高等数学复旦大学出版第三版下册课后答案习题全
高等数学(经管类)下、林伟初郭安学主编、复旦大学出版社、课后习题答案之欧阳文创编
习题7-11. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).(2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z ++=-。
高等数学下册黄立宏廖基定著复旦大学出版社第十章课后答案
− 2 arcsin y ≤ x ≤ π; arcsin y ≤ x ≤ π − arcsin y.
0 π 1 π − arcsin y
所以 (5) 相应二重积分的积分区域 D 由 D1 与 D2 两部分组成,其中
∫
0
dx ∫
x − sin 2
f ( x, y )dy = ∫ dy ∫
−1
−2arcsin y
∫ (1)
1
2
ww w.
图 10-5 (2) (4)
2 x 的交点(1,2),与 x=2 的交点为(2,4), (3)区域 D 如图 10-5 所示,直线 y=2x 与曲线 2 2 y= ≤ y ≤ 2 x, 1 ≤ x ≤ 2. x 与 x=2 的交点为(2,1) ,区域 D 可表示为 x 曲线
y=
1
1− y
f ( x, y )dx
可表示为
y 2 ≤ x ≤ y + 2, − 1 ≤ y ≤ 2 .
图 10-3 所以
图 10-4
2
D
−1
y2
课 后
答
案
网
x 所以 . 6. 画出积分区域,改变累次积分的积分次序:
∫∫
D
f ( x, y )dσ = ∫ dx ∫2 f ( x, y )dy
1
2y
2
2x
(1) (2)
课 后
I = ∫∫
D
4 + xy dσ , D = {( x, y ) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
2 2
答
∫∫
ln( x + y )dσ < ∫∫ [ln( x + y )]2 dσ
高等数学下复旦大学出版社王中兴第九章课后答案
习题9.1 1、略2、(1D ≥≡,故DDσ>σ⎰⎰⎰⎰(2)()2x y +和()3x y +在D 上连续且()()23x y x y +≤+,()()23x y x y +≡+,故()()23DDx y d x y d +σ<+σ⎰⎰⎰⎰。
(3)()0ln ln 2x y ≤+≤,()()2ln ln x y x y +≡+,()()()2ln ln x y x y +≥+,()ln x y +和()()2ln x y +,()ln x y +和()()2ln x y +在D上连续,故()()()2ln ln DDx y d x y d +σ>+σ⎰⎰⎰⎰(4)2,1,2,3ii D I d i =σ=⎰⎰,故213I I I <<3、(),f x y 在D 上连续,故(),f x y 在D 上有最大值M 和最小值m 。
(),DDDmd f x y d Md σ≤σ≤σ⎰⎰⎰⎰⎰⎰,(),DmS f x y d MS ≤σ≤⎰⎰。
(1)若0S =,则对任意的(),D ξη∈,()(),,Df x y d f S σ=ξη⎰⎰。
(2)若0S ≠,则()1,Dm f x y d M S ≤σ≤⎰⎰,由介值定理可知存在(),D ξη∈,()()1,,Df f x y d S ξη=σ⎰⎰,从而有()(),,Df x y d f S σ=ξη⎰⎰4、由中值定理可知存在(),t t f D ξη∈,()()2,,ttDf x y dxdy f t=ξηπ⎰⎰,从而由(),f x y 连续可得()()0=lim ,0,0t t t f f +→ξη=原式 5、由轮换对称性可知22cos cos DDy d x d σ=σ⎰⎰⎰⎰,21444x πππ≤+≤+,2sin4x π⎤⎛⎫+∈ ⎪⎥⎝⎭⎦,()222sin cos sin 4D Dx x d x d π⎛⎫+σ=+σ ⎪⎝⎭⎰⎰,因此,()()22221sin cos sin cos DDx y d x x d ≤+σ=+σ≤⎰⎰⎰⎰习题9.21、(1)()()()()2222220020=3232223x x dx x y dy xy y dx x x dx --+=+=+-=⎰⎰⎰⎰原式 (2)11220011=13412x dx dy y ππ=⨯=+⎰⎰原式(3))21122200514201=2133322140xdx x y dy x y y x x x dx ⎛+=+⎝⎛⎫=+-= ⎪⎝⎭⎰⎰⎰原式(4)()2222221112320000111221100011=3611112666yy y y y y y e dy x dx y e dy y de y ee dy e e e --------==-⎛⎫⎛⎫=--=-+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰原式(5)=0原式(6)()2222240001=212r r d e r dr e e πθ=π=π-⎰⎰原式(7)()()()()11222200=ln 1ln 112ln 2144d r rdr r d r πππθ+=++=-⎰⎰⎰原式 (8)22242224401113=2264r d rdr d rdr πππθθθ=θθ==π⎰⎰⎰⎰原式 2、(1)()11=,xdx f x y dy ⎰⎰原式(2)()21=,x xdx f x y dy ⎰⎰原式(3)()120=,y y dyf x y dx -⎰⎰原式 (4)()()11111ln =,,e x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰原式3、(1)()20=cos ,sin R d f r r rdr πθθθ⎰⎰原式(2)()2sin 20=cos ,sin R d f r r rdr πθθθθ⎰⎰原式(3)()1210cos sin =cos ,sin d f r r rdr πθ+θθθθ⎰⎰原式(4)()sec 40sec tan =cos ,sin d f r r rdr πθθθθθθ⎰⎰原式4、(1))asec 4400=sec ln1rd dr a d a rππθθ=θθ=⎰⎰⎰原式(2)a3420=8d r dr a ππθ=⎰⎰原式 5、()1112=04413xDx dxdy xdx dy x x dx -+==-=⎰⎰⎰⎰⎰原式 6、()623D V x y d =--σ⎰⎰,[][]0,10,1D =⨯11111111200621316235656257622xdx dy ydy dx xdx ydyxdx x =--=--=-=-=-=⎰⎰⎰⎰⎰⎰⎰7、()221DV xy d =++σ⎰⎰,[][]0,40,4D =⨯4444220442204423001116441685608161633x dx dy y dy dx x dx y dy x dx x =++=++=+=+=⎰⎰⎰⎰⎰⎰⎰8、2cos 42cos 3330165330=cos sin cos sin 41211394cos sin sin cos 14328416r d r dr d d d θππθππθθθ=θθθ⎛⎫⎛⎫=θθθ-θθθ=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰原式9、()()123222cos 332231=18cos 38161sin sin 183189d r dr d d ππππθππθ=-θθππ=--θθ=-+⎰⎰⎰⎰原式10、()()()()()1222220132301422233xxDM x y d dx xy dyx x x x dx -=+σ=+⎛⎫=-+--= ⎪⎝⎭⎰⎰⎰⎰⎰11、01r ≤≤,123316r r r r ⎛⎫-≤≤ ⎪⎝⎭202Dd πσ=θ=π⎰⎰⎰121114400021226r r dr r dr ⎛⎫π-≤π≤π ⎪⎝⎭⎰⎰⎰10971122225551025ππ⎛⎫=π-≤π≤ ⎪⎝⎭⎰ 9761255165ππ> 因此,6121655D ππ≤σ≤12、(1)令u xy y v x =⎧⎪⎨=⎪⎩,则11221122x u v y u v -⎧=⎪⎨⎪=⎩,()(),1,2x y u v v α=α 原式43221128ln 323u du dv v ==⎰⎰(2)令u x y v y x =+⎧⎨=-⎩,则()()1212x u v y u v ⎧=-⎪⎪⎨⎪=+⎪⎩,()(),1,2x y u v α=α()[][]()122211142240011,1,11,142122111214255945D u v dudv D du u u v v dv=+=-⨯-=++⎛⎫=++= ⎪⎝⎭⎰⎰⎰⎰原式(3)令cos sin x ar y br =θ⎧⎨=θ⎩,()(),,x y abr r α=αθ 原式122042abd r abrdr ππ=θ=⎰⎰ (4) 令u x y v y =+⎧⎨=⎩,则x u v y v=-⎧⎨=⎩,()(),1,x y u v α=α()111112u vv uuu e du e dv uedu e udu -===-=⎰⎰⎰⎰原式 (5)令u x y v x y =-⎧⎨=+⎩,则()()1212x u v y v u ⎧=+⎪⎪⎨⎪=-⎪⎩,()(),1,2x y u v α=α 1100011001cos cos 21sinsin1sin12v v v vu u dvdu dv du v vuv dv vdv v -=====⎰⎰⎰⎰⎰⎰原式(6)令u v ⎧=⎪⎨=⎪⎩22x uy v ⎧=⎨=⎩,()(),4,x y ur u v α=α ()()()1111230001320144232222315uuu du u v urdv u v v duu u u u du --⎛⎫=+=+⎪⎝⎭=-++=⎰⎰⎰⎰原式习题 9.31、(1)23561156120001=4111428364xyxyxyD D x xy dxdy z dz x y dxdy x dx y dx x dx ====⎰⎰⎰⎰⎰⎰⎰⎰原式(2)()()()131122001100=11111821621111115ln 22116216xyxy x yD x D xdzdxdy x y dx dxdy dx x y x y dx x y ----+++δ⎛⎫=-=- ⎪ ⎪++++⎝⎭=--=-++⎰⎰⎰⎰⎰⎰⎰⎰原式(3)()()2020020=sin 1sin 1sin 111sin 1222xyxyx D D ydxdy zdzxy x x dxdy dx ydy x xx dx π-ππ-=-=π⎛⎫=-=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰原式(4)()2222221112=129x y y zdzdxdy z dz +≤+=π+δ=π⎰⎰⎰⎰原式(5)()222011=243xD xdx dydz x x dx =-=⎰⎰⎰⎰原式2、(1)2222233210002116=2223r d r dr dz r r dr π⎛⎫θ=π-=π ⎪⎝⎭⎰⎰⎰⎰原式(2)()22112407=212rd rdr r r r dr πθ=π--=π⎰⎰⎰原式3、(1)(2)22cos 240022cos 34045404=sin cos sin cos 8sin cos 76a a d d r r drd d r dra d a ππϕππϕπθϕϕϕ=θϕϕϕ=πϕϕϕ=π⎰⎰⎰⎰⎰⎰⎰原式(3)21402140=sin sin 122545d d r drd d r drππππθϕϕ=θϕϕ=π=π⎰⎰⎰⎰⎰⎰原式4、(1)113201320=cos sin cos sin 18xyD xydxdy dz d r d d r drππ=θθθθ=θθθ=⎰⎰⎰⎰⎰⎰⎰原式22402340442400=sin cos sin cos 112sin 248aaad d r r drd d r dra r πππππθϕϕϕ=θϕϕϕπ=πϕ=⎰⎰⎰⎰⎰⎰原式(2)2cos 320242052=sin 1sin cos 41cos 2510d dr drd d ππϕπππθϕϕ=θϕϕϕππ=ϕ=⎰⎰⎰⎰⎰原式(3)()()52222223002450=55121104108xyxyD D x y dxdy x y dxdyr d r drr r π+⎛=+- ⎝⎛⎫=θ- ⎪⎝⎭⎛⎫=π- ⎪⎝⎭=π⎰⎰⎰⎰⎰⎰原式(4)()()2222420024200552=32sin 32sin 3415b a b a x y z dv d d rdrd d r drb a Ωππππ++=θϕϕ=θϕϕπ=-⎰⎰⎰⎰⎰⎰⎰⎰⎰原式5、(1)()2222424300244220430=22256433x y zx y dv zdvdz d dr zd dxdyz dz z dz z ΩΩπ+≤++=θ+δ=π+π=π=π⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰原式(2)设1Ω是由1z z ==所围成的有界闭区域,则))12222222222110021102=22232536x y x y z x y x y z z dv z dvdzdz zdz dxdy zdzdxdyΩΩ+≤+≤+≤+≤-=--+ππ=--π+=-π⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰原式(3)()1222=4357xy z dv Ω++⎰⎰⎰原式,1Ω为Ω位于第一卦限的部分。
高等数学第三册教材答案
高等数学第三册教材答案第一章:函数与极限1. 函数的概念与性质2. 极限的概念与性质3. 数列极限4. 函数极限第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 高阶导数4. 微分的概念与性质第三章:一元函数微分学1. 可导函数与连续函数的关系2. 导数的运算法则3. 高阶导数的应用4. 幂指函数的微分第四章:函数的积分学1. 定积分的意义与性质2. 不定积分3. 积分的运算法则4. 牛顿-莱布尼茨公式第五章:定积分的应用1. 几何应用2. 物理应用3. 统计应用4. 应用题解析技巧第六章:多元函数微分学1. 多元函数的极限与连续2. 偏导数与全微分3. 隐函数与参数方程的微分4. 多元函数的极值与条件极值第七章:多元函数积分学1. 二重积分的概念与性质2. 三重积分的概念与性质3. 曲线与曲面的积分4. 应用题解析技巧第八章:无穷级数1. 数项级数2. 幂级数3. 函数项级数4. 序列与函数项级数的收敛性第九章:常微分方程1. 方程与解的概念2. 一阶常微分方程3. 二阶常微分方程4. 齐次与非齐次常微分方程第十章:高级数学的应用1. 现实生活中的数学模型2. 数学在科学与工程中的应用3. 数学在经济学中的应用4. 数学在物理学中的应用以上是《高等数学第三册教材》的答案概述,涵盖了每个章节的主要内容和重点。
这些答案有助于学生巩固对每个主题的理解,并通过实际的应用题目来提高解题能力。
希望这份答案可以帮助你更好地掌握高等数学知识。
高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案之欧阳地创编
习题7-11. 指出下列各点所在的坐标轴、坐标面或卦限:A(2,1,-6),B(0,2,0),C(-3,0,5),D(1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M(-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x ,y ,z),则(1) 由x-1=0,y+2=0,z+3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).(2) 由x=-1,y+2=0,z+3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x=-1,y=2,z+3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解: 设所求的点为M(0,0,z),依题意有|MA|2=|MB|2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z=11,故所求的点为M(0,0,149). 4. 证明以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.5. 设平面在坐标轴上的截距分别为a=2,b=-3,c=5,求这个平面的方程.解:所求平面方程为1235y x z ++=-。
6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为Ay+Bz =0.又点(4,-3,-1)在平面上,所以-3A-B =0.即B=-3 A 代入并化简可得 y-3z =0.7. 求平行于y 轴且过M1(1,0,0),M2(0,0,1)两点的平面方程.解:因所求平面平行于y 轴,故可设其方程为Ax+Cz+D=0.又点M1和M2都在平面上,于是可得关系式:A=C=-D,代入方程得:-Dx -Dz+D=0. 显然D≠0,消去D 并整理可得所求的平面方程为x+z -1=0.8. 方程x2+y2+z2-2x+4y=0表示怎样的曲面?解:表示以点(1,-2,0方程。
高等数学复旦大学出版第三版课后答案
206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
高等数学习题08答案(复旦大学出版社)
习题八5. 求下列各极限:10(1)y x y →→00(3)x y →→00(4)l ;x y →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(3)原式=01.4x y →→=-(4)原式=002.x y →→=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 讨论下列函数在原点O (0,0)处的连续性及偏导数:(3) 222222222,0,()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.而…8. 求下列函数的偏导数: (1)z = x 2y +2xy; (6)u = z xy ;解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ 12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z zx x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4.13.求下列函数的二阶偏导数:(3)z = y x ;解:(3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ 14.设f (x ,y ,z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===22. 求下列复合函数的偏导数或全导数:(2)z =arc tanxy, x =u +v ,y =u -v , 求z u ∂∂,z v ∂∂;(3)ln(e e )xyu =+, y =x 3, 求d d u x;(4) u =x 2+y 2+z 2, x =e cos t t , y =e sin t t , z =e t, 求d d u t. 解:(2)222222211111x z z x z y y x v y u x u y uy x yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 2222222111(1)11.x z z x z yy v x v y vyx x y y y x ux y u v-∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xy u f x y =-解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ 29. 求下列隐函数的导数或偏导数:(4)333z xyz a -=,求22,z zx y∂∂∂∂.解:(4)设33(,,)3F x y z z xyz a =--, 则23,3,33,x y z F yz F xz F z xy =-=-=-故223,33x z F z yz yz x F z xy z xy∂-=-=-=∂-- 223,33y z F z xz xz y F z xy z xy∂-=-=-=∂--()()()()22222222322232222()zz z x x xz z xy xz y z y z xy y y z xy xzxzz x x xz z xy z xyx yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--31. 设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z = z (x ,y ),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭122122121222122221222110111y z x zy zF F F y F F F F F F F zx x F F x F F F F F y F zy y F F y F ⎛⎫''-=⋅+⋅ ⎪⎝⎭'''=⋅+⋅='-'∂∴=-=-=∂''''-''-∂=-=-=∂''。
高等数学(下) 第3版习题详解第八章 多元函数微积分
习题全解-第八章 多元函数微积分习题 8-11.在y 轴上求与点)7,3,1(-A 和点)5,7,5(-B 等距离的点。
解 设y 轴上有点)0,,0(y P 与A 和B 点等距离。
则PA ==PB ==由PA PB =得2=y即在y 轴上与点)7,3,1(-A 和点)5,7,5(-B 等距离的点为)0,2,0( 2.指出下列平面的特点,并画出草图:(1) 230x y -+=; (2) 350x -=; (3) 0x z -=; (4) 20x y +=; (5)0x y z --=; (6) 0z =. 解(1)方程中,0=C 平面平行于z 轴。
(2方程中,0==C B 平面平行于yoz 平面。
(3)方程中,0==D B 平面过y 轴。
(4)方程中,0==D C 平面过z 轴。
(5)方程中,0=D 平面过坐标原点。
(6)方程中,0===D B A 平面重合于xoy 平面。
3.指出下列方程所表示的曲面,并画出草图:(1) 2221x y z ++=; (2) 2240x y x +-=(3) 22194x y +=; (4) 2z y =; (5) 22244936x y z ++=; (6) 22214z x y +-=;(7) z =; (8) z =. 解 (1)表示球心在原点,半径为1的球面(2)表示母线平行于z 轴的圆柱面(3)表示母线平行于z 轴的椭圆柱面(4)表示母线平行于x 轴的抛物柱面(5)表示旋转椭球面(6)表示单叶双曲面(7)表示球心在坐标原点,半径为2的上半个球面(8)表示圆锥面4.写出下列旋转面的方程:(1) zOx 面上的直线2z x =分别绕x 轴、z 轴旋转而成的旋转面; (2) yOz 面上的抛物线23y z =绕z 轴旋转而成的旋转面; (3) yOz 面上的圆224y z +=绕y 轴旋转而成的旋转面; (4) xOy 面上的椭圆2244x y +=绕x 轴旋转而成的旋转面.解 (1)绕x 轴旋转:0)(4222=+-z y x ;绕y 轴旋转:0)(4222=+-y x z(2)0322=-+z y x (3)4222=++z y x(4)44222=++)(z y x 5.画出下列曲面所围立体的图形:(1)旋转抛物面228z x y =--与xOy 平面; (2)旋转抛物面22z x y =+与平面4z =; (3)圆柱面2216x y +=与平面4,0y z z +== (4)曲面22y x z +=与222y x z --=解 (1)(2)(3)(4)习题8-21.已知函数22),(xy y x y x f -=,试求)sin ,cos (y x y x f 解 22)sin (cos sin )cos ()sin ,cos (y x y x y x y x y x y x f -= y x y x y x y x 2222sin cos sin cos ⋅-⋅= )sin (cos sin cos 3y y y y x -= 2.已知函数vu vwu w v u f ++=),,(,试求),,(xy y x y x f -+解 x yx xy y x xy y x y x f 2)(),,(++=-+-3.求下列函数的定义域: (1))4ln(12222y x y x z --+-+=解 要使函数有意义,须使 ⎪⎩⎪⎨⎧>--≥-+04012222y x y x解得2214x y ≤+<所以函数的定义域为{}41),(22<+≤y x y x(2)x yy x f arcsin),(=解 要使函数有意义,须使⎪⎩⎪⎨⎧≠≤≤-011x x y解得0>x 时,x y x ≤≤-;0<x 时,x y x -≤≤所以函数的定义域为{}x y x x y x ≤≤->,0),(⋃{}x y x x y x -≤≤<,0),((3)yx z -=解 要使函数有意义,须使⎪⎩⎪⎨⎧≥≥-0y y x 解得yx y x ≥≥≥2,0,0所以函数的定义域为{}y x y x y x ≥≥≥2,0,0),((4)2229z y x u ---=解 要使函数有意义,须使09222≥---z y x解得9222≤++z y x所以函数的定义域为{}9),(222≤++z y x y x4.下列函数在哪些点间断?(1)2132--+=x y x z解 当2=x 时,函数间断所以函数有一条间断线为{}2),(=x y x(2)44y x e z xy+=解 当,0==y x 时,函数间断所以函数间断点为)0,0(习题8-31.求下列函数的偏导数和全微分 (1)123+-=xy y x z解 223y y x x z -=∂∂ xy x y z23-=∂∂ dy xy x dx y y x dz )2()3(322-+-=(2))ln(xy x z =解 1)ln()ln(+=+=∂∂xy xyy x xy x z y xxy x x y z ==∂∂ dy y x dx xy dz ++=)1(ln(3)xy yx z +-=1解 22222)1(1)1(1)1()1)(()1()(xy y xy y xy xy xy xy y x xy y x x z ++=++-+=+'+--+'-=∂∂2222)1(1)1()()1()1()1)(()1()(xy x xy x y x xy xy xy y x xy y x y z ++-=+--+-=+'+--+'-=∂∂ dy xy x dx xy y dz 2222)1(1)1(1++-++=(4)22arcsin y x z +=解 2222222212211y x y x x y x x y x x z +--=+⋅--=∂∂ 2222222212211y x y x y y x y y x y z +--=+⋅--=∂∂ dy yx y x y dx y x y x x dz 2222222211+--++--= (5)32sin xz x y u +=解 32cos z x y x u +=∂∂ x y usin =∂∂ 26xz z u =∂∂dz xz xdy dx z x y du 236sin )2cos (+++=(6)zxy u )1(-=解 ðuðx=−yz(1−xy)z−1ðuðy=−xz(1−xy)z−1ðuðz =(1−xy)z ⋅ln(1−xy)()()()dz xy xy dy xy xz dx xy yz du zz z --+----=--1ln 11)1(112.设函数)2(),(sin y x e y x f x +=,求)1,0(x f '和)1,0(y f '解 因为xx x e y x x e f sin sin )2(cos ++=' 所以3)1,0(='x f因为)2(sin +='x e f x y 所以2)1,0(='y f3.设222),,(zx yz xy z y x f ++=,求)1,2,0(x f ',)2,0,1(xzf '',)0,1,0(-''yzf ,)1,0,2(zzxf '''。
高等数学复旦大学出版第三版下册课后答案习题全
习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,149).1731747. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).17513. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求: (1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14x a PP α==12cos 14y a PP β==12cos 14z a PP γ==.(4) 12012{14PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c=-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a, b , c .解:||==a ||==b||3==c, , 3. a b c ===a b c e17616. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j . 17.解:设{,,}x y z a a a a =则有 c o s (1,1)3x a i a a i a i π⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标. 解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.17719. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+126570cos 6, 749z z γ=⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在178向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD⋅=4.7==-23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ① (a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2} a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b179π2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12||||l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =-- {2,0,3}BC =-18022222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯. 30.(1)解: xy z xyzij k a b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z xyza a ab b b C C C = 若 ,,C a b 共面,则有a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z x y za a a ab b b b C C C ⨯⋅=() a xy z xy z x y z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b == 故C a a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()18131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则 13BCDV S h =⋅⋅,而11948222BCDSBC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC = 显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).182解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=183得b =2.故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4) (4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=018418546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}186由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;187(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0188得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d = 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d ==即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R =设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.189解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1219059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.191解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-21 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-.解:(1)直线的参数方程为334624x ty t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.192解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.193故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u v f u v w u w +=+,试求(,,).f x y x y xy +- 解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-194(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>>2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10(1)y x y →→ 22001(2)lim;x y x y →→+00(3)x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+1956. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+; (2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=22e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩196解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x;(4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+197[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz zu z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yz z yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1981121e x y z y y ⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,1992222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15315.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22e xy z +=;(2)z =(3)zyu x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy x y x y z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()x z y x x y x y =--+ (3)∵11,ln z z z y y z u uy x x x zy x y --∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂154ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265e e e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则155d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20.解:因为圆锥体的体积为21.3V r h π=⋅0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz =精确值为:50.242 2.850.22 3.62V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:156V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.454V d V ≈=⨯⨯+⨯⨯+⨯⨯314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanxy, x =u +v ,y =u -v , 求z u ∂∂,z v ∂∂;(3)ln(e e )xyu =+, y =x 3, 求d d u x; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uy x y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 2222222111(1)11.x z z x z yy v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.15723. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xy u f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z zxy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+15825. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z z x x y y∂∂∂∂∂∂∂解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂1592212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程。
高等数学 下册 (黄立宏 廖基定 著) 复旦大学出版社 第八章 课后答案
x →0
(2) y →0 故 O(0,0)是 z 的间断点. (3)若 P(x,y) 沿直线 y=x 趋于(0,0)点,则
x →0 y = x →0
sin u = 1 ≠ z (0, 0) = 0 u →0 u
lim z = lim
x →0
x2 ⋅ x2 =1 x2 ⋅ x2 + 0
,
若点 P(x,y) 沿直线 y=-x 趋于(0,0)点,则
⎛1 1⎞
故
x y ,求 f (x,1) . 11.设 f(x,y)=x+(y-1)arcsin x 1 1 1 f x ( x, y ) = 1 + ( y − 1) ⋅ ⋅ 2 y x ⎛ x⎞ 2 1− ⎜ ⎟ y ⎝ y⎠
解: 则
f x ( x,1) = 1 + 0 = 1 .
解: 设切线与正向 x 轴的倾角为α,
∂z 1 = x⋅ ∂y x2 + y 2 ∂z 1 = ⋅ sec 2 x ∂x tan y (4)
⋅
1
2 x2 + y 2 x 1 2 2x ⋅ = csc , y y y y
⋅2y =
xy . x + y2
2
1 2x 2x ∂z x x = ⋅ sec 2 ⋅ ( − 2 ) = − 2 csc . ∂y tan x y y y y y (5)两边取对数得 ln z = y ln(1 + xy )
高等数学下、林伟初郭安学主编、复旦大学出版社、课后习题答案
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-40)2(10)2(7z)2(30)2(50)2(-2z)2解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
高等数学复旦大学出版第三版课后答案习题十一
261习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x , y )在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段, 则 L :12x a b t b y t=⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b Lb ba P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d b LaP x y x P x,x =⎰⎰,其中P (x , y )在L 上连续. 证:L :0x x a x b y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d b LaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧;(4)()()22d d Lx y x x y yx y+--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧;(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d Lx y y z -+⎰ ,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d Lx xy x y xy y -+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,262()()22222435001156d d 3515Lxyx x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰(2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t=+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π200π32ππ3223d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L a xy x xy x xy xa a t a a t t xat t ta t t t ta=+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π22d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx ya t a t a t a t a t a t ta a ta+--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰263(5)()()()2π220π322π3320332d d d sin sin cos cos d d 131ππ3x x z y y zkk a a a a kak a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x ty t z t t 从1→0.故()()3223221031041d 3d d 27334292d 87d 1874874xx zy y x y zt t t t t t t t tΓ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y xAB z =-⎧⎨=⎩,x 从0→1 ()01d d d 112ABx y y z dx -+=--=-⎡⎤⎣⎦⎰⎰.:1x BC y z =⎧⎨=-⎩,z 从0→1264()()()101120d d d 112d 12232B Cx y y z z dzz zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰:1y C A z x =⎧⎨=-⎩,x 从0→1 []1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LAB BC C Ax y y z x y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415Lxxy x y xy yx x xxx xx x xx x xx---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4.计算()()d d L x y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x = 2t 2+t +1, y = t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343Lx y x y x yy y y y y y yy y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2265故()()()()()2121221d d 32332d 104d 5411Lx y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()12213214320d d 32412d 10592d 10592432323Lx y x y x yt t t t t t ttt t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.266解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π22222d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t tk b at tk b at k b a=+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分.解:(1)Γ:2221x y z y z ⎧++=⎨=⎩即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 22x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π02π2202π202π0d cos d 222sin cos d 4sin 2d 161cos 4d 16216xyz z t t t t tt t t t t ttΓ===-==⎰⎰(2)如图11-3所示.267图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sin cos d 2sin d 24233yzx zxy xyz t t t t t t t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334yzx zxy xyzyzx zxy xyzΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰ x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x y x y x xy x y x x y ++--⎰ ,其中L 为正向星形线()2223330x ya a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰Lx y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx y x y x y --+⎰,L是圆周y =上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos x x L x y y my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).268图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4, Q =3x +5y -6,3Q x∂=∂,1P y∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y +-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x, 则2cos 2sin 2exP x x x x y y∂=+-∂,2cos 2sin 2e xQ x x x x y x∂=+-∂.从而P Q yx∂∂=∂∂,由格林公式得.()()222d d cos 2sin esin 2e d d 0++--∂∂⎛⎫-=⎪∂∂⎝⎭=⎰⎰⎰ xx LD x yxy x xy x y x x y Q Px y xy(3)如图11-5所示,记O A ,AB , BO 围成的区域为D .(其中 BO=-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2262cos P xy y xy∂=-∂,262cos Q xy y xx∂=-∂由格林公式有:269d d d d 0L OA ABD Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰ 故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LO A ABO A ABP x Q y P x Q yP x Q y P x Q yO x y y y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BOD Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂P y,1∂=-∂Q x,即,0∂∂-=∂∂Q P xy于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()2222221122011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LL BA O BP x Q y x y xy x y x y x yx y x y xy x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7270P =e xsin y -my , Q =e xcos y -m ,e cos xP y my∂=-∂,e cos xQ yx∂=∂由格林公式得:22d d d d d d d d 1π22π8L O AD DDQ P P x Q y x y x y m x ym x y a m m a +∂∂⎛⎫-+=⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0esin 00e cos 08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰LO A axxa m a P x Q y P x Q ym a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积: (1)星形线x = a cos 3t ,y = a sin 3t ; (2)双纽线r 2 = a 2cos2θ; (3)圆x 2+y 2 = 2ax . 解:(1)()()()()()2π322π2π2422222π202π22π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t at t ta tt t a tt t t t at t t a=-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a θ=sin y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:271[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a aaθθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π22π021d d 21d a+acos sin 2d 1cos 2πcos sin LA x y y xa a aa a θθθθθθθ=-=-=+=⋅-⎰⎰⎰9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x y xy yx y xy +--⎰;(3)()()1,221,1d d xy x x y-⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q yx∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d xx y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123P xy yy∂=-∂,2123Q xy yx∂=-∂,有P Q yx∂∂=∂∂,所以积分与路径无关.取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xy yx y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰272(3)2y P x=,1Q x=-,P ,Q 在右半平面内有连续偏导数,且21P yx∂=∂,21Q xx∂=∂,在右半平面内恒有P Q yx∂∂=∂∂,故在右半平面内积分与路径无关.取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11xy x x yy -==--⎰⎰(4) P =,Q =,且P Q yx∂∂==∂∂在除原点外恒成立,故曲线积分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,081529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ): (1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y)d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y .2P Q yx∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0002222d d ,22d d 2222222x y xyyu x y x y x y x y x x yx y xy xy xyxy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x yx∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,020022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y,2316∂∂=+=∂∂P Q x xy yx,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y)d y273是某个定义在整个xOy 面内函数u (x ,y )的全微分,()()()()()(),22320,03200322d ,38812e 0d d 812e412e 12e 12x y y xyyyyu x x y x y x y x x y y x yxx y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y xy∂=-+∂,2cos 2sin Q y x x yx∂=-∂,有P Q yx∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xy u x y x y x y y x y x x y x x yy x xy y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y y x y++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数. 证:22x P x y=+,22y Q x y=+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xyyxxy,(x ,y )∈G因此22d d x x y y x y++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y dx y x yx y++⎡⎤==+⎢⎥++⎣⎦知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3k F xi yj r=-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关.证:场力沿路径L 所作的功为.33d d Lk k W x x y yrr=--⎰其中3kx P r=-,3ky Q r=-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且53(0)P kxy Q x yrx∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系?274解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰ ,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰ ,其中Σ为曲面z =z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰ y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π4222π222222202π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RRRxy z x y x yx yr r rR R r r R R RR r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=----⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8275故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz ,故30d d d d 3yzD x y z y z z yy∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:y =(x ,z )∈D xz ,故30d d d d 3xzD y z x z xz xx∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z xx x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为n ={1,-1,1},n 的方向余弦为cos α=cos β=,cos γ=,图11-9由两类曲面积分之间的联系可得:276()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x fz x yx y z x y z x y z s f y s f z x yf x x y f y x y f z x yf x f y f z x y f x x yx y z x y x y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD x xz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:277()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω,P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()220000020204d d d d d d d d d d d d d d d d d d 2d 2a aa a a aa a y y z x z x x yy xz x z P Q Rx y z x y z x y z x y x y zx y x a yx y y a x xy a a x ax a∑ΩΩ+++-∂∂∂⎛⎫++=⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z x P Qx y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰ (由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ为球面x 2+y 2+z 2= a 2的外侧;(3)()()2232d d d d d d 2xz y z z x x y x y z xy y z ∑++-+⎰⎰ ,其中Σ为上半球体x 2+y 2≤a 2,0z ≤≤(4)d d d d d d x y z y z x z x y ∑++⎰⎰ ,其中Σ是界于z = 0和z = 3之间的圆柱体x 2+y 2 = 9的整个表面的外侧;278解:(1)由高斯公式()()2224d d d d d d d 2222d 6d 6d d d 3aaaxy z y z x z x yvx y z vx y z x vx x y za∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 对称性(2)由高斯公式:()3332222ππ45d d d d d d d 3d 3d d sin d 12π5axy z y z x z x yP QR v x y z vx y zr ra∑ΩΩθϕϕ++∂∂∂⎛⎫++=⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得()()()2232222π2π2220024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxzy z z x x yx y z xy y z P QR v x y z vz x yr r rr ra∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得:2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++=⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰ ,其中Γ为圆周x 2+y 2+z 2 = a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向; (2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:2790≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向;(3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2= 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰ y x x y z z Γ,其中Γ是圆周x 2+y 2+z 2 = 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}111cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d 3y x z y x zR Q Q P P Rs y z x y z x ss aaΓ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦=-=-=-=⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为4长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n . 由斯托克斯公式()()()(()()()222222d d d2222d22d3d2432492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=-++=-=-⋅=-⎰⎰⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y = x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2 = 2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,280281故()()d d ,,d ,,LLP x Q y x y x y P x Q x y x y s++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T={1,2x }.其方向余弦为cosα=cos β=故()()d d ,,d 2,,LLP x Q y x y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为1x-⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰19.设Γ为曲线x = t ,y = t 2,z = t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d 1cos d d cos d d cos d x s y s z sαβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:282(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z = 8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,5},即方向余弦为3cos 5α=,2cos 5β=,cos 5γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R s P Q R ∑∑∑αβγ++=++⎛⎫=++⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=,cos β=,cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
高等数学(经管类)下、林伟初郭安学主编、复旦大学出版社、课后习题答案之欧阳术创编
习题7-11. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).(2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149).4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214M M =,2213236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z ++=-。
高等数学复旦大学出版社习题答案
习题九1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t =; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1);(3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π4t =的切向量为 {}πππ,,,0,444T x y z a c ⎧⎫⎛⎫⎛⎫⎛⎫'''==-⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭当π4t =时, ,,222a b c x y z === 切线方程为2220a b cx y z a c---==-. 法平面方程为0()0.222a b c a c x y z ⎛⎫⎛⎫⎛⎫++-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22022a c ax cz --+=. (2)联立方程组2226x y z x y z ⎧++=⎨++=⎩ 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得d d 2220d d d d 10d d y z x y z x xy z x x⎧+⋅+⋅=⎪⎪⎨⎪++=⎪⎩ 解得d d ,,d d y z x z x yx y z x y z--==--在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}.故切线方程为121101x y z -+-==- 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得d d 22,21d d y zym z x x==- 于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为 00000,112x x y y z z m y z ---==-法平面方程为000001()()()02m x x y y z z y z -+---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2t在相应点的切线垂直于平面0x y ++=,并求相应的切线和法平面方程。
高等数学教材第三版答案
高等数学教材第三版答案为了方便广大高等数学学习者更好地学习,我特意整理了高等数学教材第三版的答案,希望能对大家的学习有所帮助。
下面是对教材中各章节习题的答案解析。
第一章微分学1.1 函数与极限1.2 导数与微分1.3 微分中值定理与导数的应用第二章积分学2.1 定积分2.2 反常积分2.3 定积分的应用第三章无穷级数3.1 数项级数3.2 幂级数3.3 函数项级数第四章高次方程及其解法4.1 代数方程与代数方程的根4.2 高次代数方程的整数根与有理根4.3高次代数方程的正根与实根4.4高次代数方程的复根第五章傅立叶级数5.1 傅立叶级数的定义与性质5.2 奇延拓与偶延拓5.3 傅立叶级数的收敛性第六章偏微分方程6.1 偏导数与偏微分方程6.2 一阶线性偏微分方程6.3 高阶线性偏微分方程第七章多元函数微分学7.1 多元函数的极限与连续7.2 一阶偏导数与全微分7.3 高阶偏导数与多元函数微分学应用第八章向量代数与空间解析几何8.1 向量代数8.2 空间解析几何8.3 平面与直线的夹角与距离第九章多元函数积分学9.1 二重积分9.2 三重积分9.3 三重积分的应用第十章曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 曲面积分第十一章广义重积分与格林公式11.1 广义重积分11.2 格林公式及其应用11.3 闭曲线上格林公式的应用第十二章级数的一致收敛性12.1 函数项级数的一致收敛性12.2 幂级数的一致收敛性12.3 一致收敛性的应用第十三章线性代数初步13.1 行列式13.2 向量空间与线性方程组13.3 特征值与特征向量第十四章线性代数进阶14.1 线性空间与线性映射14.2 矩阵与线性映射14.3 特征多项式与相似矩阵注意:以上只是教材中各章节的题目答案简要解析,建议在学习过程中,除了参考答案之外,还需要仔细研读教材中的知识点,并通过大量的练习来巩固和加深理解。
高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案之欧阳学创编
习题7-11. 指出下列各点所在的坐标轴、坐标面或卦限:A(2,1,-6),B(0,2,0),C(-3,0,5),D(1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M(-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x ,y ,z),则(1) 由x-1=0,y+2=0,z+3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).(2) 由x=-1,y+2=0,z+3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x=-1,y=2,z+3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解: 设所求的点为M(0,0,z),依题意有|MA|2=|MB|2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z=11,故所求的点为M(0,0,149).4. 证明以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M1(4,3,1),M2(7,1,2),M3(5,2,3)三点为顶点的三角形是一个等腰三角形.5. 设平面在坐标轴上的截距分别为a=2,b=-3,c=5,求这个平面的方程.解:所求平面方程为1235y x z ++=-。
6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为Ay+Bz =0.又点(4,-3,-1)在平面上,所以-3A-B =0.即B=-3 A 代入并化简可得 y-3z =0.7. 求平行于y 轴且过M1(1,0,0),M2(0,0,1)两点的平面方程.解:因所求平面平行于y 轴,故可设其方程为Ax+Cz+D=0.又点M1和M2都在平面上,于是可得关系式:A=C=-D,代入方程得:-Dx -Dz+D=0. 显然D≠0,消去D 并整理可得所求的平面方程为x+z -1=0.8. 方程x2+y2+z2-2x+4y=0表示怎样的曲面?解:表示以点(1,-2,0的球面方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题七1、在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0)、解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上、2、xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0、3、x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0、4、求下列各对点之间的距离:(1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4);(3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3)、解:(1)s=(2) s==(3) s==(4) s==5、求点(4,-3,5)到坐标原点与各坐标轴间的距离、解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5)、故s==xs==ys==5zs==、6、在z轴上,求与两点A(-4,1,7)与B(3,5,-2)等距离的点、解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,149)、7、 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形就是等腰直角三角形、 证明:因为|AB |=|AC |=7、且有|AC |2+|AB |2=49+49=98=|BC |2、故△ABC 为等腰直角三角形、8、 验证:()()++=++a b c a b c 、证明:利用三角形法则得证、见图7-1图7-19、 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10、 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =u u u r c ,BC =u u u r a 表示向量1D A u u u u r ,2D A u u u u r ,3D A u u u u r 与4D A u u u u r 、解:1115D A BA BD =-=--u u u u r u u u r u u u u r c a 2225D A BA BD =-=--u u u u r u u u r u u u u r c a 3335D A BA BD =-=--u u u u r u u u r u u u u r c a 444.5D A BA BD =-=--u u u u r u u u r u u u u r c a 11、 设向量OM u u u u r 的模就是4,它与投影轴的夹角就是60°,求这向量在该轴上的投影、 解:设M 的投影为M ',则 1Pr j cos604 2.2u OM OM =︒=⨯=u u u u r u u u u r 12、 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次就是4,-4与7,求这向量的起点A 的坐标、解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----u u u r解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0)、13、 一向量的起点就是P 1(4,0,5),终点就是P 2(7,1,3),试求:(1) 12PP u u u u r 在各坐标轴上的投影; (2) 12PP u u u u r 的模;(3) 12PP u u u u r 的方向余弦; (4) 12PP u u u u r 方向的单位向量、解:(1)12Pr j 3,x x a PP ==u u u u r12Pr j 1,y y a PP ==u u u u r 12Pr j 2.z z a PP ==-u u u u r(2) 12PP ==u u u u r(3) 12cos x aPP α==u u u u r12cos y a PP β==u u u u r12cos z aPP γ==u u u u r(4) 12012PP PP ===+e j u u u u r u u u u r 、 14、 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点、 求合力R 的大小与方向余弦、解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15、 求出向量a = i +j +k , b =2i -3j +5k 与c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c 、解:||=a||==b||3==c, , 3. a b c ==a b c e16、 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量、解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j 、 17、解:设{,,}x y z a a a a =r 则有cos (1,1)3x a i a a i a iπ⋅====⋅r r r r 求得12x a =、 设a r 在xoy 面上的投影向量为b r 则有{,,0}x y b a a =r则22cos 4a b a b π⋅=⇒=⋅r r r r 则214y a = 求得12y a =± 又1,a =r 则2221x y z a a a ++= 从而求得11{,,}222a =±r 或11{,,}222-± 18、 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =u u u u u r u u u u u r ,求向径OM u u u u r 的坐标、解:设向径OM u u u u r ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----u u u u u r u u u u u r 因为,123M M MM =u u u u u r u u u u u r所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM u u u u r ={111,,344-}、 19、 已知点P 到点A (0,0,12)的距离就是7,OP uuu r 的方向余弦就是236,,777,求点P 的坐标、 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=u u u r得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949)、 20、 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b )、 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b 21、 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22、 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB u u u r 在向量CD uuu r 上的投影、解:AB u u u r ={3,-2,-6},CD uuu r ={6,2,3}Pr j CD AB CD AB CD ⋅=u u u r u u u r u u u r u u u r u u ur 4.7==- 23、 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 与b 的夹角、 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==、 24、 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直、 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b )、25、 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a 、解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a 、26、 已知向量a 与b 互相垂直,且||3, ||4==a b 、计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|、(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27、 求垂直于向量3i -4j -k 与2i -j +k 的单位向量,并求上述两向量夹角的正弦、 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量()||3⨯==±--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b 、 28、 一平行四边形以向量a =(2,1,-1)与b =(1,-2,1)为邻边,求其对角线夹角的正弦、 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l 、 即为所求对角线间夹角的正弦、29、 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别就是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯u u u u r u u u r u u u r u u u r 、 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--u u u u r3{1,0,}2MP =-u u u r {4,4,4}AC =--u u u r{2,0,3}BC =-u u u r22222235233100122MN MP ----⨯=++=++--i j k i j k u u u u r u u u r 44444412208033220AC BC ---⨯=++=++--i j k i j k u u u r u u u r故 1()4MN MP AC BC ⨯=⨯u u u u r u u u r u u u r u u u r 、 30、(1)解: x y zx y zi j k a b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()xy z xy z x y z a a a b b b C C C = 若,,C a b r r u r 共面,则有 a b ⨯r r 后与 C u r 就是垂直的、 从而C 0a b ⨯⋅=r r u r () 反之亦成立、 (2) C x y z x y z xy z a a a a b b b b C C C ⨯⋅=r r u r Q()a x y z x y z xy z b b b b C C C C a a a ⨯⋅=r u r r () b x y z x y z xyz C C C C a a a a b b b ⨯⋅=u r r r () 由行列式性质可得: x y z xy z x y z x y z x y z xy z x y z x y z x y z a a a b b b C C C b b b C C C a a a C C C a a a b b b == 故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r r Q()()() 31、 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)与(3,-1,2)求四面体的表面积、解:设四顶点依次取为A , B , C , D 、{0,1,2}, {2,2,1}AB AD ==-u u u r u u u r则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k u u u r u u u r 、同理可求其她三个三角形的面积依次为12故四面体的表面积12S =+ 32、解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅V , 而11948222BCD S BC BD i j k =⨯=--+=V u u u r u u u r r r r 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33、 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线、证明:{1,3,4}AB =u u u r ,{2,6,8}AC =u u u r显然2AC AB =u u u r u u u r则22()0AB AC AB AB AB AB ⨯=⨯=⨯=u u u r u u u r u u u r u u u r u u u r u u u r故A ,B ,C 三点共线、34、 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程、 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---u u u u u u r因0M M n ⊥u u u u u u r ,故00M M n ⋅=u u u u u u r 、即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程、35、 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3)、解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36、 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程与参数方程、解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于就是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37、 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程、解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0、38、 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程、 解:所求平面的法向量可取为0{1,7,3}OM ==-n u u u u u r故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039、 设平面过点(1,2,-1),而在x 轴与z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程、解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2、 故所求平面方程为1424x y z ++= 40、 求过(1,1,-1), (-2,-2,2)与(1,-1,2)三点的平面方程、解:由平面的三点式方程知1112121213131310x x y y z z xx y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程、41、 指出下列各平面的特殊位置,并画出其图形:(1) y =0;(2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0、解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面、(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3与y =-2的平面、(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6)、图7-4 图7-5 图7-642、 通过两点(1,1,1,)与(2,2,2)作垂直于平面x +y -z =0的平面、解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l ={1,1,1}由题知n ·n 1=0, n ·l =0即0 0, .0A B C C A B A B C +-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0、43、决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6); (2) 与平面2x-3y+z=0成π4的角、解:(1) 因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4、(2) 两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得k=±44、确定下列方程中的l与m:(1) 平面2x+ly+3z-5=0与平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0与平面x+3y+2z+5=0垂直、解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n nP(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45、通过点(1,-1,1)作垂直于两平面x-y+z-1=0与2x+y+z+1=0的平面、解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=046、求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量、解:n1={3,-1,7}, n2={1,-1,2}、12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47、 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0、 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6)、(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0、故交点为(-2,1,3)、48、 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 与 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 与 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2从而两直线垂直,夹角为π2、(2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于就是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49、 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1与y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行、 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于就是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-、 50、 试定出下列各题中直线与平面间的位置关系: (1)34273x y z ++==--与4x -2y -2z =3; (2)327x y z ==-与3x -2y +7z =8; (3)223314x y z -+-==-与x +y +z =3、 解:平行而不包含、 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于就是直线与平面平行、又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠、故直线不在平面上、(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面、(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上、51、 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩的平面方程、解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3}, 故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0、52、 求过点(1,-2,3)与两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程、解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4、故所求平面方程为2x +15y +7z +7=053、 求点(-1,2,0)在平面x +2y -z +1=0上的投影、解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =- 于就是所求点(-1,2,0)到平面的投影就就是此平面与垂线的交点522(,,)333-54、 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离、解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1、联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于就是点到直线的距离为d == 55、 求点(1,2,1)到平面x +2y +2z -10=0距离、解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =、 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离、56、 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程、解:球的半径为R =设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程、57、 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程、 解:设该动点为M (x ,y ,z ),3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程、58、 指出下列方程所表示的就是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=、解:(1)母线平行于z 轴的抛物柱面,如图7-7、(2)母线平行于z 轴的双曲柱面,如图7-8、图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9、(4)母线平行于x 轴的抛物柱面,如图7-10、图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11、(6)z 轴,如图7-12、图7-11 图7-1259、 指出下列方程表示怎样的曲面,并作出图形: (1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=;(5)22209z x y +-=、 解:(1)半轴分别为1,2,3的椭球面,如图7-13、(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14、图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15、(4) 单叶双曲面,如图7-16、图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴就是z 轴,如图7-17、图7-1760、 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a (a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1、 解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示、图7-18 图7-19图7-20 图7-2161、 求下列曲面与直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-、 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1、得交点坐标为(3,4,-2),(6,-2,2)、(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2)、62、 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程、解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程、63、 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程、 (1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2、解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线、(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆、(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆、(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线、64、 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线、 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y += 故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65、 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程、 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=、故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1、 判断下列平面点集哪些就是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集与边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}、 解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}、 (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}、 (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}、(4)闭集、有界集,聚点集即就是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}、 2、 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty 、 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3、 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x 、 4、 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5、 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞、 (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6、 判断下列函数在原点O (0,0)处就是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==、故函数在O (0,0)处连续、 (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)就是z 的间断点、(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在、故函数z 在O (0,0)处不连续、7、 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续、(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断、而在其余各点处均连续、(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断、而在其余各点处均连续、(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时、1200lim (,)lime x x y x xf x y x-→→=→==∞、 故(0,0)就是函数的间断点,而在其余各点处均连续、 8、 求下列函数的偏导数: (1)z = x 2y +2x y ; (2)s =22u v uv+;(3)z = x; (4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =、解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .yyzz yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9、已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂、 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++、 由对称性知 22322()u x y yx y x y ∂+=∂+、 于就是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+、 10、设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂、 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11、设f (x ,y ) = x +(y,求f x (x ,1) 、 解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=、12、求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角、解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1、 故α=π4、 13、求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+、解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14、设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15、设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂、解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16、求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =; (4)yzu x =、解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17、 求下列函数在给定点与自变量增量的条件下的全增量与全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18、利用全微分代替全增量,近似计算: (1) (1、02)3·(0、97)2;(3)(1、97)1、05、解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0、02,d y =-0、03,则(1、02)3·(0、97)2=f (1、02,0、97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0、02+2×12×(-0、03)]=1、(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0、03,d y=0、05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19、矩型一边长a=10cm,另一边长b=24cm, 当a边增加4mm,而b边缩小1mm时,求对角线长的变化、解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0、4,d y=-0、1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0、062cm、20、解:因为圆锥体的体积为21.3V r hπ=⋅0030,0.1,60,0.5r r h h====-V V而221.33V VV dV r h yh r r hr hππ∂∂≈=⋅+⋅=⋅+⋅∂∂V V V V V0030,0.1,60,0.5r r h h====-V V时,2213.1430600.130(0.5)33Vπ≈⨯⨯⨯⨯+⨯⨯-V230()cm=-21、解:设水池的长宽深分别为,,x y z则有:V xyz=精确值为:50.242 2.850.22 3.6 2.80.2V=⨯⨯+⨯⨯⨯+⨯⨯⨯V313.632()m=近似值为:V dV zx y xy z≈=+V V V0.4,0.4,0.2x y z ===V V V430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22、 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d u t、 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v-∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=、23、 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数:(1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24、设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25、 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂、 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26、 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27、 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂。