最新初中升高中数学衔接+初升高优秀名师资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本题8小题,每小题3分,共24分)

1.若,则的值为().

(A)(B)(C)(D)

2.若实数a,b满足,则a的取值范围是().

(A)a(B)a 4 (C)a≤或a≥4 (D)≤a≤4 3.在一次环保知识问答中,一组学生成绩统计如下:

分数50 60 70 80 90 100

人数 1 4 9 15 16 5

则该组学生成绩的中位数是

A.70 B. 75 C.

80 D. 85

4. 如图1,在等腰梯形ABCD中,AC、BD相交于点

O,以下四个结论:①,②OA=OD ,③,

④S=S,其中正确的是

A. ①②

B.①④

C.②③④

D.①②④

5. 函数的图象如图2所示,

则当y<0时,的取值范围是

A. <-2

B. >-2

C. <-1

D. >-1

6.已知a=-1,则2a3+7a2-2a-12的值等于()

7.图3是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是

A、13

B、26

C、47

D、94

8. 跟我学剪五角星:如图4,先将一张长方形纸片按图①的虚线对折,得到图

②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36),则在图③中应沿什么角度剪?即∠ABC的度数为

二、认真填一填(本大题共4个小题,每小题3分,共12分)请将答案直接写在题中横线上.

9.如图,四边形中,分别是边的中点.请你添加一个条件,使四边形为菱形,应添加的条件是.

(第9题图)

10.根据下面的运算程序,若输入时,输出的结果.(第10题图)

11.某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有()人.

(第11题图)

12.如图,抛物线(a0)与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标

初升高数学衔接班学法指导

一、学习目标:

1、认识初高中数学学习的特点和差异

2、了解高中数学的考法

3、了解高中数学的学习策略和学习方法

二、学习重点:

1、初高中数学知识差异与学法差异

2、针对高中数学的特点与考法,培养适合高中数学的学习方法、养成良好的学习习惯。

三、重点讲解:

高中数学的特点是:注重抽象思维,内容庞杂、知识难度大。高中教材不再像初中教材那样贴近生活,生动形象,知识容量也更为紧密。客观的说,初高中知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。那么,如何做好初高中数学学习的衔接过渡,使得同学们对高中数学学习有一个正确的认识,并迅速适应新的教学模式呢?

下面我们就一起探讨如何应对高中数学的学习。

(一)高中数学教材分析

高中数学课程分为必修和选修。必修课程由5个模块(5本书)构成;选修课程有4个系列,其中系列1、系列2由若干模块构成(系列1两本书、系列2三本书),系列3、系列4由若干专题组成。内容涉及初等函数、数列、概率与统计、算法、平面解析几何、立体几何等等。进入高中,我们首先学习的是《必修1》模块,我们应先对这一模块有一个大体的了解。

《必修1》模块由两章构成,分别是:

第一章:集合

第二章:函数

如何理解集合呢?集合是一种数学语言,我们要能够使用最基本的集合语言表示有关的数学对象,提高我们运用数学语言进行交流的能力。

在初中学习函数的基础上,我们还要进一步学习函数,只不过高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,在初中一次函数、二次函数、反比例函数的基础上,我们还将学习指数函数、对数函数、幂函数这些新的函数类型,而函数的思想方法将贯穿高中数学的始终。

(二)高中数学与初中数学特点的变化

1、数学语言在抽象程度上的突变。

初中的数学主要是以形象、通俗的语言方式进行表达。而高中数学一开始即在初中学习的“函数”的基础上触及抽象的“集合语言”。

例如:初中是这样定义函数的:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,都有惟一的值y与它对应,那么就说自变量x是y的函数。那么,y=1是函数吗?我们需要进一步深化函数的概念。在高中是用集合的语言来定义函数的:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A.可以得到y=1是函数的结论。

集合作为数学的基本语言可以简洁地表示数学对象,对刚步入高中的同学来说,也是抽象的。而后续的几何部分也削弱了直观性而突出了抽象性和空间的想象能力。这就是说,思维要从初中的直观、经验型向抽象、理论型过渡。

2、思维方法向理性层次跃迁。

高一的同学产生数学学习障碍的一个原因是高中数学的思维方法与初中阶段大不相同。初中阶段,很多老师将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是解答思维非常灵活的平面几何问题,也对线段相等、角相等……分别确定了各自的思维套路。因此,同学们在初中学习中习惯于这种机械的、便于操作的定势方式,而高中数学在思维形式上发生了很大的变化,同学们一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3、知识内容剧增

初中数学知识少、浅、难度低、知识面窄。高中数学知识广泛,将对初中的数学知识进行推广和引申,也是对初中数学知识的完善。如:初中学习的角的概念只是“0~180°”范围内的,但实际当中也有720°和“-360°等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小的角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法?(答:6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:3种),高中将学习统计这些排列方式的数学方法。初中的学习中对一个负数开平方无意义,但在高中规定了于是令-1的平方根为±i,这样即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在今后的学习中将逐渐接触到。

相关文档
最新文档