同步时序逻辑电路的分析方法

合集下载

《数字逻辑基础》-第03章(2)

《数字逻辑基础》-第03章(2)

步骤4 步骤 画出工作波形图 由状态转换图容易直接画出: 由状态转换图容易直接画出:
1 2 3 4 5 6 7
CP Q1 Q2 Q3 Y
注意:由于采用下降沿触发型触发器,状态的转换发生于 的 注意:由于采用下降沿触发型触发器,状态的转换发生于CP的 下降沿时刻。 下降沿时刻。
分析图示同步时序电路的逻辑功能。 例:分析图示同步时序电路的逻辑功能。 步骤1 写出输出函数、 步骤 写出输出函数、激励函数 及次态函数
&
L
≥1
L = Q2 Q1 + Q2 Q0 + Q2Q1Q0
T2 = xQ1Q0 T1 = xQ1Q0 + xQ1
T0 = xQ1 + ( x ⊕ Q0 )
n Q2 +1 = T2Q2 + T2 Q2
Q2 T2
Q2
Q1 T1
Q1
Q0 T0
Q0
CP
& &
≥1
≥1
= xQ1Q0 Q2 + xQ1Q0 Q2 Q1n +1 = T1Q1 + T1Q1
D1 = xQ2 + xQ1
n +1 次态函数: 次态函数: Q2 = D2
由电路看出
CP
Q2 D2
Q2
Q1 D1
Q1
z &
Q1n +1 = D1
即特征方程

激励函数代入次态函数得: 函数代入次态函数得 将激励函数代入次态函数得:
Q2n +1 = xQ2 + xQ1 Q
n +1 1

Байду номын сангаас
≥ 1
= xQ2 + xQ1

时序逻辑电路的分析方法(新)

时序逻辑电路的分析方法(新)

J1 = Q3Q2 ; J2 = Q1 ;
J3 = Q2Q1 ;
K1 = 1 K2 = Q3 Q1 K3 = Q2
Q1n+1 = J1Q1+K1Q1 =Q3Q2 Q1 =(Q3+Q2 ) Q1
3) 状态方程 Q2n+1 = J2Q2+K2Q2 =Q2Q1+Q3Q2Q1
Q3n+1 = J3Q3+K3Q3 =Q3Q2Q1+Q3Q2
置入
(Q3Q2Q1Q0 / Y)
(检查自启动情况略)
(二)M >N 的情况(用多片N进制计数器组合构成)
例1 试用两片74LS160构成百进制计数器。
1、连接线路
P.264.
图 5.3.39
Y
C Q3 Q2 Q1 Q0 EP
LD 74LS160(2)ET
RD D3 D2 D1 D0 CP
2、连接方式与特点
Q3 Q2 Q1 Q0 CP0 74LS290 CP1
R01R02 S91S92
三、任意进制计数器的构成方法
用 N 进制计数器,构成 M 进制计数器 (一) M<N 的情况
1、复位法(即清零法) 利用第M+1个状态译码, 使 RD=0 , 不等下一个CP到来,电路立即回到0000状态。 第M+1个状态为暂态,不等稳定,就已消失。 电路输出 M个稳定状态, 是M进制计数器。
5-3-2 计数器
计数器
同步
二进制 十进制 任意进制
异步
二进制 十进制 任意进制
加法,减法,可逆 加法,减法,可逆
加法计数器:随cp的输入,电路递增计数 减法计数器:随cp的输入,电路递减计数 可逆计数器:随cp的输入,电路可增可减计数

同步时序逻辑电路的分析方法

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。

同步时序逻辑电路的分析方法同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。

1、基本分析步骤1)写方程式:输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。

驱动方程:各触发器输入端的逻辑表达式。

状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。

2)列状态转换真值表:将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。

如现态的起始值已给定时,则从给定值开始计算。

如没有给定时,则可设定一个现态起始值依次进行计算。

3)逻辑功能的说明:根据状态转换真值表来说明电路的逻辑功能。

4)画状态转换图和时序图:状态转换图:是指电路由现态转换到次态的示意图。

时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。

5)检验电路能否自启动关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。

解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。

因此,它是一个同步时序逻辑电路,时钟方程可以不写。

①写方程式:输出方程:驱动方程:状态方程:②列状态转换真值表:状态转换真值表的作法是:从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

依次类推,直到次态值又回到了第一个现态值“000”。

现态次态输出Y00101000110110010100010010101010001③逻辑功能说明:电路在输入第6个计数脉冲CP后,返回原来的状态,同时输出端Y 输出一个进位脉冲。

时序逻辑电路例题分析

时序逻辑电路例题分析

Q0 Q1 Q2 Q3
Q4 Q5 Q6 Q37
CP1
CP CP0
74LS90(个位 ) S9A S9B R0A R0B
CP1 74LS90(十位 ) CP0 S9AS9B R0AR0B
5-1 第五章 时序逻辑电路设计例题
(1) 根据任务要求,确定状态图
001
011
010
QA、QB、QC分别表示三个绕组A、
/0
/0
(a) 有效循环
/0 010 101
/1
(b) 无效循环
6.时序图
CP
Q 0
Q1 Q2
Y
7.电路功能
有效循环的6个状态,称为六进制同步计数器。当对第6个脉
冲计数时,计数器又重新从000开始计数,并产生输出Y=1。
8.自启动问题
如果无效状态构成循环,则一旦受到干扰,使得电路进入无效 状态,则电路就没有可能再回到有效状态,即不能在正常工作, 必须重起系统才能正常工作,此类电路不能自启动。
4.画出逻辑图:
J0 = Q1n K0 = 1
J1 = Q0n K1 = 1
Z = Q1nQ0n
FF0
1J
Q
FF1
1J
Q& Z
C1
C1
1 1K
1 1K
Q
Q
CP
5.检测自启动: 11 00
此电路能够自启动
例3 设计一个串行数据检测电路,当连续输入3个或3个以上1时, 电路的输出为1,其它情况下输出为0。例如: 输入X 101100111011110 输出Y 000000001000110
QA JA QAKA
计数脉冲CP
(7) 检验该计数电路能否自动启动。

5-2时序逻辑电路的分析

5-2时序逻辑电路的分析

1
1
0
1
0 1 0 / 1 0 1 1
0 0 1 / 0 1 1 1
波形图(略)
6.检查自启动
本电路具有自启动能力。
/L3L2L1L0 Q2Q1 Q0
000
/1110
/1110
/0111
111
100
/0111
001
/1101 /1011
/1101 101
011
010
/1011 110
5.2.3 异步时序逻辑电路的分析举例
0 0 1 / 1 1 1 0 0 1 0 / 1 1 0 1 0 1 1 / 1 0 1 1 1 0 0 / 0 1 1 1 0 0 0 / 1 1 1 0 0 1 1 / 1 1 0 1 0 1 0 / 1 0 1 1 0 0 1 / 0 1 1 1
Q2
n1
Q Q Q
n 1 n 0
n 2
L1 Q1 Q0 L2 Q1Q0 L3 Q1Q1 L4 Q1Q0
画出状态图
现 态 次态/输出信号
Q2
n
Q1
n
Q0
n
Q2 Q1 Q0
n 1 n 1 n 1
0
0 0
0
0 1
0
1 0
L4 L3 L2 L1 0 0 1 / 1 1 1 0
/L3L2L1L0 Q2Q1 Q0
000
/1110
n n Q1 Q0
CP0 CP1
Q1n+1 Q0n+1 Z
0
0 1
0
1 0 0
11/0
00/0 01/0
00 /0 01
/0
11 /1
1

第五章 同步时序逻辑电路

第五章 同步时序逻辑电路

三、状态图
状态图:是一种反映同步时序电路状态转换规律及相应输 入、输出取值关系的有向图。
Mealy 型电路状态图的形式如图 (a) 所示。图中,在有向箭 头的旁边标出发生该转换的输入条件以及在该输入和现态下的 相应输出。
x/z
x
Moore型电路状态图的形式如图(b) 所示,电路输出标在圆 圈内的状态右下方,表示输出只与状态相关。
0
1
根据状态响应序列可作出时间图如下:
时钟节拍:1 2 输入x1: 0 0 输入x2: 0 1 状态 y: “0” 0 输出Z : 0 1 3 1 0 0 1 4 1 1 0 0 5 0 1 1 0 6 1 1 1 1 7 1 0 1 0 8 0 0 1 1
分析时间图可知,该电路实现了串行加法器的功能。其中x1 为被加数,x2为加数,它们按照先低位后高位的顺序串行地输入。 每位相加产生的进位由触发器保存下来参加下一位相加,输出Z 从低位到高位串行地输出“和”数。
构造Moore型原始状态图如下:
1
相应的原始状态表如下表所示。
例 设计一个用于引爆控制的同步时序电路,该电路有一 个输入端x和一个输出端Z。平时输入x始终为0,一旦需要引爆, 则从 x 连续输入4个1信号(不被0间断),电路收到第四个1后在 输出端Z产生一个1信号点火引爆,该电路连同引爆装置一起被 炸毁。试建立该电路的Mealy型状态图和状态表。
四、时间图
时间图是用波形图的形式来表示输入信号、输出 信号和电路状态等的取值在各时刻的对应关系,通常 又称为工作波形图。在时间图上,可以把电路状态转 换的时刻形象地表示出来。
5.2 同步时序逻辑电路分析
5.2.1 分析的方法和步骤 常用方法有表格法和代数法。 一、表格分析法的一般步骤 1.写出输出函数和激励函数表达式。 2.借助触发器功能表列出电路次态真值表。 3.作出状态表和状态图(必要时画出时间图) 。 4.归纳出电路的逻辑功能。

同步时序逻辑电路的设计

同步时序逻辑电路的设计

D3 D2 D1 D0 =Q3n+1Q2n+1Q1n+1Q0n+1
由状态图可以看出,这是一个循环移位计数器。在计数时循
Q0 Q1, Q1 Q2 , Q2 Q3 , Q3 Q0
这种计数器的循环长度l=2n,其中n为位数,这里n=4,l=8
由状态图还可看出,图左半部8个状态形成闭环,称为 “有效序列”,右半部8个状态称为“无效序列”。如果该 时序电路在某种偶然因素作用下,使电路处于“无效序列” 中的某一状态,则它可以在时钟脉冲 CP的作用下,经过若 干个节拍后,自动进入有效序列。因此,该计数器称为具
01 0 10 0 00 1
10 1 00 1 01 0
01
状态图
1/0 0/0
6
画时序波形图。
根据状态表或状态图, 可画出在CP脉冲作用下电路的时序图。
00
0/0 1/0 1/1 0/1 10 1/0 0/0 01
CP X Q0 Q1 Z
7
(4)逻辑功能分析:
该电路一共有3个状态00、01、10。
有自恢复功能的扭环移位计数器。
2 同步时序逻辑电路的设计
同步时序逻辑电路的设计是指根据特定的逻辑要求,设计 出能实现其逻辑功能的时序逻辑电路。显然, 设计是分析的逆 过程,即:
分析
逻辑电路
设计
逻辑功能
同步时序逻辑电路设计追求的目标是,使用尽可能少的 触发器和逻辑门实现预定的逻辑要求!
设计的一般步骤如下:
构造Moore型原始状态图如下:
1
相应的原始状态表如下表所示。
例 设计一个用于引爆控制的同步时序电路,该电路有一 个输入端x和一个输出端Z。平时输入x始终为0,一旦需要引爆, 则从 x 连续输入4个1信号(不被0间断),电路收到第四个1后在 输出端Z产生一个1信号点火引爆,该电路连同引爆装置一起被 炸毁。试建立该电路的Mealy型状态图和状态表。

同步时序逻辑电路

同步时序逻辑电路

例3:
1)C、F等价;
2)A、B相应旳次态为C、F和B、A,而C、F等价,A、 B和B、A交错,所以A、B等价;
3)A、E相应旳次态为:C和B、E, 而B、E相应旳次态是F、C和A、E, 因为F、C等价, 所以它们构成循环,A、E等价,B、E也等价
3)状态编码、并画出编码形式旳状态图及状态表。 在得到简化旳状态图后,要对每一种状态指定1个二进制代码, 这就是状态编码(或称状态分配)。
二、环节:
1、一般过程:
2、详细阐明:
1)由给定旳逻辑功能求出原始状态图:
原始状态图:直接由要求实现旳逻辑功能求得旳状态转换图。
画出原始状态图是设计旳最关键环节:a)分析给定旳逻辑功 能,拟定输入变量,输出变量及该电路应包括旳状态,并用 字母S0,S1….表达这些状态。b分别以上述状态为现态,考察 在每一种可能旳输入组合作用下应转入哪个状态及相应旳输 出,便可求得符合题意旳状态图。
次态对等效是指状态Si和SJ旳次态对Sk和SJ满足等价旳两个条 件。例如,状态S1和S2旳次态对为S3和S4,它们既不相同,也 没有与状态对S1,S2直接构成交错和循环。但是,状态S3和S4 旳输出完全相同,且其次态相同或交错或循环。
等效状态旳传递性:若状态S1 和S2等效,状态S2 和S3等效, 则状态S1 和S3也等效,记作:(S1,S2), (S2,S3) (S1,S2, S3)。
例4 , P224
表中旳状态顺序依次标上第一种状态至倒数第二个状态旳状 态名称,而纵向自上到下依次标上第二个状态至最终一种状 态旳状态名称。表中每个方格代表一种状态对。
2)顺序比较,寻找等效状态对;对照原始状态表或图对每个 状态对进行比较,成果有三:a)状态对等效;b)状态对不等 效;c)状态对是否等效需进一步检验。(将它们旳次态对填 入相应表格中)。

时序逻辑电路工作原理和方法

时序逻辑电路工作原理和方法

(b) 时序图
由状态图可以看出,当输入X =0时,在时钟脉冲CP 的作用下,电路的4个状态按递增规律循环变化,即:
00→01→10→11→00→… 当X=1时,在时钟脉冲CP的作用下,电路的4个状态 按递减规律循环变化,即:
00→11→10→01→00→… 可见,该电路既具有递增计数功能,又具有递减计数 功能,是一个2位二进制同步可逆计数器。
X
FF0
FF1
&
Y
例 “1” 1T
Q0 =1 1T
Q1
C1
C1
CP
Q0
Q1
1 同步时序电路,时钟方程省去。

输出方程:YXQ1nXQ1n
输出与输入有关, 为米利型时序电路。

程 式
驱动方程: T1 X Q0n T0 1
2 求状态方程
T触发器的特性方程:
Qn1TQn
将各触发器的驱动方程代入,即得电路的状态方程:
3 计算、列状态表
Q Q
n 2
n 1
1 1
Q
n 1
Q
n 0
Q
n 1 0
Q
n 2
Y
Q
1nQ
n 2
Q Q
nn 11 22
nn 11 11
10 10
Q
nn 11 00
10
10
Y 0 10 10
现态
Q
n 2
Q
n 1
Q
n 0
000 001 010 011 100 101 110
111
YY 01101011110
1
1
Q
n 1
Q
n 0
Q
n 1

第14讲同步时序电路分析

第14讲同步时序电路分析

2.按输入信号的特性分 —脉冲输入、电平输入
a)电平输入 b)脉冲输入
3.按输出的特性分—Mealy型、Moore型
状态
输 入
次态 激励 逻辑
存储器 现态
输出 逻辑
输出
时钟
输入
Mealy型电路输出与
现态和输入有关。 CP
状态
输 入
次态 激励 逻辑
存储器 现态
输出 逻辑
输出
时钟
输入
Moore型电路输出仅
假定下列Mealy型电路的初始状态为A,输入序列为 X:10100110,其状态转移序列和输出响应序列为:
假定下列Moore型电路的初始状态为B ,输入序列为 X:11001001,其状态转移序列和输出响应序列为:
时序电路分析的方法
根据给定的电路,写出其方程,列出状态转移真值表, 画出状态转移图和时序图,然后分析出它的功能。 步骤: 、写出激励函数(触发器的输入端表达式)和输出函 数表达式。 2、将FF的驱动方程代入各自的特性方程,求得状态方 程。 3、根据状态方程和输出方程填写状态转移真值表 4、根据状态转移真值表,画出状态转换图。 5、电路功能描述。
读法:
处于状态Q的时序电路, 当输入为X时,输出为Z,在时 钟脉冲作用下,电路进入次态 Q n+1。
读表(图)次序:
Mealy型电路状态表格式
现态→输入→输出→次态
状态转移表(状态表)
Moore型电路状态表格式
读法:
当时序电路处于状态Q时, 输出为Z。若输入为X,在时钟脉 冲作用下,电路进入次态Q n+1。
CP
与现态有关。
时序电路的描述方法
逻辑函数表达式
输出函数表达式 Y(tn)F [X (tn)Q ,(tn)] 激励函数表达式 W (tn)G [X (tn)Q ,(tn)] 次态函数表达式 Q (tn 1)H [W (tn)Q ,(tn)]

同步时序逻辑电路的分析

同步时序逻辑电路的分析

实验八同步时序逻辑电路的分析一、实验目的⑴熟悉同步时序逻辑电路的一般分析、设计方法⑵熟悉移位寄存器和同步计数器的逻辑功能二、实验预习复习触发器的功能、特点和应用三、实验器材⑴直流稳压电源、数字逻辑实验箱⑵ 74LS00、74LS08、74LS10、74LS86、74LS74、74LS76四、实验内容和步骤1.移位寄存器型计数器⑵将集成D型触发器74LS74按图8-2接线。

电路的脉冲输入端CP接单脉冲,四个输出端Q4、Q3、Q2、Q1分别接发光二极管。

用触发器的异步清除端CLR将触发器初始状态复位为“0000”,Q4Q3Q2Q1=0000。

(同样,可以用各触发器的预置端将触发器的初始状态置为某个状态。

)逐次按动单脉冲按钮,观察在CP脉冲作用下,计数器输出端的变化状态,将结果填入自制的表中。

分析电路输出端状态变化的规律,画出状态转换图,并说明电路的功能。

实验结果:五、思考题总结同步时序逻辑电路的一般分析方法。

(1) 根据逻辑电路写出各个触发器的驱动方程,即写出每个触发器输入端的逻辑函数表达式。

(2) 根据所给触发器,将得到的驱动方程代入触发器特性方程,得到时钟脉冲作用下的状态方程。

(3) 从逻辑电路中写出输出端的逻辑函数表达式。

(4) 将任何一组输入变量的取值及电路的初始状态,代入状态转移方程中和输出函数表达式中,得到时钟信号作用下的存储电路的次态逻辑值;再以得到的次态逻辑值为初始状态,和此时的输入变量的取值,再次代入状态转移方程中和输出函数表达式中,又得到新的次态逻辑值以及电路的输出值,如此循环代入逻辑值,直到所有输入变量的取值和所有逻辑状态值全部代入。

将存储电路的状态转换以及电路的输出用表格的形式来描述它们之间的关系,称为状态转移表。

将存储电路状态之间的转换关系用图形的方式来描述,就是状态转换图。

(5) 检查状态转换图(状态转移表),如果在时钟信号和输入信号的作用下,各个状态之间能够建立联系,则说明该时序逻辑电路能够自启动,否则不能自启动。

时序逻辑电路的分析方法和设计思路

时序逻辑电路的分析方法和设计思路
(3) 说明电路的逻辑功能 同步8进制加法计数器
时序逻辑电路
数字电路与逻辑设计
2. 异步时序逻辑电路的基本分析方法
以下图所示3个T′触发器构成的时序逻辑电路为例,我
们讨论其分析方法和步骤。
Q0
Q1
Q2
JQ
CP
C F0
KQ
JQ C F1 KQ
JQ C F2 KQ
“1”
RD
1
分析电路类型:
时序逻辑电路中如果除CP时钟脉冲外,无其它输入信 号,就属于莫尔型,若有其它输入信号时为米莱型;各位
为了能把在一系列时钟脉冲操作下的电路状态转换全过 程形象、直观地描述出来,常用的方法有状态转换真值表、 状态转换图、时序图和激励表等。这些方法我们将在对时 序逻辑电路的分析过程中,更加具体地加以阐明。
时序逻辑电路
数字电路与逻辑设计 1. 同步时序逻辑电路的基本分析方法
[例7.2.1] 分析如图7.2.2所示时序电路的逻辑功能
时序逻辑电路
数字电路与逻辑设计
1. 二进制计数器
当时序逻辑电路的触发器位数为n,电路状态按二进制数
的自然态序循环,经历2n个独立状态时,称此电路为二进
制计数器。
Q0
Q1
Q2
JQ
CP
C F0
KQ
JQ C F1 KQ
JQ C F2 KQ
“1”
RD
结构原理:三个JK触发器可构成一个“模8”二进制计数器。 触发器F0用时钟脉冲CP触发,F1用Q0触发,F2用Q1触发; 三位JK触发器均接成T′触发器—让输入端恒为高电平1; 计数器计数状态下清零端应悬空为“1”。(如上一节的分 析例题,就是一个三位触发器构成的二进制计数器。)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时序逻辑电路的分析方法
时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。

同步时序逻辑电路的分析方法
同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。

1、基本分析步骤
1)写方程式:
输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。

驱动方程:各触发器输入端的逻辑表达式。

状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。

2)列状态转换真值表:
将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。

如现态的起始值已给定时,则从给定值开始计算。

如没有给定时,则可设定一个现态起始值依次进行计算。

3)逻辑功能的说明:
根据状态转换真值表来说明电路的逻辑功能。

4)画状态转换图和时序图:
状态转换图:是指电路由现态转换到次态的示意图。

时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。

5)检验电路能否自启动
关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例
例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。

解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。

因此,它是一个同步时序逻辑电路,时钟方程可以不写。

①写方程式:
输出方程:
驱动方程:
状态方程:
②列状态转换真值表:
状态转换真值表的作法是:
从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

依次类推,直到次态值又回到了第一个现态值“000”。

③逻辑功能说明:
电路在输入第6个计数脉冲CP后,返回原来的状态,同时输出端Y 输出一个进位脉冲。

因此,上图所示电路为同步六进制计数器。

④画状态转换图和时序图:
状态转换图和时序图如下图所示
状态转换图的圆圈内表示电路的一个状态,即三个触发器的状态,箭头表示电路状态的转换方向。

箭头线上方标注的X/Y为转换条件,X为电路状态转换前输入变量的取值,Y为输出值,由于本例没有输入变量,故X未标数值。

相关文档
最新文档