第一章 半导体物理基础2要点
第一章 半导体物理基础2

Ec
Ei
EV
(c) (d) (e)
EF
(a)
(b )
强p型
p型
本征
n型
强n型
费米能级EF反映的是电子在不同能态上的填充水平
半导体材料与器件
当温度一定时,n0 、p0之积与EF无关;这表明:导带电 子浓度与价带空穴浓度是相互制约的,这是动态热平 衡的一个反映。
Ec EF EF Ev n0 p0 N c N v exp exp kT kT Ec Ev Eg / kT N c N v exp Nc Nve kT
由于kT是个很小的能量值(常温下),对于常见的 半导体(Si、Ge、GaAs)来说,其禁带能量要远 大于kT,从而使得费米能级相对于禁带中央的偏移 总是很小(几十meV) Eg(Si): 1.12eV
50meV
半导体材料与器件
掺杂原子与能级 为什么要掺杂?
半导体的导电性强烈地随掺杂而变化
硅中的施主杂质与受主杂质
*
3/ 2
其中Nv为价带的有效状态密度
2 m p kT Nv 2 2 h
*
3/ 2
半导体材料与器件
有效状态密度和有效质量有关 在一定温度下,特定半导体的有效状态密度为常量 平衡半导体的载流子浓度和费米能级EF的位臵密切相 关 Ec EF 指数项里的分子总 n0 N c exp 为负数,这保证了 kT EF Ev 指数项小于1,对应 于载流子浓度小于 p0 N v exp kT 状态密度的事实
3/ 2
T↑,NC、NV↑
f(EC) 、 f(EV) ~T
半导体物理_01基础知识概论

3、晶体中电子的状态——布洛赫定理与波函数的形式
波函数的形式——布洛赫定理证明:
定义平移算符Tˆ
r am
:
Tˆ
r am
f
xr
f
xr
mar
特点:Tˆ arm Tˆ arn Tˆ arn Tˆ arm 互易性
可以证明:Tˆ
r am
Hˆ
xr
HˆTˆ
r am
xr
Hˆ
xr
mar
因此,若 xr 是 Hˆ 的本征函数,则经过平移后的 xr mar
− N个Si原子组成晶体,形成的两个能带不与s、p能级相对
应,它们都包含2N个状态,各可容纳4N个电子:下面一个 能带填满4N个价电子,通常称为满带(价带);上面一个能带 是空的,称为空带(导带);二者之间是不允许电子状态存在 的禁区——禁带。
1.2.2 半导体中电子的状态和能带(数学分析)1
1、数学物理模型和近似
0
a
k
a
布里渊区按照E(k)的不连续点进行划分,对于一维晶体:
第一布里渊区 第二布里渊区
k
a
a
2 k ,
a
a
k 2
a
a
禁带在布里渊区边界,允带 在布里渊区之内
以此类推,有第三、第四布里渊区
1.2.2 半导体中电子的状态和能带(数学分析)11
3、晶体中电子的状态——布里渊区与能带 − E~ k关系的不连续点对应禁带,在布里渊区边界;
uk x na uk x
以上就是布洛赫定理
自由电子波函数
1.2.2 半导体中电子的状态和能带(数学分析)7
3、晶体中电子的状态——晶体中的电子与自由电子的比较 ➢ 波函数形式相似
半导体物理器

特点:对于光学波,相邻两种不同原子的振动方向是相反的。原胞的质心保持不动,由此也可以定性的看出,波长很长的光学波(长光学波)代表原胞中两个原子的相对振动。
晶格振动能量的量子化 ---声子
电离杂质散射
平均自由时间与驰豫时间 载流子在电场中作漂移运动时,只有在连续两次散射之间的时间称为自由时间,取极多次而求平均值,则称之为载流子的平均自由时间,常用τ表示。
第一章 半导体物理基础
单击添加副标题
方法:
1、本课程的主要内容
概述
01
02
1.1半导体中的电子状态
1.2载流子的统计分布
●导带电子浓度
(1-57)
其中
称为导带有效状态密度
●价带空穴密度
(1-60)
其中
称为价带有效状态密度
1.2载流子的统计分布
●导带电子浓度和价带空穴浓度之积
散射机构 平均自由时间与散射几率互为倒数。 晶格振动散射
2.载流子的散射
1.5载流子的输运
——扩散系数
(1-129)
(1-133)
扩散运动和扩散电流 电子扩散电流密度
流密度 空穴扩散电流密度 在漂移和扩散同时存在的情况下,空穴和电子的流密度分别为:
1.5载流子的输运
1.5载流子的输运
4. 电流密度
1.6非平衡载流子
3.修正的欧姆定律
其中:
分别称为电子和空穴的等效电导率。修正欧姆定律虽然在形式上和欧姆定律一致,但它包括了载流子的漂移和扩散的综合效应。
从修正欧姆定律可以看出,费米能级恒定(即 )是电流为零的条件。处于热平衡的半导体,费米能级恒定。或者说,热平衡系统具有统一的费米能级。
1.6非平衡载流子
半导体物理基础第一章课件

1.7.5只有一种杂质的半导体
• 2、P型半导体
• 在杂质饱和电离的温度范围内有:p N a • 导带电子浓度为: n ni2 ni2
p Na
• 费米能级为
EF
EV
KT ln
NV Na
EF
Ei
KT
ln
Na ni
43
1.7.5只有一种杂质的半导体
• 结论:对于P型半导体,在杂质饱和电离 温度范围之内,费米能级位于价带顶之上, 本征费米能级之下。随着掺杂浓度提高, 费米能级接近价带顶;随着温度升高,费 米能级远离价带顶。
成共价键时,将因缺少一个价电子而形 成一个空穴,于是半导体中的空穴数目 大量增加。
22
1.6杂质能级
• Acceptor,掺入半导体的杂质原子向半导 体中提供导电的空穴,并成为带负电的 离子。
• 掺入受主杂质的半导体为P(Positive)型 半导体。施主杂质的浓度记为NA。
23
1.6杂质能级
• 受主接受电子称为受主杂 志,提供了一个局域化的 电子态,相应的能级称为 受主能级—Ea。
NV
2 2mdp KT
h3
3 2
• 称为价带有效状态密度
34
1.7.3能带中电子和空穴的浓度
• 导带电子浓度和价带空穴浓度之积
Eg
np Nc NV e KT • 式 把中它E写g为成禁经带验宽关度系。式与E温g 度有E关g0 , 可T以
• 其 时中的Eg值为。禁带宽度温度系数,Eg0为0K
Chap1 半导体物理基础
1
1.2 能带
一、能带的形成 • 能级:电子所处的能量状态。 • 当原子结合成晶体时,原子最外层的价
半导体物理1-8章重点总结

半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。
(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。
大部分化合物半导体材料是III 族和V 族化合形成的。
2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。
类似的也有三元素化合物半导体。
3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。
多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。
似晶非晶。
4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。
晶胞就是可以复制出整个晶体 的小部分晶体。
5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。
例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。
单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。
比如上图(c )假设晶格常数为5A 。
求原子体密度。
8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。
9. 特定原子面密度:原子数/截面面积。
计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。
其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。
举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。
半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体物理课件:第一章 半导体中的电子状态

14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分
半导体物理知识点总结

半导体物理知识点总结一、半导体物理知识大纲核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在1.3节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在1.6节,介绍Si、Ge的能带结构。
(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理知识点及重点习题总结周裕鸿

基本概念题:第一章 半导体电子状态 1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
例: 1简述Si Ge ,GaAs 的晶格结构。
2什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
在一定温度下,价带电子获得足够的能量(≥Eg )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
对半导体的理解:半导体导体 半导体 绝缘体电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。
另外,磁场、电场等外界因素也可显著改变半导体的导电能力。
【补充材料】半导体中的自由电子状态和能态势场 → 孤立原子中的电子——原子核势场+其他电子势场下运动 ↘ 自由电子——恒定势场(设为0)↘ 半导体中的电子——严格周期性重复排列的原子之间运动 ⅰ.晶体中的薛定谔方程及其解的形势V(x)的单电子近似:假定电子是在①严格周期性排列②固定不动的原子核势场③其他大量电子的平均势场下运动。
↓ ↓(理想晶体) (忽略振动)意义:把研究晶体中电子状态的问题从原子核—电子的混合系统中分离出来,把众多电子相互牵制的复杂多电子问题近似成为对某一电子作用只是平均势场作用。
第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路
半导体物理基础知识

半导体物理基础知识目录1. 基本概念 (2)1.1 半导体的定义与分类 (2)1.2 반도체材料的结构与性质 (3)1.3 晶体结构与晶格常数 (4)1.4 能带理论与电子跃迁 (5)1.5 费米能级与电子的填充 (6)2. 电子输运机制 (7)2.1 能带结构与导电特性 (8)2.2 漂移电流与散乱 (9)2.3 扩散电流与载流子浓度梯度 (10)2.4 霍尔效应与霍尔系数 (11)3. 半导体器件物理 (12)4. 半导体材料与工艺 (14)4.1 元素掺杂与输运特性 (16)4.2 晶体生长法与缺陷控制 (18)4.3 半导体氧化与金属沉积 (19)5. 电力电子器件 (20)5.1 功率二极管与肖特基二极管 (22)5.2 功率晶体管与MOSFET (23)5.3 整流桥与交流调制 (25)6. 可见光与光电子器件 (26)6.1 半导体光吸收与发射 (27)6.2 光电二极管与光电晶体管 (28)6.3 激光器与光放大器 (29)7. 量子力学与半导体 (31)7.1 量子点与量子阱结构 (33)7.2 量子计算机与量子力学计算 (34)1. 基本概念半导体物理是研究半导体材料和器件的电子性质、能带结构以及其在电磁场中的行为的一门学科。
半导体是一种介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体之间。
半导体物理的基本概念包括:本征载流子、费米能级、载流子浓度、迁移率、漂移速度等。
本征载流子是指处于基态的半导体原子或分子所具有的自由电子和空穴。
费米能级是指在半导体中,电子和空穴的能量相等且低于或高于价带顶的能级。
载流子浓度是指单位体积内半导体中存在的电子和空穴的数量。
迁移率是指载流子在半导体中从高能级向低能级跃迁时的速度。
漂移速度是指载流子在半导体中受到电场作用而发生漂移的速度。
半导体物理的研究涉及到许多重要的现象,如结、整流效应、光电效应、热效应等。
这些现象在实际应用中具有广泛的应用,如二极管、晶体管、太阳能电池等。
半导体物理知识点及重点习题总结

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
01.第一章 半导体物理基础2

1000 500 200 100 50 20 10000 5000 2000 1000 500 200 100
1 0
1 4
20 10 5
µ p, Dp
1 0
1 5
2 1
1 0
1 6
1 0
1 7
GaAs
200 100 50
µ n , Dn
µ p , Dp
20 10 5
1018 1019 10 20
半导体物理基础 第一章 半导体物理基础
载流子漂移
和
J p = qpµ p E
vx = µ p E
JP E y = ( ) Bz = RH J P Bz . qp 1 称为霍耳系数 RH ≡ . qp
J P Bz ( I / A) Bz IBzW 1 p= = = = . qRH qE y q(VH / W ) qVH A
其中方程式右边的所有量皆可被测量出。可见,载流子浓度及 半导体的导电类型均可直接从霍耳效应测量中获得。 对n型半导体而言,亦可获得类似 的结果,但其霍耳系数为负
E y = vx Bz
I +
V
-
时达到平衡,在y方向产生一电势差。这一现象称为霍耳效应 霍耳效应。 霍耳效应
半导体物理基础 第一章 半导体物理基础
载流子漂移
霍耳效应的意义
可直接测量载流子浓度 判别半导体导电类型 证实空穴以带电载流子方式存在的最令人信服的方法之一。
半导体物理基础 第一章 半导体物理基础 理论依据 根据 所以 其中 因此
1
N-GaAs N-Si
10-1
10-2
10-3
10-4
12 10
13 10
14 10
(整理)半导体器件物理教学内容和要点

教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的NP 结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想NP-结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节VI-特性的温度依赖关系一、反向饱和电流和温度的关系二、VI-特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应τ二、利用电荷控制方程求解s三、阶跃恢复二极管基本理论第十节P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(MollEbers-)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE 和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,h fe),共基极截止频率和共射极截止频率(Wɑ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB 、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm 、gbe、CD的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td 、tr、tf、ts三、解电荷控制方程求贮存时间ts 第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12 、§3.13 、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gmlgmCG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、 M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S 功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节 等效电路和频率响应一、参数:g d g m r d 二、等效电路 三、截止频率第七节 亚阈值区一、亚阈值概念二、MOSFET 的亚阈值概念第九节 MOS 场效应晶体管的类型一、 N —沟增强型 N —沟耗尽型 二、 P —沟增强型 P —沟耗尽型第十节 器件尺寸比例MOSFET 制造工艺 一、P 沟道工艺 二、N 沟道工艺 三、硅栅工艺 四、离子注入工艺第七章 太阳电池和光电二极管 第一节半导体中光吸收一、两种光吸收过程 二、吸收系数 三、吸收限第二节 PN 结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节 太阳电池的I-V 特性一、理想太阳电池的等效电路二、根据等效电路写出I-V 公式,I-V 曲线图(比较:根据电流分量写出I-V 公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V 公式 五、R S 对I-V 特性的影响第四节 太阳电池的效率一、计算 V mp I mp P m二、效率的概念%100⨯=inLOC P I FFV η 第五节 光产生电流和收集效率一、“P 在N 上”结构,光照,x O L e G αα-Φ=少子满足的扩散方程 二、例1-1,求少子分布,电流分布 三、计算光子收集效率:On pt col G J J Φ=η讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响 理解Fig7-9,Fig7-10所反映的物理意义第六节 提高太阳能电池效率的考虑一、光谱考虑 (多媒体演示) 二、最大功率考虑 三、串联电阻考虑 四、表面反射的影响 五、聚光作用第七节 肖特基势垒和MIS 太阳电池一、基本结构和能带图二、工作原理和特点 阅读 §7.8第九节 光电二极管一、基本工作原理 二、P-I-N 光电二极管 三、雪崩光电二极管四、金属-半导体光电二极管第十节 光电二极管的特性参数一、量子效率和响应度 二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP ) 四、探测率(D )、比探测率(D *)第八章 发光二极管与半导体激光器 第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合 二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED 的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED 的特性参数一、I-V 特性二:量子效率:注射效率γ、辐射效率r η、内量子效率i η ,逸出概率o η、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布 ,峰值半高宽 FWHM,峰值波长 ,主波长 ,亮度第四节 可见光LED一、GaP LED 二、GaAs 1-x P x LED 三、GaN LED第五节 红外 LED一 、性能特点二、 应用 光隔离器 阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。
半导体器件物理课件一.ppt

第一章 半导体物理基础
能量为E的电子状态密度
EC 导带底 h 普朗克常数 mn* 电子的有效质量
广东工业大学
第一章 半导体物理基础
能量为E的空穴状态密度
mp* 空穴的有效质量 EV 价带顶
广东工业大学
第一章 半导体物理基础
费米-狄拉克分布函数
能量为E的一个量子态被一个电子占据的几率
E 电子能量 k0 玻耳兹曼常数 T 热力学温度 EF 费米能级 常数,大多数情况下,它的数值在半导体能 带的禁带范围内,和温度、半导体材料的导电类型、杂质的 含量以及能量零点的选取有关。只要知道了EF的数值,在一 定温度下,电子在各量子态上的统计分布就完全确定了。
广东工业大学
第一章 半导体物理基础
1.3 半导体中的平衡与非平衡载流子
载流子 参与导电的电子和空穴统称为半导体的载流子。
载流子的产生 本征激发 电子从价带跃迁到导带,形成导带电子和价带空穴 杂质电离 当电子从施主能级跃迁到导带时产生导带电子;
当电子从价带激发到受主能级时产生价带空穴
广东工业大学
第一章 半导体物理基础
广东工业大学
第一章 半导体物理基础
深能级杂质
非Ⅲ、Ⅴ族元素掺入硅、锗中也会在禁带中引入能级。 非Ⅲ、Ⅴ族元素产生的能级有以下两个特点:
(1)施主能级距离导带底较远,受主能级距离价带顶也较 远。称为深能级,相应的杂质称为深能级杂质;
(2)这些深能级杂质能产生多次电离,每一次电离相应地 有一个能级。因此,这些杂质在硅、锗的禁带中往往引入若干 个能级。而且,有的杂质既能引入施主能级,又能引入受主能 级。
若E> EF,则f(E)<1/2
当系统的温度高于绝对零度时,如 果量子态的能量比费米能级低,则 该量子态被电子占据的几率大于百 分之五十;若量子态的能量比费米 能级高,则该量子态被电子占据的 几率小于百分之五十。 因此,费米能级是量子态基本上被 电子占据或基本上是空穴的一个标 志。
物理学中的半导体物理知识点

物理学中的半导体物理知识点半导体物理学是物理学领域中的一个重要分支,研究半导体材料及其性质与行为。
本文将介绍几个半导体物理学中的知识点,包括半导体的基本概念、载流子行为、PN结及其应用。
一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料。
它的导电能力介于导体和绝缘体之间,可以通过控制外加电场或温度来改变其电导率。
根据能带理论,半导体材料中存在一个禁带,将价带和导带分开,如果半导体材料的价带被填满,而导带是空的,那么半导体就没有导电能力;当半导体材料的温度升高或者施加电场时,一些电子会跃迁到导带中,形成可以导电的载流子。
二、载流子行为在半导体中,载流子是指能够输送电流的带电粒子,可以分为自由电子和空穴两种类型。
1. 自由电子:自由电子是指在半导体晶格中脱离原子束缚的电子,它具有负电荷。
在纯净的半导体中,自由电子的数量较少。
2. 空穴:空穴是指由于半导体中某个原子缺少一个电子而形成的一个正电荷,可以看作是受激发的价带上的空位。
载流子的行为受到材料的类型和掺杂等因素的影响。
三、PN结及其应用PN结是半导体中最基本的器件之一,由P型半导体和N型半导体的结合构成。
P型半导体中的空穴浓度较高,N型半导体中的自由电子浓度较高,当这两种类型的半导体材料接触时,自由电子和空穴会发生复合,形成一个耗尽区域。
PN结的特性使得它在半导体器件中有着广泛的应用,例如:1. 整流器:利用PN结的单向导电性质,将交流电信号转换为直流电信号。
2. 发光二极管(LED):在PN结中注入电流可以激发电子跃迁,从而产生光线,实现发光效果。
3. 晶体管:晶体管是一种基于PN结的三端口器件,通过调控PN结的导电状态,实现信号放大和开关控制。
PN结的应用广泛且多样化,是现代电子技术中不可或缺的一个元件。
总结:半导体物理学作为物理学中的重要分支,研究的是半导体材料及其性质与行为。
本文介绍了半导体的基本概念,包括能带理论和禁带,以及载流子行为,其中自由电子和空穴是半导体中的两种重要载流子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常温下(300K):
半导体材料与器件
计算过程中近似假设的合理性 波尔兹曼近似的合理性:EF一般位于禁带中,和导 带底和价带顶的距离都比较远 在状态密度的推导过程中我们使用的E-k关系(抛 物线近似)实际上只在能带极值附近成立 将积分范围从导带顶Ec’(价带底Ev’)推广到了正 无穷大∞(负无穷大-∞),这样做的合理性在于: 导带(价带)中的电子(空穴)基本集中在导带底 (价带顶)附近
3/ 2
T↑,NC、NV↑
f(EC) 、 f(EV) ~T
Ec EF exp kT EF Ev exp kT
T↑,几率↑
半导体材料与器件
EF 位臵的影响
EF→Ec,Ec-EF↓,n0↑ — EF越高,电子(导带)的填充 水平(几率)越高,对应ND(施主杂质浓度)较高; EF→Ev,EF-Ev↓,po↑ — EF越低,电子(价带)的填充 水平越低(空位几率越高),对应NA(受主杂质浓度)较 高。
半导体材料与器件
载流子:在半导体内可以运动形成电流的电子或 (空穴)
载流子的定向运动形成电流; 半导体中电流的大小取决于:载流子的浓度,载流子 的运动速度(定向的平均速度) 对热平衡状态下载流子浓度的推导和计算需要用到状 态密度和分布函数
半导体材料与器件
导带电子和价带空穴的浓度n0和p0方程
fF(E)=0
半导体材料与器件
因而可化简为:
n0
4 2mn h
3
* 3/ 2
Ec
E EF E Ec exp dE kT
为了方便计算,变量代换:
E Ec kT
积分项被称为伽 马函数 / 2
n0
4 2mn kT
III-V族半导体中的替位式杂质 III-V族化合物半导体材料中的掺杂原子对于III-V族化合 物半导体材料来说,其掺杂的情况比较复杂。以砷化镓材 料为例,通常II价元素的杂质(例如Be、Mg、Zn等)在 砷化镓材料中往往取代镓原子的位臵,因而表现为受主特 性,而VI价元素的杂质(例如S、Se、Te等)在砷化镓材 料中则往往取代砷原子的位臵,因而表现为施主特性。至 于IV价元素硅、锗等,在砷化镓晶体材料中则既可以取代 镓原子的位臵,表现出施主特性,也可以取代砷原子的位 臵,表现出受主特性,通常我们把这类杂质称为两性杂质。 实验结果表明,在砷化镓材料中,锗原子往往倾向于表现 为受主杂质,而硅原子则倾向于表现为施主杂质。
*
3/ 2
h
3
Ec EF 1/ 2 exp 0 exp d kT
半导体材料与器件
因而:
Ec EF exp kT Ec EF N c exp kT 2 mn kT n0 2 2 h
半导体材料与器件
Ec
Ec
Ed
Ev
施主杂质电离, n型半导体
电离能:ΔED= EC – ED ;ΔEA= EA – EV Ea 下表中给出了近似计 Ev 算出的电离能。表明 受主杂质电离, 施主杂质在硅和锗中 p型半导体 的电离能大约为几十 个meV。 常温下,这些杂质处 于完全电离状态
半导体材料与器件
半导体材料与器件
对于本征半导体,费米能级位于 禁带中心(附近)
费米能级的位臵需保证 电子和空穴浓度的相等 如果电子和空穴的有效 质量相同,状态密度函数 关于禁带对称。 对于普通的半导体(Si) 来说,禁带宽度的一半, 远大于kT(~21kT),从 而导带电子和价带空穴的 分布可用波尔兹曼近似来 代替
*
3/ 2
其中Nv为价带的有效状态密度
2 m p kT Nv 2 2 h
*
3/ 2
半导体材料与器件
有效状态密度和有效质量有关 在一定温度下,特定半导体的有效状态密度为常量 平衡半导体的载流子浓度和费米能级EF的位臵密切相 关 Ec EF 指数项里的分子总 n0 N c exp 为负数,这保证了 kT EF Ev 指数项小于1,对应 于载流子浓度小于 p0 N v exp kT 状态密度的事实
半导体材料与器件
掺入施主杂质,费米能级 向上(导带)移动,导带 电子浓度增加,空穴浓度 减少 过程:施主电子热激发跃 迁到导带增加导带电子浓 度;施主电子跃迁到价带 与空穴复合,减少空穴浓 度;施主原子改变费米能 级位臵
半导体材料与器件
掺入受主杂质,费米 能级向下(价带)移 动,导带电子浓度减 少,空穴浓度增加
no和po与掺杂有关,决定于掺 杂的类型和数量。
半导体材料与器件
Boltzmann近似的有效性与简并半导体
当费米能级移动到导带内或价带内时,费米能级以下 的所有电子态都几乎被占据。这时称为载流子的简并 化,相应的称该半导体为简并半导体,处理简并半导 体必须应用费米-狄拉克分布函数。
EF
EF
EF EA EF
半导体材料与器件
本征费米能级位臵
由本征半导体的电中性条件: no
po
EC E F N C exp kT
E F Ev Nv kT
EC EF E F EV ln N C ln NV kT kT
EC EV kT NV EF ln 2 2 NC
* 3/ 2
其中Nc为导带的有效状态密度(数量级一般 在1019):
2 mn kT Nc 2 2 h
*
3/ 2
半导体材料与器件
相应的计算表明空穴浓度:
2 m p kT EF Ev p0 2 exp 2 h kT EF Ev N v exp kT
4 2mn h
3
* 3/ 2
Ec
状态密度函数
费米分布函数
1 E Ec E EF 1 exp kT
波尔兹曼近 似
dE
p0
Ev
4 2m p h3
* 3/ 2
Ev '
1 dE Ev E EF E 1 exp kT
过程:价带电子热激发到 受主能级产生空穴,增加 空穴浓度;导带电子跃迁 到受主能级减少导带电子 浓度;受主原子改变费米 能级位臵,导致重新分布
n0 p0 ni ni ni Nc Nve
2
Eg / kT
可见本征载流子浓度只和温度、禁带宽度Eg有关。
半导体材料与器件
Eg 1 3 ln ni A ln T 2 2k T
本征载流子浓度和温度、禁带宽度的关系
T↑,lnT↑,1/T↓,ni↑ 计算出的硅材料本 征载流子浓度与实 测的本征载流子浓 度有偏离,这是因 为我们使用的有效 质量等参数是在低 温下测出的,而随 着温度变化E-k关 系可能变化,因而 理论值与实际值有 偏差。
半导体材料与器件
非本征半导体 非本征半导体:掺入定量的特定的杂质原子(施 主或受主),从而热平衡电子和空穴浓度不同于 本征载流子浓度的半导体材料。
掺入的杂质原子会改变电子和空穴的分布。费米能级 偏离禁带中心位臵。 掺入施主杂质,杂质电离形成导带电子和正电中心 (施主离子),而不产生空穴(实际上空穴减少), 因而电子浓度会超过空穴,我们把这种半导体叫做n型 半导体;在n型半导体中,电子称为多数载流子,相应 空穴成为少数载流子。 相反,掺入受主杂质,形成价带空穴和负电中心(受 主离子),空穴浓度超过电子,p型,多子为空穴。
半导体材料与器件
半导体材料与器件
影响n0 和p0 的因素 mn* 和 mp* 的影响 — 材料的影响 温度的影响
NC、NV ~T
2 kTmn* Nc 2 2 h
2 kTm p* Nv 2 2 h
3/ 2
3/ 2
NC T 3/ 2 NV T
半导体材料与器件
本征半导体在应用上的限制
本征半导体的纯度 对于硅,常温下本征载流子浓度~1010cm-3。为达 到本征条件,要求施主杂质(受主杂质)的浓度小 于本征载流子浓度(考虑完全电离)。则知道杂质 浓度ND(NA)<1010cm-3,则要求硅材料的纯度大 于99.99999999999% 本征载流子浓度随温度变化很大 在室温附近:Si: T ↑, 8K ni↑ 一倍;Ge: T ↑, 12K ni↑ 一倍 本征半导体的电导率不能控制
p E gv E 1 f F E
对应于该能量的空位几率
对应于该能量的状态密度
则整个价带范围内的空穴浓度为:
p0 ' gv E 1 f F E dE
Ev Ev
半导体材料与器件
将上节得到的状态密度和分布函数代入公式得到
n0
Ec '
kT NV 3 Emidgap ln Emidgap kT ln * 2 NC 4 mn
m p*
半导体材料与器件
当空穴有效质量大时,相对应价带有效状态密度大, 因而费米能级向导带偏移以保证导带电子与价带空穴 相等。相反亦然 * *
m p mn , EF Emidgap m p* mn* , EF Emidgap
Ec
Ei
EV
(c) (d) (e)
EF
(a)
(b )
强p型
p型
本征
n型
强n型
费米能级EF反映的是电子在不同能态上的填充水平
半导体材料与器件
当温度一定时,n0 、p0之积与EF无关;这表明:导带电 子浓度与价带空穴浓度是相互制约的,这是动态热平 衡的一个反映。