平面向量的线性运算课件

合集下载

平面向量的概念及其线性运算课件-2025届高三数学一轮复习

平面向量的概念及其线性运算课件-2025届高三数学一轮复习
[总结反思]利用共线向量定理解题的方法
(1)是判断两个向量共线的主要依据.若 ,则与共线,且当时,与同向;当时,与 反向.
(2)若与不共线且,则 .
(3)要证明,,三点共线,只需证明与共线,即证 .若已知,,三点共线,则必有与共线,从而存在实数 ,使得 .
(4)( , 为实数),若,,三点共线,则 .
1.【微点1】(多选题)[2024·唐山六校联考] 对于任意向量, ,下列说法中正确的有( )
BD
A. B. C. D.
[解析] 对于A,当, 为非零向量且不共线时,不等式不成立,故A错误;对于B,易知,故B正确;对于C,若非零向量, 方向相反,则,故C错误;对于D,易知,故D正确.故选 .
相同
相反
平行
续表
2.向量的线性运算
运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
_
①交换律: ;#b#②结合律:
减法
求两个向量差的运算
三角形法则
平行四边形法则
三角形法则
运算
定义
法则(或几何意义)
运算律
数乘
求实数 与向量 的积的运算
(1) .#b#(2)当时,与 的方向相同;当时,的方向与 的方向相反;当时,
3.已知( , 为实数),若,,三点共线,则 .
4.向量三角不等式①已知非零向量,,则(当与 反向共线时左边等号成立;当与 同向共线时右边等号成立);②已知非零向量,,则(当与 同向共线时左边等号成立;当与 反向共线时右边等号成立).
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] _____.
[解析] ,为不共线的非零向量,, ,,则, .因为,所以与不共线,所以,, 三点不共线,故A不正确;因为,所以与共线,所以,,三点共线,故B正确;因为 ,所以与不共线,所以,,三点不共线,故C不正确;因为 ,所以与不共线,所以,, 三点不共线,故D不正确.故选B.

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算
当λ<0时,λa的方向与a的方向 相反 ; λ(a+b)=_λ_a_+__λ_b_
当λ=0时,λa=__0__
知识梳理
3.向量共线定理 向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使 b=λa .
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最 后一个向量终点的向量,即A—1→A2+A—2→A3+A—3→A4+…+—A—n-—1A→n =A—1→An,特 别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若 F 为线段 AB 的中点,O 为平面内任意一点,则O→F=12(O→A+O→B).
常用结论
3.若 A,B,C 是平面内不共线的三点,则P→A+P→B+P→C=0⇔P 为△ABC 的重心,A→P=13(A→B+A→C). 4.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ ) (2)若向量a与b同向,且|a|>|b|,则a>b.( × )
√B.A→M+M→B+B→O+O→M=A→M
C.A→B+B→C-A→C=0 D.A→B-A→D-D→C=B→C
教材改编题
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=-__13__.
由题意知存在k∈R,
使得a+λb=k[-(b-3a)],
所以λ1==-3kk,,
解得k=13, λ=-13.
知识梳理
2.向量的线性运算 向量运算 法则(或几何意义)
运算律
加法
交换律:a+b= b+a ; 结合律:(a+b)+c=_a_+__(_b_+__c)_

人教版数学必修第二册6.2平面向量的概念及线性运算课件

人教版数学必修第二册6.2平面向量的概念及线性运算课件
(3) 向量可以平移,平移后的向量与原向量是相等向量,解题时,
不要把它与函数图象的移动混淆.


(4) 非零向量与
Ԧ
的关系:


是与同方向的单位向量.
Ԧ
考点 2 平面向量的线性运算
[例1] (1) (202X·西安五校联考)如图,AB是圆O的一条直径,C,D
是半圆弧的两个三等分点,则 =( D )
A,P,B三点共线 ⇔ =λ(λ≠0)

=(1-t)· +t
(O为平面内异于A,P,B
的任一点,t∈R)
=x +y

(O为平面内异于A,P,B的任
一点,x∈R,y∈R,x+y=1)
2.向量的中线公式
1
2
若P为线段AB的中点,O为平面内一点,则 = ( + ).
向量线性运算的解题策略
(1) 向量的加减常用的法则是平行四边形法则和三角形法则,
一般共起点的向量求和用平行四边形法则,求差用三角形法则,
求首尾相连的向量的和用三角形法则.
(2) 找出图形中的相等向量、共线向量,将所求向量与已知向量
转化到同一个平行四边形或三角形中求解.
跟踪训练
(202X·吉林梅河口五中4月模拟)在△ABC中,延长BC至点M使得BC=
1
2CM,连接AM,点N为AM上一点且=
3
,若=λ +
μ ,则λ+μ=( A )
A.
1
3
B.
1
3
பைடு நூலகம்
1
3
1
2
1
2
1
3
C.-
1
3
1
3
D.-
3
2

平面向量的概念及线性运算课件-2025届高三数学一轮复习

平面向量的概念及线性运算课件-2025届高三数学一轮复习

+ + = ,所以 = −,所以为的中点. 又因为为
的中点,所以△ =



=


,




= .
考点一 平面向量的有关概念
例1 (多选)下列命题中的真命题是(
)
A.若 = ,则 =
B.若,,,是不共线的四点,则“ = ”是“四边形为平行四边

形”的充要条件
C.若 = , = ��,则 =

D. = 的充要条件是 = 且//
解析:两个向量的长度相等,但它们的方向不一定相同,A不正确;因为
= ,所以 = 且//,又,,,是不共线的四点,所以四
边形为平行四边形;反之,若四边形为平行四边形,则
2025届高考数学一轮复习讲义
平面向量、复数之
平面向量的概念及线性运算
1.向量的有关概念
方向
(1)向量:既有大小又有①______的量叫做向量,向量的大小叫做向量

的②____.
0
(2)零向量:长度为③___的向量,其方向是任意的.
1个单位长度
(3)单位向量:长度等于④_____________的向量.
定义
法则(或几何意义)
运算律

=⑩______,当
> 时,

=⑭_______;
相同
求实数
与的方向⑪______;
+ =⑮
数乘 与向量的 当 < 时,与 的方向⑫
+
_________;
相反
积的运算 ______;
+

新人教A版必修二 平面向量的线性运算 课件(24张)

新人教A版必修二   平面向量的线性运算    课件(24张)
所以―A→G =a+b,―A→D =12―A→G =12(a+b),
―A→E =23―A→D =13(a+b),―A→F =12―A→C =12b, ―B→E =―A→E -―A→B =13(a+b)-a=13(b-2a), ―B→F =―A→F -―A→B =12b-a=12(b-2a). (2)证明:由(1)可知―B→E =23―B→F , 又因为―B→E ,―B→F 有公共点 B, 所以 B,E,F 三点共线.
1.向量的有关概念
名称
定义
备注
既有_大__小__又有_方__向__的量;向量的 平面向量是
向量
大小叫做向量的_长__度__(或称_模__)
自由向量
零向量 长度为_0_的向量;其方向是任意的 记作_0_
名称
定义
备注
单位向量 长度等于 1 个单位 的向量
非零向量 a 的 单位向量 为±|aa|
平行向量 方向 相同 或相反的非零向量 0 与任一向量平行或共线
答案:D
2.(易错题)给出下列命题:
①若a=b,b=c,则a=c;
②若A,B,C,D是不共线的四点,则
―→ AB

―→ DC
是四边
形ABCD为平行四边形的充要条件;
③a=b的充要条件是|a|=|b|且a∥b;
④若a∥b,b∥c,则a∥c.
其中正确命题的序号是________. 解析:①正确.∵a=b,∴a,b的长度相等且方向相同,
a-b=a+(-b)
λ(μ a)= __(_λ_μ_)a_; (λ+μ)a= __λ_a_+__μ__a__; λ(a+b)= __λ_a_+___λ_b___
3.共线向量定理
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,

人教高中数学必修二B版《平面向量及其线性运算》平面向量初步说课教学课件复习(向量的概念)

人教高中数学必修二B版《平面向量及其线性运算》平面向量初步说课教学课件复习(向量的概念)

课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
②字母表示法:为了便于运算可用字母 a,b,c 表示,为了联
系平面几何中的图形性质,可用表示向量的有向线段的起点与
终点表示向量,如A→B,C→D,E→F等.
(2)两种向量表示方法的作用
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
中可以看成是向量的有( )
A.1 个
B.2 个
C.3 个
D.4 个
解析:选 B.①②③不可以看成向量,④⑤可以看成向量.
栏目 导引
第六章 平面向量初步
关于零向量,下列说法中错误的是( )
A.零向量是没有方向的 课件
【解】 (1)可以写出 12 个向量,分别是:A→B,A→C,A→D,B→C,
B→D,C→D,B→A,C→A,D→A,C→B,D→B,D→C,故填 12.
(2)①由于点 A 在点 O 北偏东 45°处,所以在坐标纸上点 A 距 课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
6.1 平面向量及其线性运算 6.1.1 向量的概念
课件
第六章 平面向量初步
考点
学习目标
理解向量的有关概念及向量的几 向量的概念
何表示

平面向量的概念及线性运算(课堂PPT)

平面向量的概念及线性运算(课堂PPT)

3
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
向量的大小叫做向量的模.向量a, A B 的模依次记作 a , A B .
模为零的向量叫做零向量.记作0, 零向量的方向是不确定的.
O A O B O A ( O B ) = O A B O B O O A B A .

O A O BB A . (7.2)
观察图可以得到:起点相同的
a-b
A
两个向量a、 b,其差a − b仍然是一
B
个向量,其起点是减向量b的终点,
b
a
终点是被减向量a的终点.
O
21
巩固知识 典型例题
生活中的一些问题.
作业
32
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
16
巩固知识 典型例题
例3 一艘船以12 km/h的速度航行,方向垂直于河岸,已知水流
速度为5 km/h,求该船的实际航行速度.
模为1的向量叫做单位向量.
B a A
4
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.
解 位移是向量.虽然这两个向量的模相等,但是它们的方向不
同,所以两架飞机的位移不相同.两架飞机位移的有向线段表示分别

平面向量的线性运算课件

平面向量的线性运算课件

A
2b
a
b
b
a
O
[类似题]已知非零向量e1和e2不共线,如果 AB e1 e2 ,
BC 2e1 8e2 ,CD 3 e1 e2 , 证明:ABD三点共线.
2.[逆向使用]已知非零向量e1和e2不共线,欲使ke1 e2和
e1 ke2共线,确定实数k的值.
3.[课本例题 ]如图,平行四边形 ABCD 的两条对角线相交于点 M,且 AB a, AD b,用a, b表示MA, MB, MC , MD.
完毕课本84页练习
平面对量旳线性运算
——向量旳减法运算
预备知识:相反向量
类比实数旳相反数旳概率,定义相反向量:
与a长度相等,方向相反旳向量, 叫做a旳相反向
量,记作-a ; -a与a互为相反向量
要求:零向量旳相反向量仍是零向量
所以: 1、-(-a)=a;2、a+(-a)=(-a)+a=0;
3、
a=-b,b=-a,a+b=0
1.已知a,
b是两个非零向量,下列说法正确的有
概念辨析
_____ .
(1) 2a的方向与5a的方向相反,且 2a的模是5a的模的 2 ; 5
(2)a b与(b a)是一对相反向量;
(3)若a, b不共线,则 a( 0)与b不共线;
2.下列说法正确的个数是 _______
(1)若 a 0,则 0;(2)若 0,则 a 0;
探究:
问题:已知OA和OB不共线,AC t AB(t R), 试用OA和OB表示OC .
特例:对于OC (1 t)OA tOB,当t 1 时,你知道其几何意义 吗? 2
中点公式向量表示法: C为AB中点,则OC OA OB 2

平面向量的概念及线性运算-课件

平面向量的概念及线性运算-课件
解析:如图所示,A CA BB C 所以 AC 10 2 ,方向为西南方向.
4. (2011·如东中学考试)已知△ABC,若点M满 足AB+AC-3AM=0,则MA+MB+MC= 0 .
解析:由已知得 A B A C 3A M
M A M B M C M A M A M B M A M C 3 M A (A B A C )3 M A A M 0
基础达标
1. (必修4P57习题3改编)如图,O为正方形ABCD对角 线的交点,四边形OAED,OCFB都是正方形,在图中 所示的向量中,与向量AE相等的向量是 B O ,与 向量BF共线的向量是 A O ,与向量CF的模相等的 向量是 C O D E B F B O C O A O D O A E D E .

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/282021/2/282021/2/282021/2/282/28/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月28日星期 日2021/2/282021/2/282021/2/28

15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/282021/2/282021/2/282/28/2021
解: 若两个向量起点相同,终点相同,则两 向量相等,但两个向量相等,不一定有相同 的起点和终点,所以①不正确;|a|=|b|,但 a,b方向不确定,所以a,b不一定相等, 故②不正确;零向量与任一非零向量都平行, 当b=0时,a与c不一定平行,故⑤不正确. ③④正确.
题型二 平面向量的线性运算 【例2】如图,D、E、F分别为△ABC的三边BC、 AC、AB的中点.求证:AD+BE+CF=0.

第一讲+平面向量的概念及线性运算课件-2025届高三数学一轮复习

第一讲+平面向量的概念及线性运算课件-2025届高三数学一轮复习
2025年高考一轮总复习
第五章 平面向量与复数
第一讲 平面向量的概念 及线性运算
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量 平面向量是自由向量
零向量
长度为 0 的向量
记作 0
非零向量 a 的单位向 单位向量 长度等于 1 个单位长度的向量 量为±|aa|
(续表) 名称
共线向量 (平行向量) 相等向量 相反向量
(2)证明三点共线问题,可用向量共线来解决,但应注意向量 共线与三点共线的区别与联系,当两向量共线且有公共点时,才 能得到三点共线.
【变式训练】
1.(2023 年桃城区校级月考)在△ABC 中,D,E 分别为边 AB, AC 上的动点,若 AD=2DB,AE=3EC,CD 交 BE 于点 F,A→F= mA→B+nA→C,则 m+n=( )
(2)证明:由(1)得O→G=(1-λ)O→P+λO→Q=(1-λ)·xO→A+λyO→B. ①
∵G 是△OAB 的重心,∴O→G=23O→M=32×21(O→A+O→B)=13O→A+ 13O→B. ②
而O→A,O→B不共线,
∴由①,②得(1-λ)x=31, λy=13,
解得1x=3-3λ, 1y=3λ.
答案:(-1,0)
3.如图 5-1-8,G 是△OAB 的重心,P,Q 分别是边 OA,OB 上的动点,且 P,G,Q 三点共线.
(1)设P→G=λP→Q,用λ,O→P,O→Q表示O→G;
(2)设O→P=xO→A,O→Q=yO→B.证明:1x+1y是定值.
图 5-1-8
(1)解:O→G=O→P+P→G=O→P+λP→Q=O→P+λ(O→Q-O→P)= (1-λ)O→P+λO→Q.

高一数学平面向量的概念及线性运算PPT优秀课件

高一数学平面向量的概念及线性运算PPT优秀课件

a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
B
向量的加法满足 交换律和结合律.
a+ b = b+ a (a + b) + c = a + (b + c )
向量加法运算及其几何意义
学以致用:

例2.长江两岸之间没有大桥的地方,常常通过轮渡
进行运输.一艘船从长江南岸A点出发,以5km/h的
速度向垂直于对岸的方向行驶,同时江水的速度为 向东2km/h. (1)试用向量表示江水速度、船速以及船实际航行 的速度(保留两个有效数字);
向量加法运算及其几何意义
日常生活中遇到的向量加法问题:
例如:某对象从A点走到B点. 然后从B点走到C点. 思考:这个人所走过的位移是多少?
C
分析 :由物理知识可以知道: 从A点到B点然后到C点的 合位移,就是从A点到C点 的位移.
A
B
AB
+
BC
=
AC
向量加法运算及其几何意义
探究:橡皮条在力F1与F2的作用下,从E点伸长到了O点. 同时橡皮条在力F的作用下也从E点伸长到了O点.
向量加法的定义:我们把求两个向量
a, b
和的运算,叫做向量的加法, a b 叫做 的和. 两个向量的和仍然是一个向量.
a, b
向量加法运算及其几何意义
向量加法的三角形法则
已知非零向量a与b.如何求a+ b.
a b
首尾相接,首尾连 a+b=AB+BC=AC
C
B A
位移的合成可以看作向量 加法三角形法则的物理模型
2.2平面向量的线性运算
2.2.1向量加法运算及其几何意义
向量加法运算及其几何意义
复习回顾:
1、向量:
既有大小又有方向的量叫做向量
2、平行向量: 方向相同或相反的非零向量叫做平行向量 3、相等向量: 长度相等且方向相同的向量叫做相等向量
节引言:
数能进行运算,因为有了运算而使数的威力无穷。 与数的运算类比,向量是否也能进行运算呢?人们从 向量的物理背景和数的运算中得到启发,引进了向量 的运算。 下面我们学习向量的线性运算。
D
a
b
因为 AC = AB + BC = a + b
C
b
A
a
B
AC = AD + DC = b a. r r 所以 a + b = b a.
向量加法运算及其几何意义
D
(a b) c (b c ) a
c b c
(a b) c a (b c).
C
b
a b
A
a
b
A
( 1) B
a
b
( 2)
C
ab
C
ab
A
B
若a, b方向相同,则 | a b || a | | b |
若a, b方向相反,则 | a b || a | | b(或 | | b | | a |)
向量加法运算及其几何意义
当向量 a、 b 不共线时,和向量的长度 | a b | 与向量
+a = a 结合律 a +0= 0 数学思想方法方面: (a + b ) + c= 1、具体与抽象的数学思维方法, 2、类比的思想方法 ) a +( b+ c
作业: 课本91页习题2.2A组2、3、4.(1)(2)(3)
向量加法运算及其几何意义
谢谢指导 再见
(2)
b
ab b
a
(4)
ab
a
b b
二、用平行四边形法则求向量的和
(1) (2)
b
ab b a
b a
ab
a
向量加法运算及其几何意义
探究:
数的加法满足交换律与结合律,即对任意 a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c) 任意向量 a、 b 的加法是否也满足交换律与结合律?
向量加法运算及其几何意义
向量加法的平行四边形法则
a b
起点相同,连对角 力的合成可以看作向量加 法平行四边形法则的物理模型
C B
对于零向量与任一向量a, 我们规定
A
a00a a
O
向量加法运算及其几何意义
例题讲解:
例1.如图,已知向量 a, b ,求作向量
a b。
则 OB a b 作法1:在平面内任取一点O, 作 OA a ,AB b ,
a、 b 的长度和 | a | | b |之间的大小关系如何?
ab
b
三角形的两边之和大于第三边
当向量a、不共线时有 b | a b || a | | b |
综合以上探究我们可得结论:
a
| a b || a | | b |
向量加法运算及其几何意义
课堂练习:
一、用三角形法则求向量的和
OB b , 作 OA a , 以OA、OB为 作法2:在平面内任取一点O,
邻边作
连结OC,则 OC OA OB a b. OACB ,
b a

a
ab
A
b
B

b
B
a
ab
A C
向量加法运算及其几何意义
思考:
如图,当在数轴上表示两个共线向量时, 它们的加法与数的加法有什么关系?
E
O
E
O
F
F1+F2=F
力F对橡皮条产生的效果,与力F1和F2共同作用 产生的效果相同,物理学中把力F叫做F1和F2的合力.
向量加法运算及其几何意义
思考:合力F与力F1、F2有怎样的关系?
E
O
E
O
F
四边形的对角线上,并且大小等于平 行四边形对角线的长.
力F在以F1、F2为邻边的Biblioteka 行向量加法运算及其几何意义
(2)求船实际航行的速度的大小和方向(用与江水
速度间的夹角表示,精确到度).
向量加法运算及其几何意义
分析:
向量加法在实际生活中的应用,本例应解 决的问题是向量模的大小及向量的方向
C
解: 如图,设 AB表示水流的
速度, 表示渡船的速度, AD AC表示渡船实际过 江的速度.(由平行四边形 法则可以得到) 由AB AD得Rt ABC , D 5
方向与水的流速间的夹角为120 船行进的方向是___________________________. D C
o
A
B
AD 向量 AB 表示静水流速, 表示船行进方向,AC 表示 船实际行走路线,垂直于水 流方向,所以∠DAC即为所 求
向量加法运算及其几何意义
课堂练习:
(1)根据图示填空:
E D
AC AB BC _____
B 2 得 AC 22 52 29 ≈5.4 5 tan CAB , 查计算器可得CAB 68. 2 答:船实际航行速度的大小约为5.4km/h,方向与水的流 速间的夹角约为680
A
向量加法运算及其几何意义
变式:

在静水中船速为20m/min,水流速度为10m/min,
若船从岸边出发,垂直于水流航线到达对岸的,问
BC CD _____ BD
C
A
AD AB BC CD _____ AE AB BC CD DE _____
B
r r r r 14 (2)已知| a | 8, | b | 6, 则 | a b | 的最大值是_____
向量加法运算及其几何意义
归纳小结:
知识方面: 1、一个概念: 向量的加法 2、两个法则: 向量加法的三角形法则和平行四边形法则 3、两条运算律: 向量加法的交换律 a +b = b+ a
相关文档
最新文档