配位化合物.-PPT

合集下载

《无机化学》第8章.配位化合物PPT课件

《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。

无机化学 配位化合物 ppt课件

无机化学 配位化合物 ppt课件

配合物与我们的生命活动息息相关。人体中 的酶、微量元素等,都是以配合物的形式存在并 控制着体内极其重要的化学作用。
人体必需的微量元 素:锌、碘、硒、 铜、氟、钼、镉、 镍、钒、锡、砷、
酶 钴、锰、锶等。
临床使用的药物中配合物相当普遍
顺铂
含钴维生素B12
枸橼酸钠
再如体内氧气的存储与运输,也是借助于 血红素与氧分子的配合来完成的。
[Cu(NH3)4] SO4
中心 原子
配体
H3N
Cu
H3N
NH3SBiblioteka 4NH3配位单元,或内界
外界
书1.总写体时来,说内配界合用物方是括由号配框位住单,元是(配内合界物)和 的与核内心界部带分相,反方电括荷号的以外外界的两部大分部为分外组界成。
H3N
Cu
H3N
NH3
SO4
NH3
内界(正/负电荷) 外界(负/正电荷)
获1913年诺贝尔化学奖
1893年苏黎世大学维尔纳 (Werner A)教授对这类化 合物本性提出了天才见解, 被后人称为维尔纳配位学 说,成为配位化学的奠基 人。维尔纳因此而获得 1913年诺贝尔化学奖。
维尔纳 (Werner, A, 1866-1919)
配位化学的奠基人—维尔纳
配位化学是当今化学学科的前沿领域之一, 配合物在医疗、药物、分离分析、染料、化学合 成等诸多方面具有极为广泛的应用。
具体问题具体分析!
单齿配体:配位数=配体的数目
[Co(NH3)6]3+
CO与铁的配位能力是氧气的200-300倍,
极易形成碳氧血红蛋白,使血红素丧失携氧能 力碳,氧而血造红成蛋组织白窒息,甚至引起死亡。
• CO浓度>30mg/m3

配位化合物课件

配位化合物课件
理 论, 提出了 配位数 这个主要概念。韦 尔纳旳理论能够说 是当代 无机化学 发
展旳基础,因为它打破了只基于碳化合 物 研究所得到旳不全方面旳构造理论,并为 化合价旳电子理论开辟了道路。韦尔纳 抛弃了 F.A.凯库勒 有关化合价恒定不变 旳观点, 大胆地提出了副价旳概念, 创建 了配位理论。韦尔纳因创建配位化学而 取得1923年诺贝尔化学奖。
外界 内界 配离子 K3[ Fe ( C N ) 6 ]
配离子以配位键结合,在水内中很稳定; K+为外界,内、外界以离子键结合,易解离
2. 配合物旳构成:
(1) 中心离子(原子):(能够接受孤对电子)位于配 离子旳几何中心,是配离子旳形成体。中心离 子(原子)一般具有接受孤对电子旳空轨道, 常见旳为过渡元素原子或离子,如:Fe3+、Fe、 Cr3+、Ag+等,还有p区旳非金属元素,还有某 些半径小和电荷高旳p区金属离子,如:B(Ⅲ)、 Si(Ⅳ)、Al3+等,也有个别旳非金属元素阴离 子,如:I—等。
中心离子: Co3+
配位体: --NO2 、 C2O42 -
配位原子:N、O、O 配位数:2×1+2×2=6
内界:[Co(NO2)2(C2O4)2]3- 外界:NH4+
配离子电荷=+3 -2×1 - 2 ×2 = -3
[CoCl(NO2)(NH3)(H2O)]Cl
中心离子
Co3+
配位体 配位原子
Cl-、-NO2 、NH3、H2O
明没有明显NH3 ,
(2)加入稀NaOH时无沉淀生成,阐 明无简朴Cu2+离子 (3)加入BaCl2+HNO3溶液有沉淀生 成,示有SO42-离子

第八章配位化合物ppt课件

第八章配位化合物ppt课件

● 配离子与形成体的电荷数
()
3
Ag(S 2O3 ) 2 ,
(2)
Pt Cl 3 (NH 3 )
(3)
K 3 Fe (CN) 6
赤血盐 ,
(2)
K 4 Fe (CN) 6
(3)
(0)
Co Cl 3 (NH 3 )3 , Fe(CO) 5
黄血盐
12
13

← ←
← ← ←
(1) 内界与外界
32
8.4.1 价键理论 (valence bond theory)
同一原子内,轨道的杂化和不同原子间轨道的重叠构成了共价键 理论的核心论点之一.这里把第二章的s-p杂化轨道扩大到d轨道上 ,形成s-p-d杂化轨道.
(1) 价键理论的要点
● 形成体(M)有空轨道,配位体(L)有孤对电子,形成配位键
Ag(NH 3 )2 Cl
中配 外 心位 界 离体 子
Ni(CO) 4 CoCl3 (NH3 )3
中配 心位 原体 子
中 心配 离位 子体
配离子
形成体 — 中心离子或原子(central ion or central atom)
(配分子) 配位体 — 中性分子或阴离子
形成体 — 提供空轨道 电子对接受体 Lewis酸 配位体 — 提供孤对电子 电子对给予体 Lewis碱
8
(三)配位数
配合物中,直接与中心离子(或原子)配 位的配位原子的数目称中心离子(或原子)的 配位数。
一般中心离子(或原子)配位数为2、4、 6。中心离子的配位数的多少,主要取决于中 心离子和配体的电荷、体积和电子层结构,以 及配合物形成时温度和反应物的浓度等。
配离子的电荷数等于中心离子和配位体电 荷的代数和。

第八章配位平衡和配位滴定法ppt课件

第八章配位平衡和配位滴定法ppt课件

K f
1
(
K
a
)6
Kf越小,即生成的配合物稳定性越小;Ka越小, 即生成 的酸越弱,K就越大。
Fe3+ + 6F3OH-
[FeF6]3+
Fe(OH)3↓
既要考虑配位体的酸效应,又要考虑金属离子的水解效应。
2. 沉淀反应对配位平衡的影响
[Cu(NH3) 4]2+
Cu2+ + 4NH3 +
S2-
CuS↓
y 2.2310-7
二、配位平衡的移动
Mn+ + x L-
水解 氧化还原 沉淀
酸效应
MLx(n-x)
1. 酸度的影响 2.沉淀影响 3.氧化还原的影响
1. 酸度的影响
Fe3+ + 6F+ 6H+
[FeF6]36HF
总反应为:[FeF6]3- +6H+
Fe3+ + 6HF
K
c(Fe3 ) c6 (HF) c(Fe3 ) c6 (HF) • c6 (F- ) c([FeF6 ]3 ) c6 (H ) c([FeF6 ]3 ) c6 (H ) c6 (F- )
2. 配位体和配位原子 有孤电子对
Na[BF4]中[BF4]-是配位体, F为配位原子. a 单基配位体(一个配位体中只有一个配位原子)
含氮配位体 NH3 、 NCS-
含氧配位体 H2O 、 OH-
含卤素配位体 F- 、 CI- 、 Br- 、 I- 含碳配位体 CN- 、 CO
含硫配位体 SCN-
代入稳定常数表达式得:
Kf
c(Ag(NH3 )2 ) c(Ag )c2 (NH3 )

第七章--配位化合物PPT课件

第七章--配位化合物PPT课件

投入到中心离子的内层空轨道中,所以一般形成外轨型配
合物;CN-、CO等电负性小、变形性大的配位原子,提供
的电子易于投入到内层空轨道中,形成内轨型配合物(螯
合物一般为内轨);NH3、Cl-没有明显的规律;
.
13
• B、配合物的稳定性:指水溶液中的解离程度, 用K不稳或K稳来衡量。价键理论认为(定性): 对同一中心离子或同一配体,配位数相同时,内 轨型配合物较外轨型配合物更稳定,如Co(NH3)62+ + O2 Co(NH3)63+,解释:内轨型配合物极性小, 外轨型配合物极性大,所以外轨型配合物易为水 拆 散 而 解 离 。 例 如 FeF63- ( 外 轨 , 2×1015 ) 、 Fe(CN)63-(内轨1042),FeF63- + 6CN- Fe(CN)63+ 6F-。
.
1
第二节 配合物的基本概念
• 一、配合物的定义
• 它是由形成体(中心体)与配体以配位键结合而成的复杂化合物。
• 二、配合物的组成
• 以[Cu(NH3)4]SO4和K3[Fe(CN)6]为例说明其组成和一些基本概念。 • 1、内、外界:内界(配离子)――[Cu(NH3)42+]、[Fe(CN)6]3-;外界
.
+1
+2
+3
+4
(Ag+、Cu+) (Cu2+、Zn2+、Hg2+) (Fe3+、Co3+) (Si4+、Pt4+)
CN
2
4、6
6、4
6、8
• 6、配离子的电荷:中心离子与配体电荷的代数和,如 [Pt(NH3)4][PtCl4]、[Fe(C2O4)3]3-。

《配位化合物》PPT课件

《配位化合物》PPT课件

K3[Ag(S2O3)2]
二(硫代硫酸根)合银(I)酸钾
例题2
命名下列配离子和配合物,并指出中心原子、配体
和配位数
(1)Na3[Ag(S2O3)2] (3)H[Al(OH)4]
常见配体缩写:乙二胺(en)、 乙二胺四乙酸根 离子(edta)
2、配合物命名
外界为简单阴离子,命名为某化某 如:[Co(NH3)6]Br3 三溴化六氨合钴(III) 外界阴离子为含氧酸根,Байду номын сангаас名为 某酸某 如:[Pt(NH3)4(NO2)2]CO3
碳酸二硝基·四氨合铂(IV) 外界为简单阳离子,命名为 某酸某
H2C—H2N
NH2—CH2
(3)多核配合物 [(H3N)2Pt Cl Pt(NH3)2]Cl2
Cl
(4) 配分子(HC≡CHAg 、Fe (CO)5)
3.配位数
直接与中心原子配合的配位原子数目 2、4、6 对于单齿配 中心原子的配位数=配体数
[Cu(NH3)4]2+ 对于多齿配体
[CoCl3(NH3)3] 配位数=配体个数
如:K[Pt(NH3)Cl3] 三氯·一氨合铂(II)酸钾
20
例题1:命名下列配合物
K4[Fe(CN)6]
六氰合铁(II)酸钾
[Co(NH3)3(H2O)Cl2]Cl氯化二氯·三氨·一水合钴(III)
K[SbCl5(C6H5)]
五氯·一苯基合锑(V)酸钾
[Pt(NH3)2Cl2]
二氯·二氨合铂(II)
Chapter 11 配位化合物
§11.1 配位化合物概述 §11.2 配合物的化学键理论 §11.3 配合物的解离平衡 §11.4 螯合物 §12.5 配位滴定法(P266)

无机化学教学11章.配位化合物PPT课件

无机化学教学11章.配位化合物PPT课件
制造发光材料和显示器。
电池材料
一些配位化合物可作为电池材料, 如镍镉电池中的镉离子和镍离子
形成的配位化合物。
05
配位化合物与配合物之间的 关系
配位化合物的形成条件
配位化合物的形成需要一个中心 原子(通常为金属)和几个配位 体分子或离子,通过配位键结合。
中心原子必须有空轨道,可以接 受电子对,而配位体则提供孤对
配位化合物的颜色变化是由于电子跃迁所引起的。
详细描述
配位化合物的颜色变化是由于其组成配体和中心金属的电子跃迁所引起的。不 同的配体和金属元素会产生不同的颜色,因此可以通过观察颜色来判断配位化 合物的组成和结构。
磁性
总结词
配位化合物的磁性主要取决于其组成的金属离子和配体的性质。
详细描述
一些配位化合物具有明显的磁性,这与其组成和结构密切相关。一般来说,含有铁、钴、镍等过渡金属的配位化 合物具有明显的磁性。此外,配体的性质和配位化合物的结构也会影响其磁性。了解配位化合物的磁性对于其在 化学、物理和材料科学等领域的应用具有重要意义。
配位体
提供孤对电子与中心原子 或离子形成配位键的分子 或离子。
特性
稳定性
配位化合物具有较高的稳定性 ,主要由于配位键的形成使得
整个分子更加稳定。
多样性
配位化合物的种类繁多,可以由 不同的中心原子、配位体和配位 数组成,形成各种不同的结构。
可预测性
根据中心原子和配位体的性质 ,可以预测配位化合物的性质 和稳定性。
诊断成像
生物分析
配位化合物可用于检测生物体内的金 属离子和蛋白质等生物分子的含量和 活性。
配位化合物可用于医学影像技术,如 核磁共振成像和X射线造影剂。
在材料科学上的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、外轨型配合物和内轨型配合物
(4) 内轨型配合物和外轨型配合物的差别 配位键的键能: 内轨型 > 外轨型 配合物的稳定性:内轨型 > 外轨型 稳定常数: 内轨型 > 外轨型
三、配合物的磁矩
顺磁性与反磁性: 测磁矩判断内外轨型配合物: 外轨型配合物,中心原子的电子结构不发生改变, 未成对电子数多,µ 较大。 内轨型配合物,中心原子的电子结构发生了重排, 未成对电子数减少, µ 较小。
二、外轨型配合物和内轨型配合物
(1)外轨型配合物:中心原子用外层轨道接纳配 体电子,形成的配合物。 例如:[Zn(NH3)4]2+ 配体 :NH3
3s 3p 3d 4s 4p
Zn2+
[Zn(NH3)4]
3
2+
NH3
sp 杂化,正四面体构型
NH3
Zn2+ NH3
NH3
二、外轨型配合物和内轨型配合物
4-
杂化轨道形式与配合物的空间构型
配位 数 2 3 4 4 5 5 6 空间构型 杂化轨 道类型 sp 直线形 sp2 平面三角 形 sp3 正四面体 dsp2 四方形 dsp3 三角双锥 d 4s 四方锥 sp3d2 八面体 实例 Ag(NH3)2+ Ag(CN)2– Cu(CN)32 – HgI3– Zn(NH3)42+ Cd(CN)42– Ni(CN)42– Ni(CN)53– Fe(CO)5 TiF52– FeF63– AlF63- SiF62PtCl64-
位 H中心离子与配体之间的化学作用力叫做配位键, N Cu O C 2 外 2 中 配 配 一般是中心原子接受配体中的某原子的孤对电子形成 原 Cu 配 SO 界 4 心 H 的。中心原子周围的配位原子的个数叫做配位数。 子 2C 位 位 位 O 离 O 原 原体 数 H子 NH3 子 3N含配位键的结合物都可以统称配合物。配合物不 子 一定是离子,也可以是中性分子。 C C 乙氨酸铜 配合物 O H配体中只有一个配位原子叫单齿配体,有多个配 2
配离子 计算磁矩 实测磁矩 杂化类型
Fe(CN)63Fe(H2O)63+
1.73
5.92
2.3
5.88
内轨型(低自旋)
外轨型(高自旋)
这类配合物的磁矩可按下式计算: 磁矩m = n(n 2) BM 式中n是分子中未成对电子数;BM---玻尔磁子, 是磁矩的单位。
配位键的杂化理论
在某些配合物中存在着离域 键 2 + Ni 2-配离子中,Ni2+离子具有8个d 如在 [Ni(CN) ] 4 C 电子,用dsp2杂化轨道容纳CN-离子中碳原子上的
CH3 C
3d
4s
4p
Ni + 2H NOH .. 四氨合物、NiCl42-这时配原子的电子对进入中心原 N C CH3 H3C C N 镍试剂 (双齿配体) 氮是配位原子(电子对给予体) O 子的一个s轨道和3个p轨道,形成O sp3杂化轨道。锌 H
的四配位络合物几乎全是四面体形的。
镍离子与镍试剂形成的配合物
外界:Cl
-
课堂练习
配合物的命名
配合物的命名比一般无机化合物命名更复杂的地方 在于配合物的内界。 处于配合物内界的配离子,其命名方法一般地依照 如下顺序:配位体数、配位体的名称(不同配位体名称之 间以中圆点(· )分开),“合”,中心离子名称,中心离子 氧化态(加括号:用罗马数字注明)。 若配离子中的配位体不止一种,在命名时配体列出 的顺序按如下规定: (1)在配位体中如有无机配体又有有机配体。无机配 体排列在前,有机配体排列在后。如cis-PtCl2(Ph3P)2], 应命名为顺-二氯· 二(三苯基膦)合铂(II)。 (2)在有多种无机配体和有机配体时。先列出阴离子的 名称,后列出阳离子和中性分子的名称。
是3d轨道,后者参与杂化的是4d轨道,又叫内轨型与 外轨型。
sp3d2 (外轨型)
d2sp3 (内轨型)
铁(III)离子的内轨型和外轨型电子构型
配位键的杂化理论
对于Fe3+而言,它的内轨型配合物与外轨型配 合物的未成对电子数分别为1和5,差距甚大。这使 得它们的磁性不同。因而用磁性可以判断Fe3+的6配 位络合物属于哪种杂化类型。例如:
配位键的杂化理论
Fe [Ar] Fe [Ar]
3+ 3+
六配位的Fe(CN)63-、Fe(CN)64-、Fe(H2O)63+等的配
3d
4s
4p
位原子的孤对电子进入中心原子的2个d轨道、1个s轨道
和3个p轨道,形成八面体的杂化轨道。
Fe [Ar] Fe [Ar]
3+
这种杂化有两种:d2sp3和sp3d2──前者参与杂化的
例题
1、命名下列化合物:
(1)K4[Ni(CN)4]
(3)[Ir(ONO)(NH3)5]Cl2 解:(1)四氰合镍(0)酸钾
(2)(NH4)2[FeCl5(H2O)]
(4)Na2[Cr(CO)5]
(2)五氯· 一水合铁(Ⅲ)酸氨 (3)二氯化亚硝酸根· 五氨合铱(Ⅲ) (4)五羰基合铬(Ⅱ)酸钠
[Co(en)3]SO4 硫酸三乙二胺合钴(Ⅱ) [Pt(NH3)6]Cl4 四氯化六氨合铂(Ⅳ) K4[Fe(CN)6] 六氰合铁(Ⅱ)酸钾 H[AuCl4] 四氯合金(Ⅲ)酸 [Co(NH3)3H2OCl2]Cl 氯化二氯一水三氨合钴(Ⅲ) [Co(NH3)4(NO2)Cl]2CO3 碳酸一氯硝基四氨合钴(Ⅲ)
例如:[FeF6]
Fe2+
4–
sp d 杂化, 八面体构型,
4s 4s 4p 4p 4d 4d
3 2
3d 3d
[FeF6]
4–
配体的孤对电子进入中心离子外层空轨道而形成 2 3 3 2 sp、sp 、sp 、sp d 等杂化轨道的配离子,都是 外轨型配离子。
二、外轨型配合物和内轨型配合物
⑵内轨型配合物:中心原子用部分内层轨道接纳 配体电子,形成的配合物。 例如:[Fe(CN)6]4Fe2+
位原子的叫多齿配体(又分双齿、三齿、四齿等等)。 由多齿配体形成的配合物又被形象地叫做螯合物。
二、配位化合物的组成
以[Co(NH3)6]Cl3为例: 1、内界与外界靠离子键结合
2、中心原子:能接受孤对电子的阳 离子或原子 3、配体:与中心原子形成配位键的 阴离子或分子。
[Co(NH3)6]Cl3
中 心 原 子 配 体 配 外 位 界 数
2018/8/26
一、配位化合物的定义
定义:以具有接受电子对的空轨道的原子或离子为 中心,一定数目可以给出电子对的离子或分子为配 位体,两者按一定的组成和空间构型形成以配位个 体为特征的化合物,叫做配(位化)合物。
常见的中心原子或离子:
Fe 、Fe 、Pt 、Ag 、Hg 、Cu 、Co 、Co 、 B、Si等 常见的配位体: H2O、NH3、CO、X 、CN 、SCN 、EDTA、en等
三、配位化合物的书写与命名原则 (3) 同类配体(无机或有机类)按配位原子元 素符号的英文字母顺序排列。 [Co(NH3)5H2O]Cl3 三氯化五氨· 一水合钴(III) (4) 同类配体同一配位原子时,将含较少原子 数的配体排在前面。 [Pt(NO2)(NH3)(NH2OH)(Py)]Cl 氯化硝基· 氨· 羟氨· 吡啶合铂(II)
3+ 2+ 2+ + 2+ 2+ 2+ 3+
配合物基本概念
配离子的中心离子一般为过渡金属,特别是铁系、 内界 (配离子) C H2 铂系、第IB、IIB族元素。 CH 2 2 + 配体为水、氨等中性分子或卤离子、拟卤离子 NH2 2 + 2-
H Cu(NH ) -等)、羟离子 -)、酸根离子等离子。 H N (CN (OH 3 4 NH 配 SO4 3 3 C N O F P S Cl Br
[பைடு நூலகம்e(CN)6]42 3
3d
4s
4p
4d
d sp 杂化, 八面体构型, 配体的孤对电子进入中心离子部分内层空轨道而 3 2 3 形成dsp 、 d sp 等杂化轨道的配离子,都是内轨 型配离子。
二、外轨型配合物和内轨型配合物
(3)内外轨型取决于:配位体场(主要因素) 中心原子(次要因素) (a) 强场配体,如CN – 、CO 、 NO2 –等,易形成内轨型, 配体的配位原子与中心原子的电负性相差较小 弱场配体,如 F – 、H2O易形成外轨型 配体的配位原子与中心原子的电负性相差较大 (b) 中心原子d3型: 如Cr3+,有空(n-1)d轨道、 (n-1)d2 ns np3易形成内轨型 中心原子d8~ d10型: 如Fe2+, Ni2+,Zn2+, Cd2+, Cu+ 无空(n-1)d轨道, (ns) (np)3 (nd)2易形成外轨型
(Ph)3P (Ph)3P
Pt
Cl Cl
三、配位化合物的书写与命名原则 命名:配位体-合-中心原子(氧化数) 原则是先阴离子后阳离子,先简单后复杂。 命名顺序: (1)先无机配体,后有机配体 [PtCl2(Ph3P)2] 二氯 · 二 (三苯基磷)合铂(II)
(2) 先列出阴离子,后列出阳离子,中性分子 K[PtCl3NH3] 三氯· 氨合铂(II)酸钾
dsp 杂化轨道 ..- .. .. .. H3N NH 3 H .. 2 .. .. .. N N N N [Ar] 2+ 22[Ni(CN) ] O O Ni(CN) 、 + CuCl 4 H3N Ni 4 也是平面四边形的配离子。 4 4 Ni .. N C CH3 H3C C N CH3 C NOH H3N 镍和铜也形成四面体形的配合物,例如它们的 NH3 + Ni2+ 2 镍离子与氨形成的配合物 +
相关文档
最新文档