这个……是bre,不是bro)八、一些单数词得改头换面一番,才能变成复数词的哦:analysis analyses 分析basis bases基础datum data数据foot feetformula formulae/formulas 公式goose geeselouse lice虱子man menmouse micemedium media/mediums媒介memorandum memoranda/memorandums 备忘录parenthesis parentheses 圆括号phenomenon phenomena现象radius radii 半径tooth teethwoman women九、有些名词是单数、复数不分的,很可爱是吗?deerfishcannonsheepsalmon 鲑鱼trout鳟鱼(许多鱼类都是这么"可爱"的呀。
高中数学竞赛第十五章 复数【讲义】
第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)
人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。
要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。
全体复数所成的集合叫做复数集,用字母C 表示。
要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。
) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
复数的有关概念
复数的有关概念[重点难点]1.复数的定义:形如a+bi(a,b∈R)的数叫做复数。
a叫做复数的实部,b叫做复数的虚部。
复数的分类如下:a+bi(a,b∈R)2.复数相等的充要条件设a,b,c,d∈R, 则a+bi=c+di a=c且b=d。
特别地:a+bi=0 a=b=0。
应当理解:(1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样。
(2)复数相等的充要条件是将复数转化为实数解决问题的基础。
3.复数的几何表示(1)坐标表示:在复平面内以(a,b)为坐标的点Z表示复数z=a+bi。
(2)向量表示:以原点O为起点,点Z(a,b)为终点的向量表示复数z=a+bi。
向量的长度叫做复数a+bi的模,记作|a+bi|。
V=||=|z|=≥0。
应当理解:10向量可以平移,只有位置向量零向量除外可以与点Z(a,b)以及复数z=a+bi有一一对应的关系。
20两个复数不全是实数时不能比较大小,但它们的模可以比较大小。
例题选讲:例1.实数m取何值时,复数z=(m2-m-2)+(m2-3m+2)i是(1)实数;(2)虚数;(3)纯虚数。
解:(1)当m2-3m+2=0即m=1或m=2时,z为实数;(2)当m2-3m+2≠0即m≠1且m≠2时,z为虚数;(3)当即m=-1时,z为纯虚数。
例2.已知复数z=(3m2-5m+2)+(m-1)i (m∈R) 若所对应的点在第四象限,求m的取值范围。
解:∵=(3m2-5m+2)-(m-1)i∴解得m>1。
∴m∈(1,+∞)为所求。
例3.已知方程2x2-(2i-1)x+m-i=0有实根,求实数m。
解:设实根为x0, 则2x02-(2i-1)x0+m-i=0,即2x02+x0+m-(2x0+1)i=0∴解得∴m=0为所求。
例4.已知z1=3-4i, z2=2-x-1+4i(x∈R), 且|z2|≤|z1|,求x的取值范围。
解:∵|z1|==5,|z2|=。
∴≤5, 解之得x≥-2。
复数相等的充要条件复数相等原则解复数相等问题的方法步骤
一、复数相等的充要条件
1.如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。
特殊地,a,b∈R时,a+bi=0a=0,b=0.
2.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
3.一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
二、复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
三、解复数相等问题的方法步骤:
1.把给的复数化成复数的标准形式;
2.根据复数相等的充要条件解之。
复数知识点
§15. 复 数 知识要点1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ;④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义:0==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且.⑷两个复数,如果不全是实数,就不能比较大小.注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数]2若21z z ,则021 z z -.(√)②若Cc b a ∈,,,则0)()()(222=-+-+-a c c b b a 是cb a ==的必要不充分条件.(当22)(ib a =-,0)(,1)(22=-=-a c c b 时,上式成立)2. ⑴复平面内的两点间距离公式:21z z d -=.其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00 r r z z =-. ⑵曲线方程的复数形式:①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②21z z z z -=-表示线段21z z 的垂直平分线的方程. ③212121202ZZ z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,).④),(2121202z z a a z z z z =---表示以21ZZ ,为焦点,实半轴长为a 的双曲线方程(若212z z a=,此方程表示两条射线).⑶绝对值不等式:设21z z ,是不等于零的复数,则①212121z z z z z z +≤+≤-.左边取等号的条件是),且(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. ②212121z z z z z z +≤-≤-.左边取等号的条件是),(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. 注:nn n A A A A A A A A A A 11433221=++++- .3. 共轭复数的性质:zz = 2121z z z z +=+a z z 2=+,i 2b z z =-(=z a + b i ) 22||||z z z z ==⋅2121z z z z -=- 2121z z z z ⋅=⋅2121z z z z =⎪⎪⎭⎫ ⎝⎛(02≠z ) n n z z )(=注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的] 4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z nn②对任何z ,21,z z C∈及+∈N n m ,有③nn n nm nm nm nmz z z z zz zz z 2121)(,)(,⋅=⋅==⋅⋅+注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142=-=i i 若由11)(212142===i i 就会得到11=-的错误结论.②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法.⑵常用的结论:1,,1,,143424142=-=-==-=+++nn n n ii i i i i i)(,0321Z n iiii n n n n ∈=++++++i ii i ii i i -=+-=-+±=±11,11,2)1(2若ω是1的立方虚数根,即i2321±-=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件:)(0,01,1,,121223Z n n n n∈=++=++===++ωωωωωωωωωω①z z R z =⇔∈.②若0≠z ,z 是纯虚数0=+⇔z z .⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:||||z z =.6. ⑴复数的三角形式:)sin (cos θθi r z +=. 辐角主值:θ适合于0≤θ<π2的值,记作zarg .注:①z 为零时,z arg 可取)2,0[π内任意值. ②辐角是多值的,都相差2π的整数倍. ③设,+∈R a 则πππ23)arg(,2arg ,)arg(,0arg=-==-=ai ai a a .⑵复数的代数形式与三角形式的互化:)sin (cos θθi r bi a +=+,22bar +=,rb ra ==θθsin ,cos .⑶几类三角式的标准形式:)]sin()[cos()sin (cos θθθϑ-+-=-i r i r )]sin()[cos()sin (cos θπθπθθ+++=+-i r i r)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r)]2sin()2[cos()cos (sin θπθπθθ-+-=+i r i r7. 复数集中解一元二次方程:在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根ab x 22,1∆±-=;若∆=0,则有二相等实数根ab x 22,1-=;若∆<0,则有二相等复数根aib x 2||2,1∆±-=(2,1x 为共轭复数).②当c b a ,,不全为实数时,不能用∆方程根的情况.③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立. 8. 复数的三角形式运算:)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ-+-=++i r r i r i r棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r nn+=+第三章 数系的扩充与复数一、基础知识【理解去记】1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
第17章复数复习
( 3) 若复数Z a ( a 3) i ( a R, i为虚数单位)为纯虚数
二、计算
2 2 2 ( 1 ) 3 (cos i sin ) (cos i sin ) 3 3 3 3 3 ( 2) ( 3) ( 6 (cos70 i sin70 )
0 0 0 0
2 m 4m 3 0 ( 3 )当 2 时,即m 1时Z是纯虚数 m 2m 3 0 2 2
例2已知(x+y)+(2x-1)i=-4+6i 求实数x,y 的值
x y 4 解:由已知得 2 x 1 6 7 15 解得:x ,y 2 2
在复平面上对应的点位 于第四象限,求 m的取值范围。
例4计算: ( 1 ) ( 2 3i ) (1 5i ) ( 2 i ) ; ( 2) ( 2 i ) (1 i ) 1 2i
2 2 50 2
( 3)(3 i )(3 i ) (1 i ) ; ( 4)1 i i i
7、Z . a bi, Z a bi
Z Z 2a; Z Z 2bi
1 ) 8、( Z1 Z 2 Z1 Z 2 ( 2) Z 1 Z 2
Z Z
1
2
10.两复数的乘除法
(a+bi)(c+di) =(ac-bd)+(bc+ad)i
ac bd bc ad 2 i (a+bi)÷(c+di)= 2 2 2 c d c d
复习17章复数及 其应用(2课时)
铜山中等专业学校幼教部对口升学二年级 课件制作人 李巧玲
1.复数的概念
2.有关的充要条件
复数及其几何意义
复数及其几何意义核心知识点一:数系的扩充及复数的引入1. 数系的扩充自然数2. 复数的概念:(1)定义:形如a +b i (a ,b ∈R)的数叫做复数,其中i 叫做虚数单位,满足i 2=-1,a 叫做复数的实部,b 叫做复数的虚部。
(2)表示方法:复数通常用字母z 表示,即z =a +bi (a ,b ∈R ),这一表示形式叫做复数的代数形式。
3. 复数的分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数;0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数。
4. 复数集:(1)定义:全体复数所构成的集合叫做复数集。
(2)表示:通常用大写字母C 表示。
(3)复数集、实数集、虚数集、纯虚数集之间的关系:5. 复数相等的充要条件:复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等。
核心知识点二:复数的几何意义1. 复平面思考:实轴上的点表示实数,虚轴上的点表示虚数,这句话对吗?提示:不正确。
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数。
2. 复数的几何意义3. 复数的模(1)定义:向量OZ 的模叫做复数z =a +bi 的模。
(2)记法:复数z =a +b i 的模记为|z |或|a +b i|且|z |=22b a +。
例题1 已知复数z =1672-+-a a a +(a 2-5a -6)i (a ∈R ),试求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数。
解:(1)当z 为实数时,则⎪⎩⎪⎨⎧≠-=--,01,06522a a a ∴⎩⎨⎧±≠=-=,1,61a a a 或∴当a =6时,z 为实数。
(2)当z 为虚数时,则⎪⎩⎪⎨⎧≠-≠--,01,06522a a a ∴⎩⎨⎧±≠≠-=,1,61a a a 且 ∴当a ≠±1且a ≠6时,z 为虚数。
(完整版)复数知识点归纳
复数【知识梳理】一、复数的根本概念1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四那么运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念〔1〕定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。
全体复数所成的集合C 叫做复数集。
复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否那么不是代数形式〔2〕分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数?虚数?纯虚数?二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚局部别相等注意:只有两个复数全是实数,才可以比拟大小,否那么无法比拟大小例题:0)4()3(=-+-+i x y x 求y x ,的值三、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅ 四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系〔复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量〕相等的向量表示同一个复数例题:〔1〕当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上〔2〕复平面内)6,2(=→AB ,→→AB CD //,求→CD 对应的复数3、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =假设bi a z +=1,di c z +=2,那么21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:i z +=2,求i z +-1的值五、复数的运算〔1〕运算法那么:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(dc i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= 〔2〕OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.六、常用结论〔1〕i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)i i 2)1(2=+,i i 2)1(2-=-(3)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√〞或“×〞)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比拟大小.( )(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.() 【考点自测】1.(2021·安徽)设i是虚数单位,那么复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2021·课标全国Ⅰ)复数z满足(z-1)i=1+i,那么z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.假设C为线段AB的中点,那么点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+ia,b∈R a+i=2-b i,那么(a+b i)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.(1+2i)=4+3i,那么z=________.【题型分析】题型一复数的概念例1z=a-(a∈R)是纯虚数,那么a的值为()(2)a∈R,复数z1=2+a i,z2=1-2i,假设为纯虚数,那么复数的虚部为()A.1B.iC.(3)假设z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,那么“m=1〞是“z1=z2〞的()引申探究1.对本例(1)中的复数z,假设|z|=,求a的值.2.在本例(2)中,假设为实数,那么a=________.思维升华解决复数概念问题的方法及考前须知(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)假设复数z=(x2-1)+(x-1)i为纯虚数,那么实数x的值为()A.-1B.0C.1D.-1或1(2)(2021·浙江)i是虚数单位,a,b∈R,那么“a=b=1〞是“(a+b i)2=2i〞的()题型二复数的运算命题点1复数的乘法运算例2(1)(2021·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2021·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2021·湖南)=1+i(i为虚数单位),那么复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2021·天津)i是虚数单位,假设复数(1-2i)(a+i)是纯虚数,那么实数a的值为________.(2)(2021·江苏)复数z=(5+2i)2(i为虚数单位),那么z的实部为________.命题点4复数的综合运算例5(1)(2021·安徽)设i是虚数单位,表示复数zz=1+i,那么+i·等于()(2)假设复数z满足(3-4i)z=|4+3i|,那么z的虚部为()A.-4B.-C.4D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四那么运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法那么进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2021·山东)假设复数z满足=i,其中i为虚数单位,那么z等于()A.1-iB.1+iC.-1-iD.-1+i(2)2021=________.(3)+2021=________.题型三复数的几何意义例6(1)(2021·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,假设复数z满足|z-z1|=|z-z2|=|z-z3|,那么z 对应的点为△ABC的()思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,那么图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.【思想与方法】解决复数问题的实数化思想典例x,y为共轭复数,且(x+y)2-3xy i=4-6i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的根本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最根本的思想方法. (2)此题求解的关键是先把x、y用复数的根本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)此题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.z=a+b i(a,b∈R z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两局部去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法那么,其方向是应注意的问题,平移往往和加法、减法相结合.【失误与防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比拟大小.a+b i(a,b∈R)中的实数b,即虚部是一个实数.【稳固练习】1.(2021·福建)假设(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),那么a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4z=+i,那么|z|等于()A.B.C.3.(2021·课标全国Ⅱ)假设a为实数,且(2+a i)(a-2i)=-4i,那么a等于()4.假设i为虚数单位,图中复平面内点Z表示复数z,那么表示复数的点是()A.EB.FC.GD.H5.(2021·江西)是z的共轭复数,假设z+=2,(z-)i=2(i为虚数单位),那么z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2021·江苏)设复数z满足z2=3+4i(i是虚数单位),那么z的模为________.=a+b i(a,b为实数,i为虚数单位),那么a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,那么实数m的取值范围是________.9.计算:(1);(2);(3)+;(4).z1=+(10-a2)i,z2=+(2a-5)i,假设1+z2是实数,求实数a的值.【能力提升】z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,那么λ的取值范围是()A.[-1,1]B.C.D.f(n)=n+n(n∈N*),那么集合{f(n)}中元素的个数为()z=x+y i,且|z-2|=,那么的最大值为________.a∈R,假设复数z=+在复平面内对应的点在直线x+y=0上,那么a的值为____________.15.假设1+i是关于x的实系数方程x2+bx+c=0的一个复数根,那么b=________,c=________. 【稳固练习参考答案】1A.2.B.3.B..5.D.6..7.3.8.m<.9.解(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.10.解1+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵1+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3.11.解析由复数相等的充要条件可得化简得4-4cos2θ=λ+3sinθ,由此可得λ=-4cos2θ-3sinθ+4=-4(1-sin2θ)-3sinθ+4=4sin2θ-3sinθ=42-,因为sinθ∈[-1,1],所以4sin2θ-3sinθ∈.答案C12.解析f(n)=n+n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…∴集合中共有3个元素.答案 C13.解析∵|z-2|==,∴(x-2)2+y2max==.14.解析∵z=+=+i,∴依题意得+=0,∴a=0.15.解析∵实系数一元二次方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知,∴b=-2,c=3.。
第四节 复数的概念及其运算(知识梳理)
第四节复数的概念及其运算复习目标学法指导1.理解复数的基本概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.掌握复数代数形式的四则运算.4.了解复数代数形式的加、减运算的几何意义. 理解复数的有关概念是基础,解决复数问题的基本思路是把复数问题实数化.复数代数形式的运算类似多项式的运算,加法类似合并同类项,乘法类似多项式乘以多项式,除法类似分母有理化,因此要用类比的思想学习复数的运算问题.一、复数的有关概念1.复数的定义形如a+bi(a,b∈R)的数叫做复数,其中实部是a,虚部是b(i是虚数单位).2.复数的分类复数z=a+bi(a,b∈R)()()()()=0=0baba⎧⎪⎪⎧⎨⎪≠⎨⎪≠⎪⎪⎩⎩实数纯虚数虚数非纯虚数3.复数相等a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).4.共轭复数a+bi与c+di互为共轭复数⇔a=c且b=-d(a,b,c,d∈R).5.复数的模向量OZ u u u r的模叫做复数z=a+bi的模,记作|z|或|a+bi|,即|z|=|a+bi|=r=22a b+(r≥0,r,a,b∈R).二、复数的几何意义1.复平面的概念建立直角坐标系来表示复数的平面叫做复平面.2.实轴、虚轴在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数.3.复数的几何表示复数z=a+bi复平面内的点Z(a,b)平面向量OZ u u u r.三、复数的运算1.复数的加、减、乘、除运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则(1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i;(4)除法:12z z =i i a b c d ++=()()()()i i i i a b c d c d c d +-+-=22ac bd c d +++ 22bc adc d-+i(c+di ≠0). 2.复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 四、与复数运算有关的结论 1.(1±i)2=±2i.2.1i 1i +-=i,1i 1i-+=-i. 3.(a+bi)(a-bi)=a 2+b 2. 4.(a ±bi)2=a 2-b 2±2abi. 5.i i a b +=b-ai.概念理解(1)复数的代数形式z=a+bi(a,b ∈R),虚部是b 而不是bi,即实部和虚部都是实数.(2)一个复数若为纯虚数,则既要满足实数a=0,又要满足虚部b ≠0,两个条件缺一不可.(3)两个复数一般不能比较大小,只能说相等或不相等. (4)两个复数相等的充要条件是它们的实部与虚部分别相等. (5)虚轴上的点除原点外都表示纯虚数.(6)复平面内表示复数z=a+bi 的点Z 的坐标为(a,b),而不是(a,bi). 五、复数的模 1.复数的模的相关结论设z 1,z 2是任意两个复数, (1)|z 1·z 2|=|z 1|·|z 2|,|12z z |=12z z (|z 2|≠0).(2)|1n z |=|z 1|n (n ∈N *).(3)||z 1|-|z 2||≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线;②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线. 2.复数的模的几何意义(1)复数z=a+bi,则|z|表示在复平面所对应的点Z(a,b)到原点的 距离.(2)若复数z=a+bi,z 0=a 0+b 0i,则|z-z 0|表示复平面内两点(a,b)与(a 0,b 0)间的距离,即两个复数差的模就是复平面内与这两个复数对应的两点间的距离.六、与复数概念有关的结论1.实数集R 与虚数集都是复数集的真子集且互为补集,即R ∪{虚数}=C,R ∩{虚数}= .2.z=a+bi=0⇔a=b=0.3.复数能比较大小的充要条件是复数为实数.4.i 2=-1.5.i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i,i 4n +i 4n+1+i 4n+2+i 4n+3=0.6.共轭复数的性质设z=a+bi,z=a-bi(a,b∈R),则(1)z+z=2a,z-z=2bi;(2)z=z;(3)|z|=|z|=22+,z·z=a2+b2=|z|2=|z|2;a b(4)z∈R⇔z=z;(5)z与z在复平面内所对应的点关于实轴对称.1.(2019·全国Ⅱ卷)设z=i(2+i),则z等于( D )(A)1+2i (B)-1+2i(C)1-2i (D)-1-2i解析:z=i(2+i)=2i+i2=-1+2i,所以z=-1-2i,故选D.2.已知i为虚数单位,复数z1=a+i,z2=2-i,且|z1|=|z2|,则实数a的值为( C )(A)2 (B)-2 (C)2或-2 (D)±2或0解析:21a+41+,则a=±2.故选C.3.(2018·杭州高级中学月考)已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z的共轭复数为( B )(A)2-2i (B)2+2i(C)-2+2i (D)-2-2i解析:方程x2+(4+i)x+4+ai=0(a∈R)可化为x2+4x+4+i(x+a)=0,由复数相等的意义得2440,0,x x x a ⎧++=⎨+=⎩解得x=-2,a=2,方程x 2+(4+i)x+4+ai=0(a ∈R)有实根b,故b=-2, 所以复数z=2-2i,所以复数z 的共轭复数为2+2i. 故选B.4.(2019·杭州市第二学期高三教学质量检测)已知复数z=1+i(i 是虚数单位),则211z z -+等于( A )(A)i (B)-i (C)1+i(D)1-i解析:211z z -+= 12i 2i -++=(12i)(2i)5-+-=5i5=i.故选A.考点一 复数的概念及分类 [例1] 复数z=(m 2+m-6)i+27123mm m -++为纯虚数,则实数m 的值为( )(A)2 (B)-3 (C)4 (D)3或4解析:由227120,30,60,m m m m m ⎧-+=⎪+≠⎨⎪+-≠⎩得m=3或m=4.故选D.处理有关复数的基本概念问题,关键找准复数的实部和虚部,把复数问题转化为实数问题来解决.1.若复数m(m-2)+(m 2-3m+2)i 是纯虚数,则实数m 的值为( C ) (A)0或2 (B)2 (C)0 (D)1或2 解析:因为m(m-2)+(m 2-3m+2)i 是纯虚数,则()220,320,m m m m ⎧-=⎪⎨-+≠⎪⎩解得m=0.故选C. 2.复数z=(3-2i)i 的共轭复数z 等于( C )(A)-2-3i (B)-2+3i (C)2-3i (D)2+3i 解析:因为z=(3-2i)i=2+3i, 所以z =2-3i.故选C. 考点二 复数的几何意义[例2] (1)(2019·全国Ⅱ卷)设z=-3+2i,则在复平面内z 对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (2)若复数z 满足z=()2i2i -- (i 是虚数单位),则在复平面内,z 对应的点的坐标是( )(A)(425,325) (B)(-425,325) (C)(425,-325) (D)(-425,-325)解析:(1)由z=-3+2i,得z =-3-2i,对应点(-3,-2)位于第三象限.故 选C. 解析: (2)z=()2i2i --=i 44i 1+-=i 34i +=()i 34i 25-=425+325i, 所以在复平面内,z 对应的点的坐标是(425,325).故选A.判断复数所在平面内的点的位置的方法:首先将复数化成a+bi(a,b ∈R)的形式,其次根据实部a 和虚部b 的符号来确定点所在的象限及坐标.1.在复平面中,复数1-3i,(1+i)(2-i)对应的点分别为A,B,则线段AB 的中点C 对应的复数为( D )(A)-4+2i (B)4-2i (C)-2+i (D)2-i解析:(1+i)(2-i)=3+i,所以A,B 的坐标分别为(1,-3)和(3,1),所以线段AB 的中点C 的坐标为(2,-1),所以线段AB 的中点C 对应的复数为2-i,故选D.2.(2019·宁波高三上期末考试题)设i 为虚数单位,给定复数z=2(1i)1i-+,则z 的虚部为 ,模为 .解析:z=2(1i)1i-+=2i 1i -+=2i(1i)2--=-1-i, 故z 的虚部为-1,模为2.答案:-123.若复数z 满足|z-3i|=5,求|z+2|的最大值和最小值.解:由复数模的几何意义可知,|z-3i|=5表示以(0,3)为圆心,以5为半径的圆上的点.则|z+2|表示该圆上点到点(-2,0)的距离,由图可知,|z+2|的最大值为5+13,最小值为5-13.考点三 复数代数形式的运算[例3] (1)i 是虚数单位,复数7i34i ++等于( )(A)1-i (B)-1+i(C)1725+3125i (D)-177+257i (2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( )(A)-4 (B)-45 (C)4 (D)45解析:(1)复数7i 34i ++=()()()()7i 34i 34i 34i +-+-=2525i 25-=1-i.故选A.解析:(2)z=43i 34i +-=534i- =()()()534i 34i 34i +-+=()534i 25++=35+45i,所以复数z 的虚部是45,故选D.(1)复数的加法、减法、乘法运算可以类比多项式运算;复数除法运算的关键是分子、分母同乘以分母的共轭复数转化为复数的乘法运算,注意要把i 的幂化成最简形式.(2)将所求复数z 分离出来,利用复数运算法则求解.1.已知z=1i 1i+-,其中i 是虚数单位,则z+z 2+z 3+…+z 2 017的值为( C ) (A)1+i (B)1-i (C)i (D)-i解析:由于z=1i 1i+-=i, 所以z+z 2+z 3+…+z 2 017=504(i+i 2+i 3+i 4)+i=i, 故选C.2.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,z 1·z 2是实数,求z 2.解:由(z 1-2)(1+i)=1-i ⇒z 1=2-i, 设z 2=a+2i(a ∈R),则z 1·z 2=(2-i)(a+2i)=(2a+2)+(4-a)i, 因为z 1·z 2是实数,所以a=4⇒z 2=4+2i.。
复数复习(原创)
方法归纳总结
• 注意的问题: • (1)对于复数a+bi,既要从整体的角度去认识它, 把复数看成一个整体,又要从实部与虚部的角度 分解成两个部分去认识它,这是理解复数的重要 思路之一。 • (2)在复平面内,如果复数变量按某种条件变化, 那么对应的动点就构成具有某种特征的点的集合 或轨迹,这种数形的有机结合,成为复数问题转 化为几何问题的重要解题途径之一,注意数形结 合思想和转化思想的应用。
11.(2009 江西卷理)若复数 z ( x2 1) ( x 1)i 为纯虚数,则实数 x 的值为 A. 1 B. 0 C. 1 D. 1 或 1
12.(2009 湖北卷理)投掷两颗骰子,得到其向上的点数分别为 m 和 n,则复数 (m+ni)(n-mi)为实数的概率为 A、
1 3
(A)-1+3i (B)1-3i (C)3+i (D)3-i
9.(2009 安徽卷理)i 是虚数单位,若
1 7i a bi (a, b R ) ,则乘积 ab 的值是 2i
(D)15
(A)-15 (B)-3 (C)3 10.(2009 安徽卷文)i 是虚数单位,i(1+i)等于 A.1+i B. -1-i C.1-i D. -1+i
z 2.(2010 全国Ⅰ2,★☆☆)已知 , 2 i, 则复数z 1 i A. 1 3i B.1 3i C.3 i D.3 i
3.(2010广东,1,★☆☆)若复数z1=1+i,z2=3-i, 则z1·2= z A.4+2i B.2+i C.2+2i D.3+i
(完整版)复数知识点精心总结
复数知识点考试内容:复数的概念.复数的加法和减法.复数的乘法和除法.数系的扩充.考试要求:(1)了解复数的有关概念及复数的代数表示和几何意义.(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系到复数系的关系及扩充的基本思想.1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.⑵复数及其相关概念:① 复数—形如a + b i 的数(其中R b a ∈,);② 实数—当b = 0时的复数a + b i ,即a ;③ 虚数—当0≠b 时的复数a + b i ;④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i.⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示.⑶两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小.注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√)②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-,0)(,1)(22=-=-a c c b 时,上式成立)2. ⑴复平面内的两点间距离公式:21z z d -=.其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离.由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.②21z z z z -=-表示线段21z z 的垂直平分线的方程. ③212121202Z Z z z a a a z z z z ,)表示以且(φφ=-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,).④),(2121202z z a a z z z z ππ=---表示以21Z Z ,为焦点,实半轴长为a 的双曲线方程(若212z z a =,此方程表示两条射线).⑶绝对值不等式:设21z z ,是不等于零的复数,则①212121z z z z z z +≤+≤-.左边取等号的条件是),且(012πλλλR z z ∈=,右边取等号的条件是),(012φλλλR z z ∈=. ②212121z z z z z z +≤-≤-.左边取等号的条件是),(012φλλλR z z ∈=,右边取等号的条件是),(012πλλλR z z ∈=. 注:n n n A A A A A A A A A A 11433221=++++-Λ.3. 共轭复数的性质:z z = 2121z z z z +=+a z z 2=+,i 2b z z =-(=z a + b i ) 22||||z z z z ==⋅2121z z z z -=- 2121z z z z ⋅=⋅2121z z z z =⎪⎪⎭⎫ ⎝⎛(02≠z ) n n z z )(= 注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的] 4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z nn 43421②对任何z ,21,z z C ∈及+∈N n m ,有③n n n n m n m n m n m z z z z z z z z z 2121)(,)(,⋅=⋅==⋅⋅+注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142=-=i i 若由11)(212142===i i 就会得到11=-的错误结论.②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法.⑵常用的结论:1,,1,,143424142=-=-==-=+++n n n n i i i i i i i)(,0321Z n i i i i n n n n ∈=++++++i i i i i i i i -=+-=-+±=±11,11,2)1(2 若ω是1的立方虚数根,即i 2321±-=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件:①z z R z =⇔∈.②若0≠z ,z 是纯虚数0=+⇔z z .⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:||||z z =.6. ⑴复数的三角形式:)sin (cos θθi r z +=.辐角主值:θ适合于0≤θ<π2的值,记作z arg .注:①z 为零时,z arg 可取)2,0[π内任意值.②辐角是多值的,都相差2π的整数倍.③设,+∈R a 则πππ23)arg(,2arg ,)arg(,0arg =-==-=ai ai a a . ⑵复数的代数形式与三角形式的互化:)sin (cos θθi r bi a +=+,22b a r +=,r b r a ==θθsin ,cos . ⑶几类三角式的标准形式:)]sin()[cos()sin (cos θθθϑ-+-=-i r i r)]sin()[cos()sin (cos θπθπθθ+++=+-i r i r)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r)]2sin()2[cos()cos (sin θπθπθθ-+-=+i r i r7. 复数集中解一元二次方程:在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根a b x 22,1∆±-=;若∆=0,则有二相等实数根ab x 22,1-=;若∆<0,则有二相等复数根a i b x 2||2,1∆±-=(2,1x 为共轭复数). )(0,01,1,,121223Z n n n n ∈=++=++===++ωωωωωωωωωω②当c b a ,,不全为实数时,不能用∆方程根的情况.③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立.8. 复数的三角形式运算:)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r )]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ-+-=++i r r i r i r 棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r n n +=+。
复数及其运算-高中数学专题复习
复数及其运算知识精要复数的有关概念(一)规定:(1)1i 2-=,其中i 是一个新数.,叫做虚数单位; (2)0i 0=•,i 能与实数进行四则运算,如)R b (bi i b ∈=•,)R b (bi bi 0∈=+等.(二)复数的概念复数),(R b a bi a z ∈+=⎩⎨⎧mzb z a I —虚部——实部—Re 复数)R b ,a (bi a z ∈+=为虚数的充要条件是0≠b ;复数)R b ,a (bi a z ∈+=为纯虚数的充要条件是00a b =≠且;复数)R b ,a (bi a z ∈+=为实数的充要条件是0=b .(三)复数的分类⎩⎨⎧=≠=∈+时为纯虚数)(虚数实数复数0)0()0(),(a b b R b a bi a (四)例题选讲例、m 是什么实数时,复数i m m m m m z )2410(41222+-++--=分别是 (1)实数,(2)虚数,(3)纯虚数,(4)0. 解:)6)(4(Im ,4)3)(4(Re --=++-=m m z m m m z 64040)6)(4(0I )1(或实数:=⇒⎩⎨⎧≠+=--⇒=m m m m mz 464040)6)(4(0Im )2(-≠≠≠⇒⎩⎨⎧≠+≠--⇒≠m m m m m m z 且且虚数: 304)3)(4(0)6)(4(0Re 0Im )3(-=⇒⎪⎩⎪⎨⎧=++-≠--⇒⎩⎨⎧=≠m m m m m m z z 纯虚数:404)3)(4(0)6)(4(0Re 0Im 0)4(=⇒⎪⎩⎪⎨⎧=++-=--⇒⎩⎨⎧==m m m m m m z z :(五)两个复数相等定义:如果两个复数),(1R b a bi a z ∈+=和),(2R d c di c z ∈+=的实部与虚部分别相等,即d b c a ==且,那么这两个复数相等,记作di c bi a +=+.例、已知i y i y x )3(2)2(--=+-,其中R y x ∈,,求x,y 的值.例、当x 、y 为何实数时,复数i y y x x z )32()23(22--++-=等于2? 问题:两个复数能比较大小吗?组织学生讨论得出:只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不相等两种关系,不能比较大小.概念巩固:判断下列说法是否正确:(1)i i 5253++大于(2)若复数21z z >,则21z z 、一定都是实数(3)若复数z 满足12<z ,则11<<-z复数的坐标表示一.复平面的概念(一)概念:复平面——建立了直角坐标系来表示复数的平面。
7.1.1 数系的扩充和复数的概念 课件(共52张PPT)
(3)纯虚数; 解 当mm22- +25mm- +16=5≠00, 时,复数 z 是纯虚数,∴m=-2.
(4)0.
解 当mm22- +25mm- +16=5=00, 时,复数 z 是 0, ∴m=-3.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.分别求满足下列条件的实数x,y的值. (1)2x-1+(y+1)i=x-y+(-x-y)i;
12345
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)数系的扩充. (2)复数的概念. (3)复数的分类. (4)复数相等的充要条件. 2.方法归纳:方程思想. 3.常见误区:未化成z=a+bi(a,b∈R)的形式.
4 课时对点练
PART FOUR
基础巩固
1.设a,b∈R,则“a=0”是“复数a+bi是纯虚数”的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.如果(m2-1)+(m2-2m)i>1,则实数m的值为__2___. 解析 由题意得mm22- -21>m1=,0, 解得 m=2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9.当实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i是下列数? (1)实数;
解 因为z>0,所以z为实数,
需满足m2m-+m3-6>0, m2-2m-15=0,
解得 m=5.
反思 感悟
复数分类问题的求解方法与步骤 (1)化标准式:解题时一定要先看复数是否为a+bi(a,b∈R) 的形式,以确定实部和虚部. (2)定条件:复数的分类问题可以转化为复数的实部与虚部应 该满足的条件问题,只需把复数化为代数形式,列出实部和 虚部满足的方程(不等式)即可.
复数相等的充要条件的一个应用
Z
的 轨迹在抛 物线
例
3
,
“
一 一 a 4
一
)上
,
动 点 的横 坐 标 应 满 足 a
:
;
、
b
“
(
.
x
(
)
。
在复 平面上
、
点p
心口所 表 示 的 复 数 分 别 记 作
,
:
2
二 2:
:
+
3 一 ’ 4 l
若 点 p 在
以 原 点为圆心 解
~
了
为 半径 的 圆 上 移 动
+ ;
; ,
求 点 Q 的轨 迹 一Biblioteka 定变;)变
。
哪个 正 确
。
2
.
、方 程 组
{
。
1 一
x
Z
一 夕 2一
c
0 0
a x
+ 西 夕+
~
只有一 组解
,
,
当
a
、
b
、
c
a 均不为 零 时 易 以 } l
、
’
l
b
;
l
[ 为边 组 成 的 三 角 形 是 c (
4
( 1 ) 等腰 三 角形
。
( 2 ) 直 角 三 角形
,
( 3 ) 等 边 三角形
t
_
。
如 已知直
把
x
一 1 一
和
夕二
代入
,
亨
~
x
中
.
,
得
1
2
,
因 而 得 出 距 离为 !
高中数学(新课标)选修2课件3.1.1数系的扩充和复数的概念
跟踪训练 1 (1)如果复数 z=a2+a-2+(a2-3a+2)i 为纯虚 数,那么实数 a 的值为( )
A.-2 B.1 C.2 D.1 或-2
解析:(1)由题意可知aa22+ -a3- a+2=2≠0, 0, 所以 a=-2. 答案:(1)A
(2)下列命题中: ①若 a∈R,则(a+1)i 是纯虚数. ②若 a,b∈R,且 a>b,则 a+i3>b+i2. ③若(x2-1)+(x2+3x+2)i 是纯虚数,则实数 x=±1. ④两个虚数不能比较大小.
【解析】 (1)若 z 为实数,
必须aa22- -51a≠-0.6=0. ∴aa=≠-±11. 或a=6, ∴当 a=6 时,z 为实数.
(2)若 z 为虚数,必须aa22--15≠a-0,6≠0, ∴aa≠ ≠- ±11且a≠6, . ∴当 a∈{a∈R|a≠±1 且 a≠6}时,z 为虚数. (3)若 z 为纯虚数,
跟踪训练 2 实数 x 分别取什么值时,复数 z=x2-x+x-3 6+(x2 -2x-15)i 是(1)实数?(2)虚数?(3)纯虚数?
解析:(1)要使 z 是实数,必须且只需xx+ 2-32≠x-0 15=0 , 解得 x=5.
(2)要使 z 为虚数,必须且只需xx+ 2-32≠x-0 15≠0 , 解得 x≠-3 且 x≠5.
a=0 a≠0
状元随笔 从代数形式可判定 z 是实数、虚数还是纯虚数.反
之, 若 z 是纯虚数,可设 z=bi(b≠0,b∈R) 若 z 是虚数,可设 z=a+bi(b≠0,a∈R) 若 z 是复数,可设 z=a+bi(a,b∈R)
知识点三 复数相等的充要条件 设 a,b,c,d 都是实数,那么 a+bi=c+di⇔_a_=__c_,__b_=. d
复数相等的充分必要条件
复数相等的充分必要条件复数是数学中一个重要的概念,复数之间的相等关系是复数学习的基础,也是数学中的重要理论。
在本文中,我们将深入探讨复数相等的充分必要条件,具体内容如下:一、复数的定义复数是由实数系统所扩充而来的数,由一个实部和一个虚部组成。
通常用“a+bi”表示一个复数,其中“a”是实部,即一个实数,“b”是虚部,即一个实数乘以“i”,其中“i”是一个虚数单位,满足“i²=-1”。
复数相等的定义是:对于两个复数a+bi和c+di,当且仅当它们的实部相等且虚部相等时,两个复数才相等。
即,当a=c且b=d时,有a+bi=c+di。
1.必要条件两个复数相等的必要条件是它们的实部和虚部分别相等,即a=c且b=d。
2.充分条件|a+bi|=|c+di|且Arg(a+bi)=Arg(c+di)。
|a+bi|表示复数a+bi的模,即复数的绝对值,满足|a+bi|²=a²+b²;Arg(a+bi)表示复数a+bi的幅角,即a+bi在复平面上的极坐标角度,满足tan(Arg(a+bi))=b/a,其中a≠0。
为了证明这个充分条件,我们需要先证明两个引理:引理1:两个复数相等,它们的模相等。
证明:假设两个复数a+bi和c+di相等,即a=c且b=d,那么它们的模分别为:|a+bi|²=a²+b²tan(Arg(a+bi))=b/a现在我们来证明充分条件:证明:我们将两个复数a+bi和c+di表示为极坐标形式:a+bi=r1(cosθ1+isinθ1)因为两个复数相等,所以r1=r2且θ1=θ2。
那么两个复数的模相等且幅角相等可以表示为:将a+bi和c+di分别带入公式,可得:tan(θ2)=d/c因此有θ1=θ2。
根据极坐标表示可以得到:r为复数的模,θ为复数的幅角。
显然,两个复数相等。
四、复数相等的应用1. 解析几何中的应用复数相等的定义和充分必要条件在解析几何中有广泛的应用。
高中数学竞赛讲义第十五章 复数【讲义】
第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算.便产生形如a+bi (a,b ∈R )的数,称为复数.所有复数构成的集合称复数集.通常用C 来表示. 2.复数的几种形式.对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射.因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量.因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式.若z=r(cos θ+isin θ),则θ称为z 的辐角.若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式.3.共轭与模,若z=a+bi,(a,b ∈R ),则=z a-bi 称为z 的共轭复数.模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z zz =⎪⎪⎭⎫ ⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=. 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k=0,1,2,…,n-1.7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m,当n ≥2时,有mn m m Z Z Z 1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等.9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根.11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根.12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用.例1 求证:当n ∈N +时,方程(z+1)2n +(z-1)2n=0只有纯虚根.例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值.2.复数相等.例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件.3.三角形式的应用.例4 设n ≤2000,n ∈N,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个?4.二项式定理的应用.例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+-5.复数乘法的几何意义.例6 以定长线段BC 为一边任作ΔABC,分别以AB,AC 为腰,B,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN.求证:MN 的中点为定点.例7 设A,B,C,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD.6.复数与轨迹.例8 ΔABC 的顶点A 表示的复数为3i,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹.7.复数与三角.例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0.例10 求和:S=cos200+2cos400+…+18cos18×200.8.复数与多项式.例11 已知f(z)=c 0z n +c 1z n-1+…+c n-1z+c n 是n 次复系数多项式(c 0≠0). 求证:一定存在一个复数z 0,|z 0|≤1,并且|f(z 0)|≥|c 0|+|c n |.9.单位根的应用.例12 证明:自⊙O 上任意一点p 到正多边形A 1A 2…A n 各个顶点的距离的平方和为定值.10.复数与几何.例13 如图15-2所示,在四边形ABCD 内存在一点P,使得ΔPAB,ΔPCD 都是以P 为直角顶点的等腰直角三角形.求证:必存在另一点Q,使得ΔQBC,ΔQDA 也都是以Q 为直角顶点的等腰直角三角形.例14 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.证明:ΔA 1A 2A 3为等边三角形.三、基础训练题1.满足(2x 2+5x+2)+(y 2-y-2)i=0的有序实数对(x,y)有__________组. 2.若z ∈C 且z2=8+6i,且z3-16z-z100=__________. 3.复数z 满足|z|=5,且(3+4i)•z 是纯虚数,则 z __________.4.已知iz 312+-=,则1+z+z 2+…+z1992=__________.5.设复数z 使得21++z z 的一个辐角的绝对值为6π,则z 辐角主值的取值范围是__________. 6.设z,w,λ∈C,|λ|≠1,则关于z 的方程z -Λz=w 的解为z=__________.7.设0<x<1,则2arctan=+-+-+2211arcsin 11x x x x __________. 8.若α,β是方程ax 2+bx+c=0(a,b,c ∈R )的两个虚根且R ∈βα2,则=βα__________. 9.若a,b,c ∈C,则a 2+b 2>c 2是a 2+b 2-c 2>0成立的__________条件.10.已知关于x 的实系数方程x 2-2x+2=0和x 2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m 取值的集合是__________.11.二次方程ax 2+x+1=0的两根的模都小于2,求实数a 的取值范围.12.复平面上定点Z 0,动点Z 1对应的复数分别为z 0,z 1,其中z 0≠0,且满足方程|z 1-z 0|=|z 1|,①另一个动点Z 对应的复数z 满足z 1•z=-1,②求点Z 的轨迹,并指出它在复平面上的形状和位置.13.N 个复数z 1,z 2,…,z n 成等比数列,其中|z 1|≠1,公比为q,|q|=1且q ≠±1,复数w 1,w 2,…,w n 满足条件:w k =z k +kz 1+h,其中k=1,2,…,n,h 为已知实数,求证:复平面内表示w 1,w 2,…,w n 的点p 1,p 2,…,p n 都在一个焦距为4的椭圆上. 四、高考水平训练题1.复数z 和cos θ+isin θ对应的点关于直线|iz+1|=|z+i|对称,则z=__________. 2.设复数z 满足z+|z|=2+i,那么z=__________.3.有一个人在草原上漫步,开始时从O 出发,向东行走,每走1千米后,便向左转6π角度,他走过n 千米后,首次回到原出发点,则n=__________.4.若12102)1()31()34(i i i z -+--=,则|z|=__________.5.若a k ≥0,k=1,2,…,n,并规定a n+1=a 1,使不等式∑∑==++≥+-nk k nk k k k k a aa a a 112112λ恒成立的实数λ的最大值为__________.6.已知点P 为椭圆15922=+y x 上任意一点,以OP 为边逆时针作正方形OPQR,则动点R 的轨迹方程为__________.7.已知P 为直线x-y+1=0上的动点,以OP 为边作正ΔOPQ(O,P,Q 按顺时针方向排列).则点Q 的轨迹方程为__________.8.已知z ∈C,则命题“z 是纯虚数”是命题“R zz ∈-221”的__________条件. 9.若n ∈N,且n ≥3,则方程z n+1+z n-1=0的模为1的虚根的个数为__________. 10.设(x2006+x2008+3)2007=a 0+a 1x+a 2x 2+…+a n x n,则2222543210a aa a a a --++-+…+a 3k -=++-++n k k a a a 222313__________. 11.设复数z 1,z 2满足z1•0212=++z A z A z ,其中A ≠0,A ∈C.证明: (1)|z 1+A|•|z 2+A|=|A|2; (2).2121Az Az A z A z ++=++12.若z ∈C,且|z|=1,u=z 4-z 3-3z 2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.13.给定实数a,b,c,已知复数z 1,z 2,z 3满足⎪⎩⎪⎨⎧=++===,1,1||||||133221321z z z z z zz z z 求|az 1+bz 2+cz 3|的值.三、联赛一试水平训练题1.已知复数z 满足.1|12|=+zz 则z 的辐角主值的取值范围是__________. 2.设复数z=cos θ+isin θ(0≤θ≤π),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以PQ,PR 为两边的平行四边形第四个顶点为S,则S 到原点距离的最大值为__________.3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z 1,z 2,…,z 20,则复数1995201995219951,,,z z z 所对应的不同点的个数是__________.4.已知复数z 满足|z|=1,则|z+iz+1|的最小值为__________. 5.设i w 2321+-=,z 1=w-z,z 2=w+z,z 1,z 2对应复平面上的点A,B,点O 为原点,∠AOB=900,|AO|=|BO|,则ΔOAB 面积是__________. 6.设5sin5cosππi w +=,则(x-w)(x-w 3)(x-w 7)(x-w 9)的展开式为__________.7.已知(i +3)m =(1+i)n(m,n ∈N +),则mn 的最小值是__________.8.复平面上,非零复数z1,z2在以i 为圆心,1为半径的圆上,1z •z 2的实部为零,z 1的辐角主值为6π,则z 2=__________. 9.当n ∈N,且1≤n ≤100时,n i ]1)23[(7++的值中有实数__________个. 10.已知复数z 1,z 2满足2112z z z z =,且31π=Argz ,62π=Argz ,π873=Argz ,则321z z z Arg+的值是__________. 11.集合A={z|z 18=1},B={w|w 48=1},C={zw|z ∈A,w ∈B},问:集合C 中有多少个不同的元素? 12.证明:如果复数A 的模为1,那么方程A ixix n=-+)11(的所有根都是不相等的实根(n ∈N +). 13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件?六、联赛二试水平训练题1.设非零复数a 1,a 2,a 3,a 4,a 5满足⎪⎪⎩⎪⎪⎨⎧=++++=++++===,)(41543215432145342312S a a a a a a a a a a a a a a a a a a 其中S 为实数且|S|≤2,求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上. 2.求证:)2(2)1(sin 2sinsin1≥=-⋅⋅⋅-n nn n n nn πππ. 3.已知p(z)=z n+c 1z n-1+c 2z n-2+…+c n 是复变量z 的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a 2+b 2+1)2<4b 2+1.4.运用复数证明:任给8个非零实数a 1,a 2,…,a 8,证明六个数a 1a 3+a 2a 4, a 1a 5+a 2a 6, a 1a 7+a 2a 8, a 3a 5+a 4a 6, a 3a 7+a 4a 8,a 5a 7+a 6a 8中至少有一个是非负数.5.已知复数z 满足11z 10+10iz 9+10iz-11=0,求证:|z|=1. 6.设z 1,z 2,z 3为复数,求证:|z 1|+|z 2|+|z 3|+|z 1+z 2+z 3|≥|z 1+z 2|+|z 2+z 3|+|z 3+z 1|.。
高中数学命题热点名师解密专题:复数的解题策略(有答案)
专题31 复数的解题策略一.【学习目标】1.理解复数的有关概念,掌握复数相等的充要条件,并会应用.2.了解复数的代数形式的表示方法,能进行复数的代数形式的四则运算. 3.了解复数代数形式的几何意义及复数的加、减法的几何意义,会简单应用. 二.知识点与方法总结 1.复数的有关概念(1)复数的概念形如a +b i(a ,b ∈R)的数叫做复数,其中a ,b 分别是它的实部和虚部,若b ≠0,则a +b i 为虚数,若a=0,则a +b i 为纯虚数,i 为虚数单位.(2)复数相等:复数a +b i =c +d i ⇔a =c ,b =d (a ,b ,c ,d ∈R). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(4)复数的模向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R)的模,记作|z |或|a +b i|,即|z |=|a +b i|. 2.复数的四则运算设z 1=a +b i,z 2=c +d i(a ,b ,c ,d ∈R),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2=ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0).3.两条性质(1)i 4n =1,i 4n +1=i,i 4n +2=-1,i 4n +3=-i,i n +i n +1+i n +2+i n +3=0(其中n ∈N *); (2)(1±i)2=±2i,1+i 1-i =i,1-i1+i =-i.4.方法规律总结(1).设z =a +b i(a ,b ∈R),利用复数相等的充要条件转化为实数问题是求解复数常用的方法. (2).实数的共轭复数是它本身,两个纯虚数的积是实数.(3).复数问题几何化,利用复数、复数的模、复数运算的几何意义,转化条件和结论,有效利用数和形的结合,取得事半功倍的效果. 三.典例分析 (一)复数的概念 例1.若复数(为虚数单位)在复平面内对应的点在虚轴上,则实数()A.B.2C.D.【答案】D【解析】复数在复平面内对应的点在虚轴上,则,故选练习1.若复数z=(3﹣6i)(1+9i),则()A.复数z的实部为21B.复数z的虚部为33C.复数z的共轭复数为57﹣21iD.在复平面内,复数z所对应的点位于第二象限【答案】C练习2.若复数(为虚数单位),则复数在坐标平面内对应点的坐标为()A.B.C.D.【答案】B【解析】z,则复数z在复平面内对应点的坐标是:(1,-1).故选:B.(二)复数的几何意义例2.已知复数在复平面内对应的点分别为,则()A.B.C.D.【答案】D【解析】∵复数在复平面内对应的点分别为(1,1),(0,1),∴=1+i,=i.∴.故选:D.练习1.复数在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】因为所以复数z在复平面所对应的点是(1,3)练习2.设复数满足,其中为虚数单位,则复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由(1+i)2•z=2+i,得2iz=2+i,∴,∴复数z对应的点的坐标为(,﹣1),位于第四象限.故选:D.练习3.已知,且,则实数的值为()A.0B.1C.D.【答案】C【解析】∵,∴∴=3,得,则,∴a=,故选:C.(三)复数的运算法则例3.计算(i为虚数单位),结果为()A.B.C.D.【答案】A【解析】=(11+2i)=-20-15i故选:A.练习1.复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】复数.在复平面内对应的点为(-1,2) 位于第二象限.故选B.练习2.已知复数是纯虚数,则()A.B.C.D.【答案】A【解析】依题意,由于为纯虚数,故,解得,故选A.练习3.定义,若展开式中一次项的系数为,则等于(为虚数单位)()A.B.C.1D.-1【答案】B(四)复数的模及几何意义例4.若复数,,其中是虚数单位,则的最大值为( )A.B.C.D.【答案】C【解析】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C练习1.已知复数,则A.B.C.1D.【答案】B【解析】,,则,故选:B.学-科网练习2.已知复数z1,z2在复平面内对应的点分别为A(-2,1),B(a,3).(1)若|z1-z2|=,求a的值;(2)复数z=z1·z2对应的点在第一、三象限的角平分线上,求a的值.【答案】(1)a=-3或a=-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合 ①, ②,命题得证.
这个性质用于解决复数或三角中的问题时 , 解
法简便奏效.
例 1 (1990 年全国高考题) 已知 sinα+ sinβ=
1 4
,cosα+ cosβ=
1 3
,求 tg (α+β) 的值.
解 设 z1 = cosα + isinα, z2 = cosβ + isinβ, 则
|
z3|
=
1
,
z
2 2
=
z1 z3 和
z2 +
z3 i =
i ,求这三个复数.
解 ∵ z2 + z3 i = i ,| z1| = | z2| = | z3| = 1 ,
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
2002 年第 8 期 数 学 通 讯
41
两道不等式题的统一推广
徐 昊 指导教师 宋 庆
(南昌大学附中高二 (1) 班 ,江西 南昌 330029)
本短文旨在建立以下
命题 已知 x , y ∈R + ,且 xy = 1.
若 λ>
1
,
则 1
1 +λx
+
1
1 +λy
≥λ2+
1;
若
0
<λ<
1 ,则1
1 +λx
+
1
1 +λy
≤λ2+
1.
证
1
1 +λx
+
1 1 +λy
=
2 +λ( x + y) (1 +λx) (1 +λy)
=
2 +λ( x + λ2 + 1 +λ( x
y) +
y)
=1-
λ2
λ2 - 1 + 1 +λ( x
+
y)
.
λ> 1
时
,
1
1 +λx
+
1 1 +λy
+
0.
08
%)
480
-
1]
= 61414. 5
(万元) ≈6 (万元) .
对于一个收入较高的人 , 一天只要抽掉一包单
价 25 元的“小熊猫”香烟 (情况往往不止如此) , 一月
就抽掉 750 元. 40 年下来 ,将抽去
a″480
=
750 0. 08 %
[
(
1
+ 0. 08 %) 480 - 1 ] = 438675 (元) ≈43 (万元) . 竟然高 达 40 多万 !
3 2
+
1 2
i , z3 =
1 2
-
3 2
i
.
例 3 (1995 年上海高考题) 已知| z1| = | z2| =
(万元) . 即便是一个收入较低的人 , 一天只抽掉一包单
价 3. 5 元的“石林”香烟 , 40 年下来也是一笔不小的
数目 : a′480
=
3. 5 ×30 0. 08 %
[
(1
习 ,分学科安排了带头人 , 组织实施研究性学习 , 教 师和同学认真探讨和实践 , 使研究性学习逐步落到 了实处. 高三 200201 班的赵德恩 、王传伟两位同学 把司空见惯的抽烟行为 、银行存款与数学知识结合
起来 ,建立了一个简单的数学模型 ,由此发现了惊人 的抽烟消费. 这是数学应用的一个简单例子 ,对学生 来说 ,这就是探索和研究 ,就是创新 ! 发现总属于善 于观察 、分析的有心之人 !
42
数 学 通 讯 2002 年第 8 期
抽烟中的数学
赵德恩 王传伟 指导教师 张国坤 李 晶
(曲靖一中 200201 班 ,云南 655000)
人们通常认为 , 抽烟有害健康. 换个角度想 , 一 个终生抽烟的人 , 要抽掉多少金钱呢 ? 按常规进行 思考 ,一个一般收入的人 ,如果每天抽一包单价 7 元 人民币的“红塔山”香烟 , 每月按 30 天计 , 则每月抽 去 210 元 ,每年抽去 210 ×12 = 2520 元 (除去闰年多 出的一个月) ,再乘以他一生的烟龄即可算出他一生 抽烟抽去了多少钱.
|
z1 +
z2|
=
5 12
|
zk|
( k = 1 ,2) ,
∴ ( z1 + z2) 2 =
5 12
2
z1 z2 ,
z1
z2
=
144 25
1 3
+
1 4
i
2
,
故
z1 z2
=
7 25
+
24 25
i
.
又 z1 z2 = cos(α+β) + isin (α+β) ,
所以
tg (α+β)
=
24 7
.
例 2 三个复数 z1 , z2 , z3 满足| z1| = | z2| =
(收稿日期 :2001 - 12 - 26)
1且
z1 + z2 =
1 2
+
3 2
i
,求
z1 和
z2 的值.
解 ∵| z1| = | z2| = | z1 + z2| = 1 ,
∴ z1·z2 = ( z1 + z2) 2 = -
1 2
+
3 2
i
,
∴ z1 和 z2 是 方 程 z2 -
1 2
+
3 2
我们学习数列后 ,从数学的角度思考 , 如果此人 自觉戒烟 ,每月底将花在抽烟上的钱存入银行. 假如 他每月月底存入 a 元 ,按复利 (利滚利) 计算 ,设月利 率为 x ,他在戒烟后的第 n 个月底在银行所拥有的 钱数为 an 元 ,
则 a1 = a , an + 1 = an (1 + x ) + a ( n ∈N+ ) . 下面 构 造 辅 助 性 的 等 比 数 列 求 数 列 { an } 的 通项. 令 an + 1 + t = an (1 + x) + a + t = (1 + x) ( an +
证 ① ∵ ( z1 + z2) 2 =λ2 z1 z2 , ∴ ( z 1 + z 2) 2 =λ2 z 1 z 2 , 两式相乘得 | z1 + z2| 4 =λ4| zk| 4 , ∴| z1 + z2| =λ| zk| (其中 λ∈R + , k = 1 ,2) .
② ∵|
z1|
=|
z2|
b +
a
+
3
a
c +
b
>
3
3
2
2
.
参考文献
[1 ] 安振平. 均值不等式的妙用. 数学通讯 , 2001
(18) .
(收稿日期 :2001 - 10 - 17)
关于复数的一个充要条件及其应用
宁卫钦
(浦北县浦北中学高三 (3) 班 ,广西 535300)
命题 z1 , z2 是两个模相等的非零复数 , 则 ( z1 + z2) 2 =λ2 z1 z2 的充要条件是 | z1 + z2 | = λ| zk | (其中 λ∈R + , k = 1 ,2) .
仅一个人的数目就如此惊人 ,而我国烟民上亿 , 被他们抽掉的钞票显然是一个更惊人的数字 ! 香烟 之有害 ,由此可见一斑.
抽烟的朋友们 ,为了自己的健康 ,为了国家的发 展 ,戒烟吧 !
教师推荐评语 :研究性学习已被正式列入新的 教学大纲和新的课程标准 , 云南曲靖一中作为省级 重点中学 , 于 2001 年 9 月开始起动实施研究性学
代入数据 ,即可求值.
对本文开头的那个人 , a = 210 元 , 取烟龄 m =
40 年 , 取 月 利 率 x = 0. 08 % , 则 a12 ×40 = a480 =
210 0. 08 %
[
(1
+
0.
08
%)
480
-
1] =
…= 122829 (元) ≈13
∴| z2 + z3 i| = | z2| = | z3 i| , ∴ ( z2 + z3 i) 2 = z2 z3 i = - 1.
由
z2 + z3 i = i , 得
z2 = -
3 2
+
1 2
i,
或
z2 z3 i = - 1 ,
z3 =
1 2
-
3 2
i
,
z2 =
3 2
+
1 2
i, 代入
z
2 2
=
z1 z3 求得
z1 = 1.
z3 =
1 2
+
3 2
i.
故
z1 = 1 , z2 =
3 2
+
1 2
i , z3 =
1 2
+
3 2
i
,
或 z1 = 1 , z2 = -
t) ,则可求出
t=
a x
,
∴ an +
a x
=
a1 +
a x