(完整word版)第五章留数定理习题及其解答
2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案

第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。
(完整word版)理论力学课后答案第五章(周衍柏)(word文档良心出品)

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
复变函数与积分变换第五章留数测验题与答案

第五章 留 数一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( )(A )1 (B )2 (C )3 (D )42.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点3.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( )(A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( )(A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )(A ) 21)(z e z f z -= (B )z z z z f 1sin )(-=(C )z z z z f cos sin )(+=(D) ze zf z111)(--= 9.下列命题中,正确的是( ) (A ) 设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若0)(=⎰c dz z f ,则)(z f 在c 内无奇点10. =∞],2cos[Re 3ziz s ( ) (A )32-(B )32 (C )i 32(D )i 32-11.=-],[Re 12i e z s iz ( )(A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞13.设1>n 为正整数,则=-⎰=211z ndz z ( ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 14.积分=-⎰=231091z dz z z ( ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( ) (A )0 (B )61- (C )3i π- (D )i π-二、填空题1.设0=z 为函数33sin z z -的m 级零点,那么=m .2.函数zz f 1cos1)(=在其孤立奇点),2,1,0(21ΛΛ±±=+=k k z k ππ处的留数=]),([Re k z z f s .3.设函数}1exp{)(22z z z f +=,则=]0),([Re z f s 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设212)(z zz f +=,则=∞]),([Re z f s . 7.设5cos 1)(zzz f -=,则=]0),([Re z f s . 8.积分=⎰=113z zdz e z.9.积分=⎰=1sin 1z dz z . 10.积分=+⎰∞+∞-dx x xe ix21 . 三、计算积分⎰=--412)1(sin z z dz z e zz .四、利用留数计算积分)0(sin 022>+⎰a a d πθθ五、利用留数计算积分⎰∞+∞-+++-dx x x x x 9102242六、利用留数计算下列积分: 1.⎰∞++0212cos sin dx x xx x 2.⎰∞+∞-+-dx x x 1)1cos(2七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数.八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=. 九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明Az f z f az 1)(1)(lim2=+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 202t d f tt t Φ=+-⎰πθθθθθπ)11(<<-t答案第五章 留 数一、1.(D ) 2.(B ) 3.(C ) 4.(D ) 5.(B )6.(C ) 7.(A ) 8.(D ) 9.(C ) 10.(A ) 11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )二、1.9 2.2)2()1(π+π-k k 3.0 4.m - 5.16.2- 7.241-8.12i π 9.i π2 10.e i π 三、i π-316. 四、12+πa a .五、π125.六、1.)(443e e e -π 2.e1cos π。
《概率论与数理统计》第5章复习题答案

第五章大数定律及中心极限定理复习题1.设2(,2)XN µ ,从X 中抽取容量为n 的样本,其均值为X ,至少取 ,才能使样本均值X 与总体均值µ的绝对值小于0.1的概率不小于95%。
(0.9751.96Z =)解答:1537(|0.95(||(||0.95210.95P X P P Z≥⇔<=<≥⇔Φ−≥ 即0.975 1.961536.64n Φ≥⇒>⇒> 2.证明:若()0h ξ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何C>0,1{()}()P h C C Eh ξξ−≥≤。
证明:令,()0,()C h C Y h C ξξ≥ = <,由()0h ξ≥,有()h Y ξ≥两边取期望(){()}Eh EY CP h C ξξ≥=≥,得证。
3.若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而k ξ,l ξ(||2k l −≥)是独立的,证明这时对{}k ξ大数定律成立。
(提示:证明对任意的0ε>,皆有1111lim {||}1n nk k n k k P E n n ξξε→∞==−<=∑∑)证明:由切比雪夫不等式得到12111()11{||}1nk n nk k k k k D n P E n n ξξξεε===−<≥−∑∑∑如果能证明11()0nk k D n ξ=→∑,则结论成立不妨设2kD ξσ=≤∞,则 122122211111111|()||()||(,)|[(1)]n n n n k k k k k k k k k D D D Cov n n n n n n ξξξξξσσ−+======+≤+−∑∑∑∑…………(*)其中211|(,)||(,|k k k k Cov ξξρξξσ++=≤ 由(*)式知11()0nk k D n ξ=→∑成立,因此对{}k ξ大数定律成立。
最新高考数学(文)一轮复习第五章 数列及答案

第五章⎪⎪⎪列第一节列的概念与简单表示法1.列的有关概念n n 若列{a n }的前n 项和为S n , 则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.4.列的分类1.已知列{a n }的前4项为1,3,7,15,则列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)2.已知列{a n }中,a 1=1,a n +1=a n 2a n +3,则a 5等于________.答案:11613.(教材习题改编)已知函f (x )=x -1x,设a n =f (n )(n ∈N *),则{a n }是________列(填“递增”或“递减”).答案:递增1.列是按一定“次序”排列的一列,一个列不仅与构成它的“”有关,而且还与这些“”的排列顺序有关.2.易混项与项的概念,列的项是指列中某一确定的,而项是指列的项对应的位置序号.3.在利用列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知S n 是列{a n }的前n 项和,且S n =n 2+1,则列{a n }的通项公式是________.答案:a n =⎩⎨⎧2,n =1,2n -1,n ≥22.列{a n }的通项公式为a n =-n 2+9n ,则该列第________项最大. 答案:4或5考点一 由列的前几项求列的通项公式基础送分型考点——自主练透1.已知n ∈N *,给出4个表达式:①a n =⎩⎨⎧0,n 为奇,1,n 为偶,②a n =1+-n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sinn π2.其中能作为列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给列的通项公式. 2.根据列的前几项,写出各列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实); (4)9,99,999,9 999,….解:(1)各都是偶,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *.(2)这个列的前4项的绝对值都等于序号与序号加1的积的倒,且奇项为负,偶项为正,所以它的一个通项公式a n =(-1)n ×1nn +,n ∈N *.(3)这是一个摆动列,奇项是a ,偶项是b ,所以此列的一个通项公式a n =⎩⎨⎧a ,n 为奇,b ,n 为偶.(4)这个列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.由列的前几项求列通项公式的策略(1)根据所给列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征; ②相邻项的变特征; ③拆项后的特征; ④各项符号特征等.(2)根据列的前几项写出列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变,可用(-1)n 或(-1)n +1调整.如“题组练透”第2(2)题.考点二 由a n 与S n 的关系求通项a n重点保分型考点——师生共研已知下面列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =2n 2-3n ; (2)S n =3n +b .解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1; 当b ≠-1时,a n =⎩⎨⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的 3个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段写.已知列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·=(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)- =2·3n -1+2, 由于a 1不适合此式, 所以a n =⎩⎨⎧6,n =1,2·3n -1+2,n ≥2.考点三 由递推关系式求列的通项公式题点多变型考点——多角探明递推公式和通项公式是列的两种表示方法,它们都可以确定列中的任意一项,只是由递推公式确定列中的项时,不如通项公式直接.常见的命题角度有:(1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .角度一:形如a n +1=a n f (n ),求a n1.在列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求列{a n }的通项公式.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1. 以上(n -1)个式子相乘得a n =a 1·12·23·…·n -1n =a 1n =1n. 当n =1时,a 1=1,上式也成立.∴a n =1n(n ∈N *). 角度二:形如a n +1=a n +f (n ),求a n2.设列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n 2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知列{a n }满足a 1=1,a n +1=3a n +2,求列{a n }的通项公式. 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴列{a n +1}为等比列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n=2·3n-1-1(n∈N*).典型的递推列及处方法根据下列条件,求列{a n}的通项公式.(1)a1=1,a n+1=a n+2n;(2)a1=12,a n=n-1n+1an-1(n≥2).解:(1)由题意知a n+1-a n=2n,an=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)因为a n=n-1n+1an-1(n≥2),所以当n≥2时,anan-1=n-1n+1,所以anan-1=n-1n+1,an-1an-2=n-2n,…,a3a2=24,a2a1=13,以上n-1个式子相乘得anan-1·an-1an-2·…·a3a2·a2a1=n-1n+1·n-2n·…·24·13,即ana1=1n+1×1n×2×1,所以a n=1n n+.当n=1时,a1=11×2=12,也与已知a1=12相符,所以列{a n }的通项公式为a n =1nn +.一抓基础,多练小题做到眼疾手快1.列1,23,35,47,59,…的一个通项公式a n =( )A .n 2n +1B .n 2n -1C .n2n -3D .n 2n +3解析:选B 由已知得,列可写成11,23,35,…,故通项为n2n -1.2.已知列{a n }的前n 项和为S n =n 2-2n +2,则列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎨⎧1,n =1,2n -3,n ≥2D .a n =⎩⎨⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为选项C .3.若a 1=12,a n =4a n -1+1(n ≥2),当a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.4.(2016·肇庆三模)已知列{a n }满足a 1=1,a n -a n -1=n (n ≥2),则列{a n }的通项公式a n =________.解析:由a n -a n -1=n 得a 2-a 1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n,上面(n-1)个式子相加得a n =1+2+3+…+n=12n(n+1).又n=1时也满足此式,所以a n=12n(n+1).答案:12n(n+1)5.(2017·南昌模拟)列{a n}的前n项和为S n,若S n+S n-1=2n-1(n≥2),且S2=3,则a1+a3的值为________.解析:∵S n+S n-1=2n-1(n≥2),令n=2,得S2+S1=3,由S2=3得a1=S1=0,令n=3,得S3+S2=5,所以S3=2,则a3=S3-S2=-1,所以a1+a3=0+(-1)=-1.答案:-1二保高考,全练题型做到高考达标1.列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A.-n+12B.cosnπ2C.cos n+12π D.cosn+22π解析:选D 令n=1,2,3,…,逐一验证四个选项,易得D正确.2.(2017·福建福州八中质检)已知列{a n}满足a1=1,a n+1=a2n-2a n+1(n ∈N*),则a2 017=( )A.1 B.0C.2 017 D.-2 017解析:选 A ∵a1=1,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知列{a n}是以2为周期的列,∴a2 017=a1=1.3.设列{a n}的前n项和为S n,且S n=2(a n-1),则a n=( )A.2n B.2n-1C .2nD .2n -1解析:选C 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1,∴列{a n }为等比列,公比为2,首项为2,所以a n =2n .4.设曲线f (x )=x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·x 4·…·x 2 017=( )A .2 0162 017B .12 017C .2 0172 018D .12 018解析:选D 由f (x )=x n +1得f ′(x )=(n +1)x n ,切线方程为y -1=(n +1)(x -1),令y =0得x n =nn +1,故x 1·x 2·x 3·x 4·…·x 2 017=12×23×…×2 0172 018=12 018. 5.(2017·衡水中学检测)若列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则列{a n }的前n 项和值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3, ∴列{a n }是以19为首项,-3为公差的等差列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和值最大, 则有⎩⎨⎧a k ≥0,a k +1≤0k ∈N *,∴⎩⎨⎧22-3k ≥0,22-k +,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.6.在列-1,0,19,18,…,n -2n2,…中,0.08是它的第____________项.解析:令n-2n2=0.08,得2n2-25n+50=0,即(2n-5)(n-10)=0.解得n=10或n=52(舍去).答案:107.已知列{a n}满足a1=1,a n=a2n-1-1(n>1),则a2 017=________,|a n+a n+1|=________(n>1).解析:由a1=1,a n=a2n-1-1(n>1),得a2=a21-1=12-1=0,a3=a22-1=02-1=-1,a4=a23-1=(-1)2-1=0,a5=a24-1=02-1=-1,由此可猜想当n>1,n为奇时a n=-1,n为偶时a n=0,∴a2 017=-1,|a n+a n+1|=1.答案:-1 18.在一个列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常),那么这个列叫做等积列,k叫做这个列的公积.已知列{a n}是等积列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.解析:依题意得列{a n}是周期为3的列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.答案:289.已知S n为正项列{a n}的前n项和,且满足S n=12a2n+12an(n∈N*).(1)求a1,a2,a3,a4的值;(2)求列{a n}的通项公式.解:(1)由S n=12a2n+12an(n∈N*),可得a1=12a21+12a1,解得a1=1;S2=a1+a2=12a22+12a2,解得a2=2;同,a3=3,a4=4.(2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故列{a n }是首项为1,公差为1的等差列,故a n =n . 10.已知列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则列中有多少项是负?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以列中有两项是负,即为a 2,a 3. 因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该列是一个递增列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知列{a n }的通项公式为a n =(-1)n ·2n +1,该列的项排成一个阵(如图),则该阵中的第10行第3个为________.a 1 a 2 a 3 a 4 a 5 a 6……解析:由题意可得该阵中的第10行、第3个为列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该阵第10行、第3个为97.答案:972.(2017·甘肃诊断性考试)已知列{a n }满足a 1=8999,a n +1=10a n +1. (1)证明列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +19是等比列,并求列{a n }的通项公式;(2)列{b n }满足b n =lg ⎝ ⎛⎭⎪⎫a n +19,T n 为列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和,求证:T n <12. 证明:(1)由a n +1=10a n +1,得a n +1+19=10a n +109=10⎝ ⎛⎭⎪⎫a n +19,即a n +1+19a n +19=10.所以列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +19是等比列,其中首项为a 1+19=100,公比为10,所以a n +19=100×10n -1=10n +1,即a n =10n +1-19.(2)由(1)知b n =lg ⎝ ⎛⎭⎪⎫a n +19=lg 10n +1=n +1,即1b n b n +1=1n +n +=1n +1-1n +2. 所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2<12.第二节等差列及其前n 项和1.等差列的有关概念(1)定义:如果一个列从第2项起,每一项与它的前一项的差都等于同一个常,那么这个列就叫做等差列,这个常叫做等差列的公差,通常用字母d表示.(2)等差中项:列a,A,b成等差列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n n-2d=n a1+a n2.3.等差列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差列,公差为d,则{a2n}也是等差列,公差为2d.(4)若{a n},{b n}是等差列,则{pa n+qb n}也是等差列.(5)若{a n}是等差列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差列.1.在等差列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.答案:102.(教材习题改编)已知等差列{a n},a5=-20,a20=-35,则a n=________ 答案:-15-n3.(教材习题改编)已知等差列5,427,347,…,则前n项和S n=________.答案:114(75n-5n2)1.要注意概念中的“从第2项起”.如果一个列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常,那么此列不是等差列.2.求等差列的前n 项和S n 的最值时,需要注意“自变量n 为正整”这一隐含条件.1.首项为24的等差列,从第10项开始为负,则公差d 的取值范围是( ) A .(-3,+∞) B .⎝ ⎛⎭⎪⎫-∞,-83C .⎝ ⎛⎭⎪⎫-3,-83D .⎣⎢⎡⎭⎪⎫-3,-83答案:D2.等差列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于________. 解析:设等差列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12.答案:12考点一 等差列的基本运算基础送分型考点——自主练透1.(2016·郑州二检)已知{a n }为等差列,公差为1,且a 5是a 3与a 11的等比中项,S n 是{a n }的前n 项和,则S 12的值为______.解析:由题意得,a 25=a 3a 11,即(a 1+4)2=(a 1+2)(a 1+10),a 1=-1,∴S 12=12×(-1)+12×112×1=54. 答案:542.(2017·西安质检)公差不为零的等差列{a n }中,a 7=2a 5,则列{a n }中第________项的值与4a 5的值相等.解析:设等差列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故列{a n }中第11项的值与4a 5的值相等.答案:113.(2016·江苏高考)已知{a n }是等差列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析:设等差列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,简得d 2-6d+9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.答案:204.设S n 为等差列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差列{a n }的首项为a 1, 公差为d ,由已知,得⎩⎨⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎨⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.答案:-72等差列基本运算的方法策略(1)等差列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差列中有几项的和是常的计算问题,一般是等差列的性质和等差列求和公式S n =n a 1+a n2结合使用,体现整体代入的思想.考点二 等差列的判断与证明重点保分型考点——师生共研已知列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差列;(2)求a n 的表达式.解:(1)证明:∵a n =S n -S n -1(n ≥2), 又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0,n ≥2. 因此1S n -1S n -1=2(n ≥2).故由等差列的定义知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n n -,又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n n -,n ≥2.等差列的判定与证明方法已知列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:列{b n }为等差列; (2)求列{a n }的通项公式. 解:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n,∴b n +1-b n =2+1a n -1a n=2.又b 1=1a 1=1,∴列{b n }是首项为1,公差为2的等差列. (2)由(1)知列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n=12n -1. ∴列{a n }的通项公式为a n =12n -1.考点三 等差列的性质及最值重点保分型考点——师生共研1.等差列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9D .6解析:选D 由题意得S 11=a 1+a 112=a 1+10d 2=22,即a 1+5d=2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6.2.(2017·合肥质检)已知等差列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( )A .7B .8C .9D .10解析:选B法一:由⎩⎨⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎨⎧a 1=15,d =-2,则S n =-n 2+16n =-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即列{a n }的前8项是正,从第9项开始是负,所以(S n )max =S 8,选项B 正确.1.等差列的性质(1)项的性质:在等差列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差列的公差.(2)和的性质:在等差列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差列前n 项和S n 最值的2种方法(1)函法:利用等差列前n 项和的函表达式S n =an 2+bn ,通过配方或借助图象求二次函最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎨⎧ a m ≥0,a m +1≤0的项m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项m 使得S n 取得最小值为S m .1.设S n 是等差列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( ) A .1 B .-1 C .2D .12解析:选AS 11S 9=a 1+a 112a 1+a 92=11a 69a 5=119×911=1. 2.设等差列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则列{a n }的项为________.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n=36,又S n =n a 1+a n2=324,∴18n =324,∴n =18.答案:183.设S n 是等差列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差列,设该等差列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:200一抓基础,多练小题做到眼疾手快1.(2017·桂林调研)等差列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A .14B .12C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14,故选A . 2.等差列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27解析:选B 法一:∵S 9=a 1+a 92=9a 5=9×6=54.故选B .法二:由a 5=6,得a 1+4d =6, ∴S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B . 3.(2017·陕西质量监测)已知列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k+1<0,则正整k =( ) A .21 B .22 C .23D .24解析:选C 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差列,则a n =473-23n .∵a k +1·a k <0,∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.(2016·北京高考)已知{a n }为等差列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+-2d =6.答案:65.等差列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎨⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎨⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2017·太原一模)在单调递增的等差列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12解析:选B 由题知,a 2+a 4=2a 3=2, 又∵a 2a 4=34,列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.2.列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10B .15C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2+3n -=4n +1, 当n =1时,a 1=S 1=5,符合上式, ∴a n =4n +1,a p -a q =4(p -q )=20.3.(2017·河南六市一联)已知正项列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差列,且公差相等,则a 6=( )A .114B .32C .72D .1解析:选 A 设{a n }的公差为d ,由题意得,S n =na 1+n n -2d =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,又{a n }和{S n }都是等差列,且公差相同,∴⎩⎪⎨⎪⎧d = d 2,a 1-d 2=0,解得⎩⎪⎨⎪⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2017·沈阳教学质量监测)设等差列{a n }满足a 2=7,a 4=3,S n 是列{a n }的前n 项和,则使得S n >0成立的最大的自然n 是( )A .9B .10C .11D .12解析:选A 由题可得{a n }的公差d =3-74-2=-2,a 1=9,所以a n =-2n +11,则{a n }是递减列,且a 5>0>a 6,a 5+a 6=0,于是S 9=2a 52·9>0,S 10=a 5+a 62·10=0,S 11=2a 62·11<0,故选A . 5.设列{a n }的前n 项和为S n ,若S nS 2n为常,则称列{a n }为“吉祥列”.已知等差列{b n }的首项为1,公差不为0,若列{b n }为“吉祥列”,则列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2nn -d ,即2+(n -1)d =4k +2k (2n -1)d ,整得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以列{b n }的通项公式为b n =2n -1.6.在等差列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25, 则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:107.在等差列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎨⎧d <0,a 8>0,a 9<0,即⎩⎨⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 8.设等差列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整m 的值为________.解析:因为等差列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5, 所以a 1=3-m . 由S m =(3-m )m +m m -2×1=0,解得正整m 的值为5. 答案:59.已知等差列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设列{b n }的通项b n =S n n,证明:列{b n }是等差列,并求其前n 项和T n . 解:(1)设该等差列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -2·d =2k +k k -2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n+2n 2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1, 即列{b n }是首项为2,公差为1的等差列, 所以T n =n+n +2=n n +2.10.(2017·南昌调研)设列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比列,所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎨⎧-n -1,1≤n ≤4,2n -7,n ≥5,所以S n=⎩⎨⎧32[1--n],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2016·安庆二模)已知列{a n }是各项均不为零的等差列,S n 为其前n 项和,且a n =S 2n -1(n ∈N *).若不等式λa n ≤n +8n对任意n ∈N *恒成立,则实λ的最大值为________.解析:a n =S 2n -1⇒a n =n -a 1+a 2n -12=n -a n ⇒a 2n =(2n-1)a n ⇒a n =2n -1,n ∈N *.λa n ≤n +8n就是λ≤n +n -n⇒λ≤2n -8n +15,f (n )=2n -8n+15在n ≥1时单调递增,其最小值为f (1)=9,所以λ≤9,故实λ的最大值为9.答案:92.已知列{a n }满足,a n +1+a n =4n -3(n ∈N *). (1)若列{a n }是等差列,求a 1的值; (2)当a 1=2时,求列{a n }的前n 项和S n . 解:(1)法一:∵列{a n }是等差列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3, 得(a 1+nd )+=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a1+a2=2a1+d=2a1+2=4×1-3=1,∴a1=-1 2.(2)由题意,①当n为奇时,Sn=a1+a2+a3+…+a n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n)=2+4-3×n-1 2=2n2-3n+52.②当n为偶时,S n=a1+a2+a3+…+a n =(a1+a2)+(a3+a4)+…+(a n-1+a n) =1+9+…+(4n-7)=2n2-3n2.第三节等比列及其前n项和1.等比列的有关概念(1)定义:如果一个列从第2项起,每一项与它的前一项的比等于同一常(不为零),那么这个列就叫做等比列.这个常叫做等比列的公比,通常用字母q表示,定义的表达式为an+1an=q.(2)等比中项:如果a,G,b成等比列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比列⇒G2=ab.2.等比列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n=⎩⎨⎧na 1,q =1,a 1-q n1-q =a 1-a nq1-q ,q ≠1.3.等比列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *). (2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若列{a n },{b n }(项相同)是等比列,则{λa n },⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ,{a 2n },{a n ·b n },⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n (λ≠0)仍然是等比列;(4)在等比列{a n }中,等距离取出若干项也构成一个等比列,即a n ,a n +k ,a n+2k,a n +3k ,…为等比列,公比为q k .1.(教材习题改编)将公比为q 的等比列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的列a 1a 2,a 2a 3,a 3a 4,….此列是( )A .公比为q 的等比列B .公比为q 2的等比列C .公比为q 3的等比列D .不一定是等比列 答案:B2.等比列{a n }中,a 3=12,a 4=18,则a 6=________. 解析:法一:由a 3=12,a 4=18,得⎩⎨⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32, ∴a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.法二:由等比列性质知,a 23=a 2a 4,∴a2=a23a4=12218=8,又a24=a2a6,∴a6=a24a2=1828=812.答案:81 23.(教材习题改编)在等比列{a n}中,已知a1=-1,a4=64,则公比q=________,S4=________.答案:-4 511.特别注意q=1时,S n=na1这一特殊情况.2.由a n+1=qa n,q≠0,并不能立即断言{a n}为等比列,还要验证a1≠0.3.在运用等比列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.4.S n,S2n-S n,S3n-S2n未必成等比列(例如:当公比q=-1且n为偶时,Sn,S2n-S n,S3n-S2n不成等比列;当q≠-1或q=-1且n为奇时,S n,S2n-S n,S3n-S2n成等比列),但等式(S2n-S n)2=S n·(S3n-S2n)总成立.1.在等比列{a n}中,a3=2,a7=8,则a5等于( )A.5 B.±5C.4 D.±4解析:选C a25=a3a7=2×8=16,∴a5=±4,又∵a5=a3q2>0,∴a5=4.2.设列{a n}是等比列,前n项和为S n,若S3=3a3,则公比q=________.答案:-12或1考点一等比列的基本运算重点保分型考点——师生共研1.(2017·武汉调研)若等比列{a n}的各项均为正,a1+2a2=3,a23=4a2a6,则a 4=( )A .38B .245C .316D .916解析:选C 由题意,得⎩⎨⎧a 1+2a 1q =3,a 1q 22=4a 1q ·a 1q 5,解得⎩⎪⎨⎪⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝ ⎛⎭⎪⎫123=316.2.(2015·全国卷Ⅰ)在列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析:∵a 1=2,a n +1=2a n ,∴列{a n }是首项为2,公比为2的等比列. 又∵S n =126,∴-2n1-2=126,∴n =6.答案:6解决等比列有关问题的2种常用思想 等比列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1-q n1-q=a 1-a n q1-q1.等比列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13B .-13C .19D .-19解析:选C 设等比列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9, ∴⎩⎨⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9,解得⎩⎨⎧q 2=9,a 1=19.2.(2017·洛阳统考)设等比列{a n }的前n 项和为S n ,若a 1+8a 4=0,则S 4S 3=( )A .-53B .157C .56D .1514解析:选 C 在等比列{a n }中,因为a 1+8a 4=0,所以q =-12,所以S 4S 3=a 1-q 41-q a 1-q 31-q=1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-123=151698=56.3.(2015·安徽高考)已知列{}a n 是递增的等比列,a 1+a 4=9,a 2a 3=8,则列{}a n 的前n 项和等于________.解析:设等比列的公比为q ,则有⎩⎨⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎨⎧a 1=1,q =2或⎩⎨⎧a 1=8,q =12.又{}a n 为递增列,∴⎩⎨⎧a 1=1,q =2,∴S n =1-2n1-2=2n -1.答案:2n -1考点二 等比列的判定与证明重点保分型考点——师生共研(2016·全国丙卷)已知列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.等比列的4种常用判定方法(1)前两种方法是判定等比列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个列不是等比列,则只需判定存在连续三项不成等比列即可.设列{}a n 的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1-12a n 为等比列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n+1, ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n a n +1-a n=12, ∴列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比列.考点三 等比列的性质重点保分型考点——师生共研1.(2017·湖南师大附中月考)已知各项不为0的等差列{a n }满足a 6-a 27+a 8=0,列{b n }是等比列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:设列{a n }的公比为q , 由已知得S 4S 2=1+a 3+a 4a 1+a 2=5, 即1+q 2=5, 所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 答案:17等比列的性质可以分为3类1.等比列{a n }的各项均为正,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A.5 B.9C.log345 D.10解析:选D 由等比列的性质知a5a6=a4a7,又a5a6+a4a7=18,所以a5a6=9,则原式=log3(a1a2…a10)=log3(a5a6)5=10.2.(2017·长春调研)在正项等比列{a n}中,已知a1a2a3=4,a4a5a6=12,a n-1anan+1=324,则n=________.解析:设列{a n}的公比为q,由a1a2a3=4=a31q3与a4a5a6=12=a31q12,可得q9=3,a n-1a n a n+1=a31q3n-3=324,因此q3n-6=81=34=q36,所以3n-6=36,即n=14.答案:14一抓基础,多练小题做到眼疾手快1.对任意等比列{a n},下列说法一定正确的是( )A.a1,a3,a9成等比列B.a2,a3,a6成等比列C.a2,a4,a8成等比列D.a3,a6,a9成等比列解析:选D 由等比列的性质得,a3·a9=a26≠0,因此a3,a6,a9一定成等比列,选D.2.在正项等比列{a n}中,a1=1,前n项和为S n,且-a3,a2,a4成等差列,则S7的值为( )A.125 B.126 C.127 D.128 解析:选C 设{a n}的公比为q,则2a2=a4-a3,又a1=1,∴2q=q3-q2,解得q=2或q=-1,∵a n>0,∴q>0,∴q=2,∴S7=1-271-2=127.3.(2016·石家庄质检)已知列{a n}的前n项和为S n,若S n=2a n-4(n∈N*),则a n=( )A.2n+1B.2nC.2n-1D.2n-2解析:选A 依题意,a n+1=S n+1-S n=2a n+1-4-(2a n-4),则a n+1=2a n,令n =1,则S 1=2a 1-4,即a 1=4,∴列{a n }是以4为首项,2为公比的等比列,∴a n =4×2n -1=2n +1,故选A .4.在等比列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, ∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32. 答案:325.在等比列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6. ∴⎩⎨⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两式相除得q 2+q 2-q q 2-=156,即2q 2-5q +2=0,∴q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:4二保高考,全练题型做到高考达标1.已知列{a n }为等比列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:选C a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.2.设等比列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A .18B .-18C.578D.558解析:选A 因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比列,即8,-1,S9-S6成等比列,所以8(S9-S6)=1,即S9-S6=18.所以a7+a8+a9=18.3.已知列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则log 13 (a5+a7+a9)的值是( )A.-5 B.-15C.5 D.1 5解析:选A ∵log3an+1=log3an+1,∴a n+1=3a n.∴列{a n}是以公比q=3的等比列.∵a5+a7+a9=q3(a2+a4+a6),∴log 13(a5+a7+a9)=log13(9×33)=log1335=-5.4.(2016·河北三市第二次联考)古代学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺不少于30,该女子所需的天至少为( )A.7 B.8C.9 D.10解析:选B 设该女子第一天织布x尺,则x-251-2=5,得x=531,∴前n天所织布的尺为531(2n-1).由531(2n-1)≥30,得2n≥187,则n的最小值为8.5.已知S n是等比列{a n}的前n项和,若存在m∈N*,满足S2mSm=9,a2mam=5m+1m-1,则列{a n}的公比为( )A.-2 B.2。
高中数学北师大版 第五章 计数原理 课后练习、课时练习

一、单选题1. ,则()A.B.0 C.32 D.642. 已知,则的取值为()A.1 B.2 C.3 D.43. 在的展开式中,二项式系数最大的项的系数为()A.B.C.D.4. 将4名新老师安排到三所学校去任教,每所学校至少一人,则不同的安排方案的种数是()A.54 B.36 C.24 D.185. 已知的展开式中的系数为40,则等于()A.5 B.6 C.7 D.86. 的展开式中,各项二项式系数的和是()A.1 B.-1 C.D.二、多选题7. 某班准备举行一场小型班会,班会有3个歌唱节目和2个语言类节目,现要排出一个节目单,则下列说法正确的是()A.若3个歌唱节目排在一起,则有6种不同的排法B.若歌唱节目与语言类节目相间排列,则有12种不同的排法C.若2个语言类节目不排在一起,则有72种不同的排法D.若前2个节目中必须要有语言类节目,则有84种不同的排法8. 已知,则()A.B.C.D.三、填空题9. 在的展开式中,的系数为________.(用数字作答)10. 在的展开式中,的系数是______(用数字作答).11. 已知的展开式中的系数为,的系数为,若,则___________.12. 某学校组织学生参加劳动实践活动,其中4名男生和2名女生参加农场体验活动,体验活动结束后,农场主与6名同学站成一排合影留念,则2名女生相邻且农场主站在中间的概率等于__________(用数字作答).四、解答题13. 6本不同的书,按下列条件放置,各有多少种不同的方法(1)分成三份,一份1本,一份2本,一份3本;(2)分给5个人,每人至少一本.14. 解下列方程:(1);(2).15. 已知n是正整数,且.求n的值.16. 求解下列方程和不等式.(1)();(2)().。
第五章留数定理习题及其解答

第五章 留数定理习题及其解答注:此例说明,判断孤立奇点 z类型虽可从f (z)的Laurent 展开式含有负幕项的情 况入手,但切不可忘掉必须是在去心领域内的 Laurent 展式,否则与z0是什么性质的点没有关系。
5.2设f(z)在全平面解析,证明:若::为f(z)的可去奇点,则必有f(z)二a 。
(常数);若::为f(z)的 m 级极点,则f(z)必为m 次多项式: f (z)二a ° • a1z• III • ak Z ,ak = 0;除此之外,f (z)在Z o = 0处的Taylor 展式必有无限多 项系数=0。
证: 因为f (z)在全平面解析,所以f (z)在勺=0邻域内Taylor 展式为f (z)二a 0 a 1z 丨11 a kzJ11且| z" o 注意到这Taylor 级数也是f (z)在::去心邻域 内的Taylor 级数。
所以,当二在f (z)的可去奇点<—>f (z)在::去心邻域内Laurent 展示无z 的正幕项, 即厲=a ?=丨1( =0。
故f (z)=逐(常数);当::为f(z)的m 级极点uf (z)在::去心邻域内Laurent 展示中只含有限个z 的正幕 项,且最高正幕为m 次(am = 0)of(z) = a ° az 川 a m_z m ‘ a m Z ma m 严 a0 n 0m()即f (z)为m 次多项式;除去上述两种情况,::为f(z)的本性奇点=f(z)在::去心邻域内Laurent 展开式中 含有无限多个正幕项,COf (z)=送 a n z n z £邑因此在n£中,有无限多个项的系数不为0。
注(1).对本题的结论,一定要注意成立的条件为f(z)在全面解析,否则结论不成1f(z)=—立。
例: z 在0 < z V -内解析(与全平面解析仅差一个点!),且以°°为可去奇点,1 f(z)=・•• +— + 5.1设有 z 本性奇点?为什么?z njnz z_ ++ ________,能否说z = 0为f (z)答:这个级数由两部分组成:od- n ' zn 4□0 n二命。
高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)习题5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[ ]6)12)(1()(2)1()(2[)(222n n n n n a b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=n n n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→n n n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是 ∑∑⎰=∞→=∞→-⋅-+=∆=ni n ni i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x .(3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba b a dx x f k dx x kf )()(; (2)a b dx dx ba b a -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin 1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(xx x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x .又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .习题5-21. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.解 x tdt dx dy x sin sin 0=='⎰, 当x =0时, y '=sin0=0;当4π=x 时, 224sin =='πy .2. 求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x的导数.解 x '(t )=sin t , y '(t )=cos t ,t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+xy ttdt dt e 00cos 所决定的隐函数y 对x 的导数dxdy. 解 方程两对x 求导得 0cos =+'x y e y , 于是ye x dx dy cos -=. 4. 当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值?解 2)(x xe x I -=', 令I '(x )=0, 得x =0.因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0, 所以x =0是函数I (x )的极小值点. 5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x x dtt dxd cos sin 2)cos(π.解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ )cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-= )sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分: (1)⎰+-adx x x 02)13(;解a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(.(2)⎰+2142)1(dx xx ;解852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ;解94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰6145)421432()921932(223223=+-+=.(4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+ax a dx 3022;解aa a ax a x a dx a a30arctan 13arctan 1arctan 1303022π=-==+⎰.(7)⎰-1024x dx ;解60arcsin 21arcsin 2arcsin 41012π=-==-⎰x x dx .(8)dx x x x ⎰-+++012241133; 解 01301221224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=.(9)⎰---+211e xdx ; 解1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e .(10)⎰402tan πθθd ;解4144tan )(tan )1(sec tan 4040242πππθθθθθθπππ-=-=-=-=⎰⎰d d .(11)dx x ⎰π20|sin |;解⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx xπππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4. (12)⎰2)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 2111)(2x x x x x f . 解38|)61(|)21(21)1()(213102212102=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin .证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdxcos 1cos 1=+-=ππk kk k(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 求下列极限: (1)xdt t xx ⎰→020cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.解 (1)11cos lim cos lim20020==→→⎰x xdt t x xx . (2)22222200022)(2lim)(limx xt x t x xt xt x xedt e dt e dttedt e '⋅=⎰⎰⎰⎰→→222220202lim2limx xt x x x xt x xedte xeedt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式,并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ;当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xxϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x xxxϕ;当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π.因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x a dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ.于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=.由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内)]()([1)(≤--='ξf x f a x x F .习题5-31. 计算下列定积分:(1)⎰+πππ2)3sin(dx x ;解 0212132cos 34cos)3cos()3sin(22=-=+-=+-=+⎰ππππππππx dx x . (2)⎰-+123)511(x dx;解51251110116101)511(2151)511(22122123=⋅+⋅-=+-⋅=+-----⎰x x dx. (3)⎰203cos sin πϕϕϕd ;解⎰⎰-=20323sin cos cos sin ππϕϕϕϕϕd s d410cos 412cos 41cos 4144204=+-=-=πϕπ.(4)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(5)⎰262cos ππudu ;解2626262622sin 4121)2cos 1(21cos ππππππππu u du u udu +=+=⎰⎰836)3sin (sin 41)62(21-=-+-=πππππ.(6)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .(7)dy y ⎰--22228;解⎰⎰⎰---⋅=-=-44222222cos 2cos 22sin 24228ππxdx x xy dy y dy y 令)2(2)2sin 21(22)2cos 1(224444+=+=+=--⎰πππππy x dx x .(8)⎰-121221dx xx ;解41)cot ()1sin 1(cos sin cos sin 12424224212122πππππππ-=--=-=⋅=-⎰⎰⎰t t dt t tdt t t t x dx x x 令.(9)⎰-adx x a x 0222; 解⎰⎰⎰=⋅⋅=-2024202202222sin4cos cos sin sin ππtdt a tdt a t a t a t a x dx x a xa令164sin 328)4cos 1(84204204204ππππa t a t a dt t a =-=-=⎰. (10)⎰+31221xxdx ;解⎰⎰⋅⋅=+34223122secsec tan 1tan 1ππtdt t t tx xxdx 令3322sin 1sin cos 34342-=-==⎰ππππt dt tt. (11)⎰--1145xxdx ;解61)315(81)5(81454513133211=--=-=--⎰⎰-u u du u u x x xdx 令. (12)⎰+411xdx ;解)32ln 1(2|)1|ln (2)111(2211121212141+=+-=+-=⋅+=+⎰⎰⎰u u du u udu u u x x dx 令.(13)⎰--14311x dx ;解2ln 21|)1|ln (2)111(2)2(11111210210021143-=-+=-+=-⋅-=---⎰⎰⎰u u du u du u u ux x dx 令.(14)⎰-axa xdx 20223;解)13(3)3(3121320202222222022-=--=---=-⎰⎰a x a x a d x a xa xdx a a a.(15)dt te t ⎰-1022;解2110102221021)2(222-----=-=--=⎰⎰e etd e dt tet t t .(16)⎰+21ln 1e x x dx; 解)13(2ln 12ln ln 11ln 1222111-=+=+=+⎰⎰e e e xx d xxx dx .(17)⎰-++02222x x dx;解 2)1arctan(1arctan )1arctan()1(112202022022π=--=+=++=++---⎰⎰x dx x x x dx .(18)⎰-222cos cos ππxdx x ;解32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x . (19)⎰--223cos cos ππdx x x ;解⎰⎰---=-222223cos 1cos cos cos ππππdx x x dx x x34cos 32cos 32sin cos )sin (cos 20230223202=-=+-=--⎰⎰ππππx xxdx x dx x x (20)⎰+π02cos 1dx x .解22cos 2sin 22cos 1000=-==+⎰⎰πππxxdx dx x .2. 利用函数的奇偶性计算下列积分: (1)⎰-ππxdx x sin 4;解 因为x 4sin x 在区间[-π, π]上是奇函数, 所以0sin 4=⎰-ππxdx x . (2)⎰-224cos 4ππθθd ;解⎰⎰⎰+==-202204224)22cos 1(8cos 42cos 4ππππθθθθθd x d d ⎰⎰++=++=20202)4cos 212cos 223(2)2cos 2cos 21(2ππθθd x x d x x23)4sin 412sin 23(20πθπ=++=x x . (3)⎰--2121221)(arcsin dx xx ;解⎰⎰⎰=-=--21221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)(arcsin 3232103π==x .(4)⎰-++55242312sin dx x x xx . 解 因为函数12sin 2423++x x x x 是奇函数, 所以012sin 552423=++⎰-dx x x x x .3. 证明:⎰⎰-=aa adx x dx x 022)(2)(ϕϕ, 其中ϕ(u )为连续函数.证明 因为被积函数ϕ(x 2)是x 的偶函数, 且积分区间[-a , a ]关于原点对称, 所以有⎰⎰-=aa adx x dx x022)(2)(ϕϕ.4. 设f (x )在[-b , b ]上连续, 证明⎰⎰---=bb bb dx x f dx x f )()(. 证明 令x =-t , 则dx =-dt , 当x =-b 时t =b , 当x =b 时t =-b , 于是⎰⎰⎰----=--=b b bb bbdt t f dt t f dx x f )()1)(()(,而 ⎰⎰---=-bb bb dx x f dt t f )()(, 所以⎰⎰---=bb bb dx x f dx x f )()(.5. 设f (x )在[a , b ]上连续., 证明⎰⎰-+=ba ba dx xb a f dx x f )()(. 证明 令x =a +b -t , 则dx =d t , 当x =a 时t =b , 当x =b 时t =a , 于是 ⎰⎰⎰-+=--+=b a ba ab dt t b a f dt t b a f dx x f )()1)(()(, 而 ⎰⎰-+=-+ba badx x b a f dt t b a f )()(,所以⎰⎰-+=ba ba dx xb a f dx x f )()(.6. 证明:⎰⎰>+=+11122)0(11x x x x dxx dx. 证明 令t x 1=, 则dt tdx 21-=, 当x =x 时x t 1=, 当x =1时t =1, 于是⎰⎰⎰+=-⋅+=+11121122211)1(1111xx xdt t dt t tx dx , 而 ⎰⎰+=+x x dx x dt t 1121121111,所以 ⎰⎰+=+1112211x xxdx x dx.7. 证明:⎰⎰-=-1010)1()1(dx x x dx x xm n n m.证明 令1-x =t , 则⎰⎰⎰⎰-=-=--=-10100110)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m n m , 即⎰⎰-=-1010)1()1(dx x x dx x x m n n m . 8. 证明: ⎰⎰=ππ020sin 2sinxdx xdx n n.证明 ⎰⎰⎰+=ππππ2020sin sin sin xdx xdx xdx nn n,而⎰⎰⎰⎰==---=2020202sin sin ))((sin sinπππππππxdx tdt dt t t x xdx n n nn 令,所以⎰⎰=ππ020sin 2sinxdx xdx n n.9. 设f (x )是以l 为周期的连续函数, 证明⎰+1)(a a dx x f 的值与a 无关.证明 已知f (x +l )=f (x ). ⎰⎰⎰⎰⎰⎰⎰-+=++=+++ala ll la ll a a adx x f dx x f dx x f dx x f dx x f dx x f dx x f 00001)()()()()()()(,而 ⎰⎰⎰⎰=+=++=+a a ala ldx x f dx l x f dt l t f l t x dx x f 000)()()()(令,所以 ⎰⎰=+la adx x f dx x f 01)()(.因此⎰+1)(a adx x f 的值与a 无关.10. 若f (t )是连续函数且为奇函数, 证明⎰xdt t f 0)(是偶函数; 若f (t )是连续函数且为偶函数, 证明⎰xdt t f 0)(是奇函数. 证明 设⎰=xdt t f x F 0)()(.若f (t )是连续函数且为奇函数, 则f (-t )=-f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x xx ===---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是偶函数.若f (t )是连续函数且为偶函数, 则f (-t )=f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x x x -=-=-=---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是奇函数.11. 计算下列定积分: (1)⎰-10dx xe x ; 解11011010101021--------=--=+-=-=⎰⎰⎰e e e dx e xe xde dx xe xx x x x .(2)⎰e xdx x 1ln ; 解)1(414121121ln 21ln 21ln 21220212121+=-=⋅-==⎰⎰⎰e x e dx x x x x xdx xdx x ee e e e.(3)⎰ωπω20sin tdt t (ω为常数); 解⎰⎰⎰+-=-=ωπωπωπωπωωωωωωω20202020cos 1cos 1cos 1sin tdt tt t td tdt t 220222sin 12ωπωωωπωπ-=+-=t.(4)⎰342sin ππdx xx;解34343434342sin ln 4313cot cot cot sin ππππππππππππxxdx xx x xd dx x x++⋅-=+-=-=⎰⎰⎰23ln 21)9341(+-=π.(5)⎰41ln dx x x; 解 ⎰⎰⎰⋅-==4141414112ln 2ln 2ln dx xx x x x xd dx xx )12ln 2(442ln 8122ln 84141-=-=-=⎰x dx x.(6)⎰10arctan xdx x ;解x d x x x x xdx xdx x ⎰⎰⎰+⋅-==1022102102101121arctan 21arctan 21arctan214)41(218)arctan (218)111(21810102-=--=--=+--=⎰πππππx x x d x. (7)⎰202cos πxdx e x ; 解⎰⎰⎰-==202202202202sin 2sin sin cos ππππxdx e xe x d e xdx e x x x x⎰⎰⎰-+=-+=+=202202202202cos 42cos 4cos 2cos 2πππππππxdx e e xdx e xe e x d e e x x xx所以)2(51cos 202-=⎰ππe xdx e x ,于是(8)⎰212log xdx x ; 解⎰⎰⎰⋅-==212212221222122ln 121log 21log 21log dx x x x x xdx xdx x2ln 432212ln 212212-=⋅-=x . (9)⎰π02)sin (dx x x ; 解⎰⎰⎰-=-=ππππ02302022sin 4161)2cos 1(21)sin (x d x x dx x x dx x x πππππππ03000332cos 41622sin 412sin 416⎰⎰-=⋅+-=xxd xdx x xx 462sin 81462cos 412cos 416303003ππππππππ-=+-=+-=⎰x xdx x x .(10)⎰edx x 1)sin(ln ; 解法一 ⎰⎰⋅=101sin ln )sin(ln dt e t tx dxx te令.因为⎰⎰⎰-==⋅10101010cos sin sin sin tdt e te tde dt e t t tt t⎰⎰--⋅=-⋅=101010sin cos 1sin cos 1sin tdt e t e e tde e t t t⎰-+⋅-⋅=10sin 11cos 1sin tdt e e e t , 所以 )11cos 1sin (21sin 10+⋅-⋅=⎰e e tdt e t .因此)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e. 解法二⎰⎰⎰-⋅=⋅⋅-⋅=e e eedx x e dx x x x x x dx x 1111)cos(ln 1sin 1)cos(ln )sin(ln )sin(ln ⎰⋅⋅-⋅-⋅=e edx x x x x x e 111)sin(ln )cos(ln 1sin ⎰-+⋅-⋅=edx x e e 0)sin(ln 11cos 1sin , 故)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e . (11)dx x e e⎰1|ln |; 解⎰⎰⎰⎰⎰-++-=+-=eee eee e e dx dx xx x x dx x dx x dx x 1111111111ln ln ln ln |ln |)11(2)1()11(1ee e e e -=---++-=.(12)⎰-1022)1(dx xm (m 为自然数); 解⎰⎰+=-2011022cos sin )1(πtdt t x dx xm m 令.根据递推公式⎰⎰--=20220cos 1cos ππxdx n n xdx n n ,⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅+⋅⋅⋅⋅⋅⋅--⋅--⋅+=-⎰为偶数为奇数m m m m m m m m m m m m m m dx x m325476 34121 2214365 34121)1(1022π. (13)⎰=π0sin xdx x J m m (m 为自然数). 解 因为⎰⎰⎰⎰-=----=ππππππππ0000sin sin )1)((sin )(sin tdt t tdt dt t t t x xdx x mm m m 令,所以 ⎰⎰⎰⎰=⋅===20200sin sin 22sin 2sin πππππππxdx xdx xdx xdx x J m m mmm (用第8题结果).根据递推公式⎰⎰--=20220sin 1sin ππxdx n n xdx n n , ⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅-⋅⋅⋅⋅⋅⋅--⋅--⋅-=为奇数为偶数m m m m m m m m m m m m m m J m 325476 45231 2214365 452312ππ.习题5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 2)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt e pt pt ωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx .(7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x . (8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102xx x dx x ,所以反常积分⎰-202)1(x dx发散. (9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x . (10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k k k x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令k kk x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点,同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx xx x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.总习题五1. 填空:(1)函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的______条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积______的条件;解 函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的___必要___条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积___充分___的条件;(2)对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的______条件;解 对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的___充分___条件;(3)绝对收敛的反常积分⎰+∞a dx x f )(一定______; 解 绝对收敛的反常积分⎰+∞a dx x f )(一定___收敛___;(4)函数f (x )在[a , b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰ba dx x f )(______存在. 解 函数f (x )在[a ,b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰b a dx x f )(___不一定___存在.2. 计算下列极限:(1)∑=∞→+n i n nin 111lim ;解 )122(32)1(32111lim 103101-=+=+=+⎰∑=∞→x dx x n i n n i n . (2)121lim+∞→+⋅⋅⋅++p pp p n nn (p >0);解 11111])( )2()1[(lim 21lim 101101+=+==⋅⋅⋅⋅++=+⋅⋅⋅+++∞→+∞→⎰p x p dx x n n n n n n n p p p p p n p p p p n . (3)nn nn !lnlim ∞→; 解 ]ln 1)ln 2ln 1(ln 1[lim !lnlim n n nn n n n n nn ⋅-+⋅⋅⋅++=∞→∞→nn n n n n 1)]ln (ln )ln 2(ln )ln 1[(ln lim ⋅-+⋅⋅⋅+-+-=∞→⎰=⋅+⋅⋅⋅++=∞→10ln 1)ln 2ln 1(ln lim xdx n n n n n n1)ln ()ln (10101010-=-=-=⎰xx x dx x x .(4)⎰-→xaa x dt t f a x x )(lim, 其中f (x )连续; 解法一 )()(lim )(lima af xf dt t f ax x axa ax ==-→→⎰ξξ (用的是积分中值定理). 解法二 )(1)()(lim )(lim )(lim a af x xf dt t f a x dt t f x dt t f a x x xaa x xa a x x a a x =+=-=-⎰⎰⎰→→→ (用的是洛必达法则). (5)1)(arctan lim 22+⎰+∞→x dtt xx .解4)(arctan 1lim 1)(arctan lim 1)(arctan lim 22222202π=+=+=+∞→+∞→+∞→⎰x x x x x x x dtt x x xx . 3. 下列计算是否正确, 试说明理由:(1)⎰⎰----=-=+-=+111111222)1arctan ()1(1)1(1πx xx d x dx ;解 计算不正确, 因为x 1在[-1, 1]上不连续. (2)因为⎰⎰--++-=++111122111t t dt tx x x dx , 所以⎰-=++11201x x dx .解 计算不正确, 因为t1在[-1, 1]上不连续.(3)01lim 122=+=+⎰⎰-∞→+∞∞-A A A dx x xdx x x . 解 不正确, 因为⎰⎰⎰⎰-+∞→+∞→+∞∞--∞→+≠+++=+A A A b b a a dx xxdx x x dx x x dx x x 2020221lim 1lim 1lim 1. 4. 设p >0, 证明⎰<+<+10111p x dx p p. 证明 p pp p p p px x x x x x x ->+-=+-+=+>11111111. 因为⎰⎰⎰<+<-1010101)1(dx x dxdx x pp,而 110=⎰dx , pp p x x dx x p p+=+-=-+⎰1)1()1(10110, 所以⎰<+<+10111pxdx p p. 5. 设f (x )、g (x )在区间[a , b ]上均连续, 证明: (1)⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222;证明 因为[f (x )-λg (x )]2≥0, 所以λ2g 2(x )-2λ f (x )g (x )+f 2(x )≥0, 从而 0)()()(2)(222≥+-⎰⎰⎰ba ba ba dx x f dx x g x f dx x g λλ.上式的左端可视为关于λ的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即0)()(4])()([4222≤⋅-⎰⎰⎰ba ba ba dx x g dx x f dx x g x f ,亦即 ⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222. (2)()()()212212212)()()]()([⎰⎰⎰+≤+b ab a b a dx x g dx x f dx x g x f , 证明⎰⎰⎰⎰++=+ba ba ba ba dx x g x f dx x g dx x f dx x g x f )()(2)()()]()([222。
数学物理方法留数定理例题

数学物理方法留数定理例题一、留数定理简介留数定理是数学物理方法中的一个重要定理,起源于复分析领域。
它指出,在一定条件下,一个函数在某个区域的边界上的取值与在该区域内部某一点的取值相同。
这个定理由德国数学家卡尔·魏尔斯特拉斯(Carl Wiener)于1880年首次提出,后来被法国数学家让·卡当(Jean Coulomb)命名为“留数”。
留数定理在复分析、实分析、偏微分方程等领域具有广泛的应用。
二、留数定理的应用1.解析延拓留数定理可以用于解析延拓问题。
当一个函数在某个区域内具有奇偶性时,可以通过留数定理将该函数在边界上的取值延拓到内部点。
这种方法在解决复杂区域的积分问题时非常有用。
2.计算积分利用留数定理可以计算复杂区域的积分。
通过将积分区域分解为简单区域,并在每个简单区域内部选择一个代表点,计算代表点处的函数值,最后将各个代表点处的函数值相加,即可得到积分结果。
这种方法称为“分部积分法”。
3.求解微分方程留数定理还可以应用于求解微分方程。
通过在边界上设置适当的边界条件,可以将微分方程转化为一个或多个积分方程。
利用留数定理计算积分,可以得到微分方程的解。
三、留数定理的推广留数定理在复分析领域有多种推广形式。
例如,在多元函数中,留数定理可以推广为多重留数定理;在无穷级数中,留数定理可以用来计算级数的和;在偏微分方程中,留数定理可以用于求解边界值问题。
四、留数定理与其他数学物理方法的联系与区别留数定理与其他数学物理方法,如解析延拓、residue 计算、积分方程方法等有密切联系。
它们都用于解决复分析和实分析中的问题,但具体应用场景和解决问题的手段不同。
留数定理侧重于研究函数在边界与内部点之间的关系,而其他方法则关注如何利用这种关系求解问题。
五、留数定理在实际问题中的应用案例留数定理在实际问题中具有广泛的应用。
例如,在电路分析中,留数定理可以用于计算复杂电路中的电流、电压等物理量;在经济学中,留数定理可以用于研究货币供应量、利率等经济变量之间的关系;在生物学中,留数定理可以用于研究生物种群的数量动态等。
5留数及其应用

极点, 而Res[ f (z), z0 ] P z0 Q z0 .
事实上, 因为 Q(z0)=0 及 Q'(z0)0, 所以 z0 为 Q(z)的一级
零点, 从而 z0 为1 Q z 的一级极点. 因此
1 1 j(z),
lim f (z) 是否存在(有限值), 为无穷大或即不存在又不是
z
无穷大来决定.
例题1 f (z) (z - 2)(z2 1). z 为唯一奇点:3阶极点 .
例题2
z-1
f (z) e z .
z 0与均为本性奇点 .
例题3
f
(z)
tan 1
e z
.
lim
f
(z)
1 为f
(z)的可去奇点 .
闭曲线C的积分 f (z) d z 一般就不等于零.
C
因此 f (z) = ... +c-n(z-z0)-n+...+c-1(z-z0)-1
+c0+c1(z-z0)+...+cn(z-z0)n+... 0<|z-z0|<R
两端沿C逐项积分: f (z) d z 2π ic-1.
C
即C-1是积分过程中唯一残留下来的Laurent系数 ,
由规则1, 得
Res[
f
( z ),1]
lim( z
z1
-1)
z z2
ez -1
lim
z1
z ez z 1
e 2
Res[
f
(z),
-1]
lim(z
z-1
2022年高考数学(文)一轮复习文档:第五章 数列 第2讲等差数列及其前n项和 Word版含答案

第2讲 等差数列及其前n 项和,)1.等差数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.1.辨明两个易误点(1)要留意概念中的“从第2项起”.假如一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)留意区分等差数列定义中同一个常数与常数的区分. 2.妙设等差数列中的项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 3.等差数列的四种推断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.1.教材习题改编 等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项D .第22项C a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21.故选C.2.教材习题改编 已知p :数列{a n }是等差数列,q :数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2均为常数),则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C 若{a n }是等差数列,不妨设公差为d . 所以a n =a 1+(n -1)d =dn +a 1-d , 令k 1=d ,k 2=a 1-d ,则a n =k 1n +k 2,若数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2为常数,n ∈N *), 则当n ≥2且n ∈N *时,a n -1=k 1(n -1)+k 2, 所以a n -a n -1=k 1(常数)(n ≥2且n ∈N *), 所以{a n }为等差数列, 所以p 是q 的充要条件.3.教材习题改编 等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27B 法一:由于S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B.法二:由a 5=6,得a 1+4d =6,所以S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B.4.(2021·金丽衢十二校联考)已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为________.设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2.25.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.-72等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多消灭在选择题、填空题或解答题的第(1)问中,属简洁题. 高考对等差数列基本量计算的考查主要有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.(1)(2021·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12(2)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5B .6C .7D .8【解析】 (1)由于公差为1,所以S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.由于 S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192,故选B.(2)法一:由题知S n =na 1+n (n -1)2d =n +n (n -1)=n 2,S n +2=(n +2)2,由S n +2-S n =36得,(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 【答案】 (1)B (2)D等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.角度一 求公差d 、项数n 或首项a 11.(2021·豫东、豫北十所名校联考)已知等差数列{a n }中,a 5=13,S 5=35,则公差d =( ) A .-2 B .-1 C .1D .3D 依题意,得⎩⎪⎨⎪⎧a 1+4d =13,5a 1+10d =35,解得⎩⎪⎨⎪⎧a 1=1,d =3,故选D.角度二 求通项或特定项2.(2022·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C 设等差数列{a n }的公差为d ,由于{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.角度三 求前n 项和3.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27. 27等差数列的判定与证明已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解】 (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1, 公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2, 因此存在λ=4, 使得数列{a n }为等差数列.(1)推断证明一个数列是否是等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简洁推断.(2)用定义证明等差数列时,常接受两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必需加上“n ≥2”,否则n =1时,a 0无定义.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *).设b n =1a n -1(n ∈N *),求证:数列{b n }是等差数列.由于a n =2-1a n -1,所以a n +1=2-1a n.所以b n +1-b n =1a n +1-1-1a n -1,=12-1a n-1-1a n -1,=a n -1a n -1=1, 所以{b n }是首项为b 1=12-1=1,公差为1的等差数列.等差数列的性质及最值(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【解析】 (1)由于a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)由于{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.(3)当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.【答案】 (1)B (2)21 (3)⎝⎛⎭⎪⎫-1,-78应用等差数列的性质应留意的两点(1)在等差数列{a n }中,若m +n =p +q =2k (m 、n 、p 、q 、k ∈N *),则a m +a n =a p +a q =2a k 是常用的性质. (2)把握等差数列的性质,悉心争辩每共性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.1.已知等差数列{a n }的公差为2,项数是偶数,全部奇数项之和为15,全部偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17A 设{a n }的公差为d , 由于a 1=29,S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得d =-2,所以S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.所以当n =15时,S n 取得最大值.3.(2021·陕西省五校模拟)等差数列{a n }中,假如 a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66C 由等差数列的性质可知,2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9)=39+27=66, 所以a 2+a 5+a 8=33,所以数列{a n }前9项的和为66+33=99.,)——整体思想在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 【解析】 法一:设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:法一中两方程相减得 -90a 1-100×99-902d =90,所以a 1+110-12d =-1,所以S 110=110a 1+110(110-1)2d =-110.法三:由于S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.【答案】 -110(1)法一是利用等差数列的前n 项和公式求解基本量,然后求和,是等差数列运算问题的常规思路.而法二、法三都突出了整体思想,分别把a 1+110-12d 、a 11+a 100看成了一个整体,解起来都很便利.(2)整体思想是一种重要的解题方法和技巧,这就要求同学要娴熟把握公式,理解其结构特征.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. 20,)1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15B 设{a n }的公差为d ,由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.2.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12B 由题知,a 2+a 4=2a 3=2, 又由于a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0. 3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84B 由a 3+a 5+a 11+a 17=4⇒2(a 4+a 14)=4⇒a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.(2021·东北三校联考(一))已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121B 设等差数列{b n }的公差为d ,则d =-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72=-112,则a 8=-109. 5.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)=40+3×20=100.6.(2021·杭州重点中学联考)设S n 为等差数列{a n }的前n 项和,若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( )A .6B .7C .8D .9C 在等差数列{a n }中 ,由于a 4<0,a 5>|a 4|,所以a 5>0,a 5+a 4>0,S 7=7(a 1+a 7)2=7×2a 42=7a 4<0,S 8=8(a 1+a 8)2=8(a 4+a 5)2=4(a 4+a 5)>0.所以使S n >0成立的最小正整数n 为8,故选C.7.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________. a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37. 所以m =37. 378.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=__________. 设{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎪⎨⎪⎧a 1=7,d =-2,所以a 5=a 4+d =1+(-2)=-1.-19.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于________.由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.21410.记等差数列{a n }的前n 项和为S n ,当k ≥2时,若S k -1=8,S k =0,S k +1=-10,则S n 的最大值为________. 当k ≥2时,a k =S k -S k -1=-8,a k +1=S k +1-S k =-10,公差d =a k +1-a k =-2,S k =k (a 1+a k )2=0,所以a 1+a k =0,所以a 1=8,所以a n =-2n +10,由a n =0得n =5,所以S 4=S 5=20最大.2011.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.(1)证明:由于b n =1a n ,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n2a n +1=2a n +1a n,所以b n +1-b n =2a n +1a n -1a n=2.又b 1=1a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,所以a n =1b n =12n -1.所以数列{a n }的通项公式为a n =12n -1.12.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________.由S 2 0172 017-S 2 0152 015=a 1 009-a 1 008=2. 即{a n }的公差d =2,又a 1=-2 017,所以S 2 019=2 019×(-2 017)+2 019×2 0182×2=2 019.2 01913.各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (1)求a 1,a 2的值; (2)求数列{a n }的通项公式. (1)当n =1时,a 21=4S 1-2a 1-1, 即(a 1-1)2=0,解得a 1=1.当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2, 解得a 2=3或a 2=-1(舍去). (2)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ), 即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ).由于数列{a n }各项均为正数,所以a n +1+a n >0,a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1.14.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.由于2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,所以T 15最小. 由于数列{b n }的首项是-29,公差为2, 所以T 15=15(-29+2×15-31)2=-225.。
复变函数第五章习题及答案概要

cos z
z
0.
第三十一第页三,十共页44页。
(4) f (z) sinh z cosh z
解 f (z)的一级极点为
zk
k
2
i
k
0,1,2,
故
sinh z Res[ f (z), zk ] (cosh z) zzk
sinh z 1.
sinh z zzk
第三十二第页三十,一页共44页。
第十四第页十,三共页44页。
定理
如果函数 f (z) 在扩充复平面内只有有限个
孤立奇点, 那末 f (z) 在所有各奇点 (包括 点)
的留数的总和必等于零.
第十五页第十,四共页44页。
3. 留数在定积分计算上的应用
1)三角函数有理式的积分
2π
I 0 R(cos ,sin )d
令 z ei,
sin
f
(z)
sin z z3
z
1 z3
z
z3 3!
z5 5!
z7 7!
z
1 z2 z4 z6 3! 5! 7! 9!
得z 0是f (z)的可去奇点, z 是f (z)的本性奇点.
第二十第三二页十,二共页44页。
tan1
(2) e z;
解 令 w tan 1 , 则 f (z) ew . z
例5 计算积分
sin(z i)
z 2 z(z i)8 dz.
解 z 0为一级极点,z i为七级极点.
sin(z i)
Res[ f (z),0] lim zf (z) lim
z0
z0
(z i)8
sin i;
f
(
z
)
sin( z (z
复变函数第五章留数(习题五)解答

8.求下列各积分:
(1) ;(2) ,其中 ;
(3) ,其中 ;(4) ;(5) ;
(6) ;(7) ,其中 ;
(8) ,其中 ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(9) ;[提示]:从顶点为 , , , ( )的矩形中分别挖去以 为心的上半圆盘和以 为心的下半圆,考虑 沿这个区域边界的积分.
(2) ,其中 .
[提示]:作辅助函数 ,并考虑以 , , , ( )为顶点的矩形.
证明(1)作辅助函数 ,并取 ,以及如图示的扇形
显然 在此扇形区域及其边界上解析,由柯西积分定理
又
所以
即
比较两边的实部和虚部得
.
(2)因
,
考虑函数 沿如图示矩形区域边界的积分,由柯西积分定理得
而
同理
所以
比较两边的实部和虚部得
不难观察出,上式展开后最低的负幂次项为 ,不含有 这样的项,即这样的项的系数为 ,所以,由第4题得
.
(方法2)[利用公式 计算]
记 ,因 ,显然它以 为可去奇点,所以
.
6.试把关于留数的基本定理1.1转移到 是扩充复平面上含无穷远点区域情形.
设区域 是一条简单闭曲线或有限条互不相交且其内部也互不相交的简单闭曲线(记为 )的外部(称为扩充平面上含无穷远点的区域),若函数 在 内除去有有限个孤立奇点 , , , 外,在每一点都解析,并且 可连续到 上,则
用此结果计算积分
.
证明 由题设,显然函数 在复平面上的奇点都是孤立的,记为 , , , .
(方法1:利用第6题)如图示,可取简单闭曲线 ,使得 , , , 都位于 的外部,从而 在 及 的内部是解析的.由第6题,并注意到第3章的柯西定理,
第五章 留数理论及其应用习题解答

习题五1. 求下列函数的留数.(1)()5e 1z f z z-=在z =0处. 解:5e 1z z-在0<|z |<+∞的罗朗展开式为 23454321111111112!3!4!2!3!4!z z z z z z z z z +++++-=+⋅+⋅+⋅+ ∴5e 111Res ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦ (2)()11ez f z -=在z =1处. 解:11ez -在0<1z -| <+∞的罗朗展开式为 ()()()11231111111e 112!3!!111z n z n z z z -=++⋅+⋅++⋅+----∴11Res e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数.(1)()()2322z f z z z +=+ 解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232Res ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sin z z+⋅在∞处的留数. 解:()()()22235111sin 21sin 11111213!5!z z z z zz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1Res ,013!f z =- 从而()[]1Res ,13!f z ∞=-+ 5. 计算下列积分.(1)ctan πd z z ⎰,n 为正整数,c 为|z |=n 取正向.解:c c sin πtan πd d cos πz z z z z =⎰⎰.为在c 内tan πz 有12k z k =+ (k =0,±1,±2…±(n -1))一级极点 由于()()2sin π1Res ,πcos πk z kz f z z z =⎡⎤==-⎣⎦' ∴()c 1tan πd 2πi Res ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰ (2) ()()()10c d i 13zz z z +--⎰ c :|z |=2取正向. 解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点. 所以()()()()[]()[]()()[]()[]()()10c 10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分.(1)π0cos d 54cos m θθθ-⎰ 因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰ 令π1π1sin d 254cos m I θθθ-=-⎰则有 i π1π1e i d 254cos m I I θθθ-+=-⎰ 设i e z θ= d 1d i z z θ= 2os 12c z z θ+=则 ()121211d i 2i 15421d 2i 521m z mz z z I I z z z z z z ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521m z f z z z =-+在|z |=1内只有一个简单极点12z = 但()()[]12211Res ,lim 232521m mz z f z z z →⎡⎤==⎢⎥⎣⎦⋅'-+ 所以111πi 2πi 2i 3232m m I I +=⋅⋅=⋅⋅ 又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32m m θθθ=⋅-⎰(2) 202πcos3d 12cos a a θθθ+-⎰,|a|>1. 解:令2π102cos3d 12cos I a a θθθ+=-⎰ 2π202sin3d 12cos I a a θθθ+=-⎰32π120i 2e i d 12cos I I a a θθθ-++=⎰ 令z =e i θ.31d d i os 2c z z zz θθ==,则 ()()()3122123221321i d 1i 1221d i 1112π2πi Res ,i 1z z z I I z z z a a zz z az a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰ 得()1322π1I a a =- (3)()()2222d x x a x b∞+-∞++⎰,a >0,b >0. 解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故 ()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i lim i 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+4. ()22022d x x x a ∞++⎰,a >0. 解:()()2222022221d d 2x x x x x a x a -∞++∞∞=++⎰⎰ 令()()2222z R z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi Res ,i Res ,i 2πi lim lim i i π2z a z a x x R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰ (5) ()2022sin d x x x b xβ∞+⋅+⎰,β>0,b>0. 解:()()()i 222222222cos sin e d d i d x x x x x x x x x x b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰ 而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i e d 2πi Res e ,i e π2πi lim e i i 2z x z z b b xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e 2b b b xx x x βββ+--∞∞⋅=⋅+⎰ 从而()2022sin ππd e 44e b b x x b b x x b βββββ+-∞⋅=⋅=+⎰ (6) 22i e d xx x a +-∞∞+⎰,a >0 解:令()221R z z a =+,在上半平面有z =a i 一个一级极点 ()[]i i i 22i e e e πd 2πi Res e ,i 2πi lim 2πi i 2i e x z a z az a x R z a x a z a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰ 7. 计算下列积分(1)()20sin 2d 1x x x x ∞++⎰ 解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0作的原点为圆心r 为半径的上半圆周c r ,使c r ,[-R ,-r ],c r ,[r ,R ]构成封装曲线,此时闭曲线内只有一个奇点i , 是()()[]{}()z 22i 201e 1e Im d Im 2πi Res ,i lim d 2211r r x iz c I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰ 而()202e d lim πi 1r iz c r z zz →⋅=-+⎰. 设()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 21222zz i i I z z --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦. (2)21d 2πi zT a z z⎰,其中T 为直线Re z =c ,c >0,0<a <1解:在直线z =c +i y (-∞<y <+∞)上,令()ln 22e z z a a f z z z==,()ln 22e i c a f c y c y ⋅+=+,()ln 22e i d d c a f c y y y c y ⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d lim d lim d c c c c AB R R R R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅= 所以由留数定理.()()()()d d d d 2πi ln AB BE EF FAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰ 而()()()()i ln ln ln ln 22222e e e e d d d d 0i x R a x a aC C a R C C R BE C R R f z z x x x C R x R R R x R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。
第5章留数(答案)

z z0
则 故
4 (z z C z 0 ) f ( z) 3 (
0
z)
2
C ( z
2 0
z) 1 C ( z 30 z ) )
选(C).
4 ] [ (z z 3 C ! 4 C z 0 ) f (z ) 1 0 ! z ( 0 1 C1 lim[( z z0 )4 f ( z )]. 3! z z0
(B)1 (C)2 (D)
82
选(B).
1 ). Res( z 2 tan , 0) ( z 1 1 1 1 (A) (B) (C) (D) 3 3 6 6 1 1 1 解 tan 3 z z 3 z 1 1 2 因此, Res( z tan , 0) . z 3 1 cos 是偶函数 a1 0. z 1 5-10 Res(cos , 0) ( ). z 1 1 (A)0 (B)1 (C) (D) 2 2 1 1 1 解 cos 1 2 ,故 Res(cos , 0) 0. z 2z z 1 5-11 Res( z cos , 0) ( ). z 1 1 (A)0 (B)1 (C) (D) 2 2 1 1 1 1 解 z cos z , 故 Res( z cos , 0) . z 2z z 2 在 z 1 处的留数,也可令 z 1 t .
选(D).
奇点. 用罗伦级数展开计算留数是基本方法之一.
5.2 留数与留数定理
1
5-6 Res(e z sin (A)0
1 ,0) ( z
).
1 2 1 1 1 1 1 1 1 ) 2 解 (e z sin ) (1 )( 3 z z z 3! z z z z 当 z 0 时, ln(1 z ) ~ sin z ~ e 1 ~ z ,这些,均与实函数是一致的.
概率论与数理统计 第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n 211- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i == , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1⎰∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<= , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指 {}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
2020_2021学年高中数学第五章数列5.4数列的应用课后习题含解析新人教B版选择性必修第三册20

第五章数列5.4数列的应用课后篇巩固提升基础达标练1.(2020郑州高三二模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()注:12+22+32+…+n2=n(n+1)(2n+1)6A.1 624B.1 024D.1 560,{a n}:1,4,8,14,23,36,54,…两两作差,得{b n}:3,4,6,9,13,18,…两两作差,得{c n}:1,2,3,4,5,…设该数列为{a n},令b n=a n+1-a n,设{b n}的前n项和为B n,又令c n=b n+1-b n,设{c n}的前n项和为C n.易知c n=n,C n=n2+n2,进而得b n+1=3+C n=3+n2+n2,所以b n=3+n(n-1)2=n22−12n+3,则B n=n(n+1)(n-1)6+3n,所以a n+1=1+B n,所以a19=1024.2.(2019山东高三期中)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2 019这2 019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{a n},则此数列所有项中,中间项的值为()B.1 022C.1 007D.1 037a n-2既是3的倍数,也是5的倍数,也就是15的倍数.即a n-2=15(n-1),a n=15n-13.当n=135,a135=15×135-13=2012<2019,当n=136,a136=15×136-13=2027>2019,故n=1,2,…,135,数列共有135项.因此数列中间项为第68项,a68=15×68-13=1007.故答案为C.3.(2020江西安福中学高一月考)某学生家长为缴纳该学生上大学时的教育费,于2018年8月20号从银行贷款a元,为还清这笔贷款,该家长从2019年起每年的8月20号便去银行偿还相同的金额,计划恰好在贷款的m年后还清.若银行按年利率为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是()A.am B.ap(1+p)m+1 (1+p)m+1-1C.ap(1+p)m+1p m-1D.ap(1+p)m(1+p)m-1x,则a(1+p)m=x+x(1+p)+x(1+p)2+…+x(1+p)m-1,所以a(1+p)m=x1-(1+p)m1-(1+p),解得x=ap(1+p)m(1+p)m-1.故选D.4.(2019兰州第二中学高二期中)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何.”翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇.这个问题体现了古代对数列问题的研究,现将墙的厚度改为1 200尺,则需要多少天时间才能打穿(结果取整数)()B.11C.10D.9{a n},{b n},它们都是等比数列,a1=b1=1,数列{a n}的公比为q1=2,数列{b n}的公比为q2=12,设需要n天能打穿墙,则(a1+a2+…+a n)+(b1+b2+…+b n)=1-2n1-2+1-(12)n1-12=2n+1-12n-1,当n=10时,2n+1-12n-1=1025-129≈1025<1200,当n=11时,2n+1-12n-1=2049-1210≈2049>1200,因此需要11天才能打穿.故选B.5.假设每次用相同体积的清水漂洗一件衣服,且每次能洗去污垢的34,那么至少要清洗次才能使存留的污垢在1%以下.a升清水漂洗一件衣服,洗涤次数为n,通过题意可知,存留的污垢y是以14a为首项,14为公比的等比数列,所以有y=14n·a , 由题意,可知14n ·a ≤1%·a ,得n ≥log 4100=log 210,得n ≥4,所以至少要清洗4次才能使存留的污垢在1%以下.6.(2020上海华师大二附中高三月考)如图,一个粒子从原点出发,在第一象限和两坐标轴正半轴上运动,在第一秒时它从原点运动到点(0,1),接着它按图所示在x 轴、y 轴的垂直方向上来回运动,且每秒移动一个单位长度,那么,在2 018秒时,这个粒子所处的位置在点 .,设粒子运动到A 1,A 2,…,A n 时所用的时间分别为a 1,a 2,…,a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,a n -a n-1=2n ,将a 2-a 1=2×2,a 3-a 2=2×3,a 4-a 3=2×4,…,a n -a n-1=2n 相加得a n -a 1=2(2+3+4+…+n )=n 2+n-2,则a n =n (n+1),由44×45=1980,得运动了1980秒时它到点A 44(44,44),又由运动规律知,A 1,A 2,…,A n 中,奇数点处向下运动,偶数点处向左运动, 故粒子到达A 44(44,44)时,向左运动38秒即运动了2018秒,到达点(6,44), 则所求点应为(6,44). 答案(6,44)7.(2019上海格致中学高三开学考试)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋科学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、三角垛等.某仓库中部分货物堆放成“菱草垛”,自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200910n万元,则n 的值为 .解析由题意,可得第n 层的货物的价格为a n =n ·910n-1,设这堆货物总价是S n =1·9100+2·9101+3·9102+…+n ·910n-1,①由①×910可得910S n =1·9101+2·9102+3·9103+…+n ·910n,②由①-②,可得110S n =1+9101+9102+9103+…+910n-1-n ·910n=1-(910) n1-910-n ·910n=10-(10+n )·910n,∴S n =100-10(10+n )·910n . ∵这堆货物总价是100-200910n万元,∴n=10.8.(2020山东高二期末)沿海某市为了进一步完善海防生态防护体系,林业部门计划在沿海新建防护林3万亩,从2020年开始,每年春季在规划的区域内植树造林,第一年植树1 200亩,以后每一年比上一年多植树400亩,假设所植树木全部成活. (1)到哪一年春季新建防护林计划全部完成?(2)若每亩新植树苗的木材量为2立方米,且所植树木每一年从春季开始生长,到年底停止生长时木材量的年自然增长率为10%,到新建防护林计划全部完成的那一年底,新建防护林的木材总量为多少立方米?(参考数据:1.111≈3)设第n 年春季植树为a n 亩,由题意,可知a 1=1200,a n+1-a n =400=d (常数),所以{a n }为等差数列.设植树n 年新建防护林计划全部完成,则1200n+n (n -1)2×400=30000,化简得n 2+5n-150=0,所以n=10. ∵2020+10-1=2029,所以到2029年新建防护林计划全部完成.(2)设从2020年开始,第n 年年底种植树木到2029年底的木材量为数列{b n }, 则b 10=a 10×2×1.1,b 9=a 9×2×1.12,…,b 1=a 1×2×1.110.则木材总量S=b 1+b 2+…+b 10=2(1.1a 10+1.12a 9+…+1.110a 1), 1.1S=2(1.12a 10+1.13a 9+…+1.111a 1),所以0.1S=2[-1.1a 10+d (1.12+1.13+…+1.110)+a 1·1.111] =2-1.1×4800+400×1.12-1.1111-1.1+1200×1.111≈10960,解得S=109600,所以到2029年底新建防护林的木材总量约为109600立方米.能力提升练1.在超市中购买一个卷筒纸,其内圆直径为4 cm,外圆直径为12 cm,一共卷60层,若把各层都视为一个同心圆,令π=3.14,则这个卷筒纸的长度(精确到个位)为( ) B.16 m C.15 m D.14 m,且各层同心圆直径成等差数列{d n },则纸的长度为l=πd 1+πd 2+πd 3+…+πd 60,其中d 1+d 2+d 3+…+d 60=d 1+d 602×60=480,则πd 2+πd 3+…+πd 60=480π=480×3.14=1507.2≈15(m).故选C .2.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定:驾驶员在驾驶机动车时血液中酒精含量不得超过0.02 mg/mL.如果某人喝了少量酒后,血液中酒精含量将迅速上升到0.3mg/mL,在停止喝酒后,血液中酒精含量就以每小时50%的速度减小,他至少要经过几小时才可以驾驶机动车(精确到小时)( ) A.1小时 B.2小时 C.4小时 D.6小时解析设n 个小时后才可以驾车,根据题意,可知每小时酒精下降的量成等比数列,公比为50%,进而可得方程0.3(1-50%)n ≤0.02,得12n ≤115,即n ≥4,所以至少要经过4小时后才可以驾驶机动车.故选C .答案C3.(2019安徽安庆一中高一期中)根据市场调查,预测某种日用品从年初开始的n 个月内累计的需求量S n (单位:万件)大约是S n =n27(21n-n 2-5)(n=1,2,…,12).据此预测,本年度内,需求量超过5万件的月份是( ) A.5月、6月 B.6月、7月 8月 D.8月、9月n 个月内累计的需求量S n (单位:万件)大约是S n =n27(21n-n 2-5)(n=1,2,…,12),则第n (n ≥2)个月的需求量为a n =S n -S n-1=-3n 2+45n -2727>5,得2n+27×6<0,即n 2-15n+54<0,解得6<n<9.故选C .4.“泥居壳屋细莫详,红螺行沙夜生光”是宋代诗人欧阳修对鹦鹉螺的描述,美丽的鹦鹉螺呈现出螺旋线的迷人魅力.假设一条螺旋线是用以下方法画成(如图):△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的弧,曲线CA 1A 2A 3称为螺旋线,然后又以A 为圆心,AA 3为半径画弧……如此下去,则所得螺旋线CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度S n 为( ) A.310πB.1103π C.58π D.110π,知螺旋线CA 1,A 1A 2,A 2A 3,…,A 3n-2A 3n-1,A 3n-1A 3n 的长度分别为2π3,2×2π3,3×2π3,…,3n×2π3,此数列是2π3为首项,2π3为公差,项数为3n 的等差数列,根据等差数列的求和公式,得S n =3n×2π3+3n (3n -1)2×2π3=n (3n+1)π,此时n=10,易得所得螺旋线A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度S n 为310π.5.(2020江西南昌高三期末)刚上班不久的小明于10月5日在某电商平台上通过零首付购买了一部售价6 000元的手机,约定从下月5日开始,每月5日按等额本息(每期以相同的额度偿还本金和利息)还款a 元,1年还清,其中月利率为0.5%,则小明每月还款数a= 元(精确到个位).(参考数据:1.00511≈1.056;1.00512≈1.062;1.00513≈1.067)1次还款a 元后,还欠本金及利息为6000(1+0.5%)-a 元, 第2次还款a 元后, 还欠本金及利息为:6000(1+0.5%)2-a (1+0.5%)-a 元, 第3次还款a 元后, 还欠本金及利息为:6000(1+0.5%)3-a (1+0.5%)2-a (1+0.5%)-a 元,以此类推,则第12次还款a 元后,还欠本金及利息为: 6000(1+0.5%)12-a (1+0.5%)11-…-a (1+0.5%)-a 元,此时已全部还清,则6000(1+0.5%)12-a (1+0.5%)11-…-a (1+0.5%)-a=0, 即6000(1+0.5%)12=a [1-(1+0.5%)12]1-(1+0.5%),解得a=6000×0.005×1.005121.00512-1≈30×1.0620.062≈514元.6.(2020湖北武汉高二期末)某学习软件以数学知识为题目设置了一项闯关游戏,共有15关,每过一关可以得到一定的积分,现有三种积分方案供闯关者选择.方案一,每闯过一关均可获得40积分;方案二,闯过第一关可获得5积分,后面每关的积分都比前一关多5;方案三,闯过第一关可获得0.5积分,后面每关的积分都是前一关积分的2倍.若某关闯关失败则停止游戏,最终积分为闯过的各关的积分之和.设三种方案闯过n (1≤n ≤15,且n ∈N +)关后的积分之和分别为A n ,B n ,C n ,要求闯关者在开始前要选择积分方案. (1)求出A n ,B n ,C n 的表达式;(2)如果你是一个闯关者,为获得尽量多的积分,这几种积分方案该如何选择?小明通过试验后觉得自己至少能闯过12关,他应该选择第几种积分方案?按方案一闯过各关所得积分构成常数数列,故A n =40n ;按方案二闯过各关所得积分构成首项为5,公差为5的等差数列,故B n =5n+n (n -1)2×5=5n 2+5n2;按方案三闯过各关所得积分构成首项为12,公比为2的等比数列,故C n =12(1-2n )1-2=12(2n -1).(2)令A n >B n ,即40n>5n 2+5n2,解得0<n<15,而当n=15时,A n =B n ,又因为n ≤15且n ∈N +,故A n ≥B n 恒成立, 故方案二不予考虑.令A n >C n ,即40n>12(2n -1),解得0<n<10,故当0<n<10时,A n >C n ;当10≤n ≤15,A n <C n , 故当能闯过的关数小于10时,应选择方案一; 当能闯过的关数大于等于10时,应选择方案三. 小明应该选择方案三.素养培优练黄河被称为我国的母亲河,黄河因携带大量泥沙所以河水呈现黄色.黄河的水源来自青藏高原,上游的1 000 公里的河水是非常清澈的,只是中游流经黄土高原,又有太多携带有大量泥沙的河流汇入才造成黄河的河水逐渐变得浑浊.在刘家峡水库附近,清澈的黄河和携带大量泥沙的洮河汇合,在两条河流的交汇处,水的颜色一清一浊,互不交融,泾渭分明,形成了一条奇特的水中分界线.设黄河和洮河在汛期的水流量均为2 000 m3/s,黄河水的含沙量为2 kg/m3,洮河水的含沙量为20 kg/m3,假设从交汇处开始沿岸设有若干个观测点,两股河水在流经相邻的观测点的过程中,其混合效果相当于两股河水在1秒内交换1 000 m3的水量,即从洮河流入黄河1 000 m3的水混合后,又从黄河流入1 000 m3的水到洮河再混合.(1)求经过第二个观测点时,两股河水的含沙量;,两股河水的含沙量之差小于0.01 kg/m3?(不考虑泥沙沉淀)用a n,b n分别表示河流在经过第n个观测点时,洮河水和黄河水的含沙量,则a1=20,b1=2.由题意可知,b2=1000a1+2000b12000+1000=13a1+23b1=8,a2=1000b2+1000a12000=12a1+12b2=14,即经过第二个观测点时,洮河水的含沙量为14kg/m3,黄河水的含沙量为8kg/m3.(2)由题意,可知b n=1000a n-1+2000b n-12000+1000=13a n-1+23b n-1(n≥2,n∈N+),a n=1000b n+1000a n-12000=12a n-1+12b n=23a n-1+13b n-1(n≥2,n∈N+),河水中含沙量之差可考虑数列{a n-b n},由上式可知,a n-b n=13(a n-1-b n-1)(n≥2,n∈N+),a1-b1=18,所以数列{a n-b n}是以18为首项,13为公比的等比数列,则a n-b n=18×13n-1,令18×13n-1<0.01,则3n-1>1800,n≥8,即从第8个观测点开始,两股河水的含沙量之差小于0.01kg/m3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 留数定理习题及其解答5.1设有ΛΛΛΛ++++++++=+-1212221111)(n nn n z z z z z z f ,能否说0=z 为)(z f 本性奇点?为什么?答:这个级数由两部分组成:即∑∑∞=∞=+-+1012n n n n nz z。
第一个级数当11<z 即1>z 时收敛,第二个级数当12<z即2<z 时收敛。
于是所给级数在环域21<<z 内收敛(成立),且和函数2111112()11232112z f z z z z z z z -=+=+=---+--。
显然0z =是()f z 的解析点。
可见此级数并非在0z =的去心领域内成立。
故不能由其含无限多个负幂项断定0z =的性质。
注: 此例说明,判断孤立奇点0z 类型虽可从()f z 的Laurent 展开式含有负幂项的情况入手,但切不可忘掉必须是在去心领域内的Laurent 展式,否则与0z 是什么性质的点没有关系。
5.2 设()f z 在全平面解析,证明:若∞为()f z 的可去奇点,则必有0()f z a ≡(常数);若∞为()f z 的m 级极点,则()f z 必为m 次多项式:01(),0k k k f z a a z a z a =+++≠L ;除此之外,()f z 在00z =处的Taylor 展式必有无限多项系数0≠。
证: 因为()f z 在全平面解析,所以()f z 在00z =邻域内Taylor 展式为01()k k f z a a z a z =++++L L 且z <+∞。
注意到这Taylor 级数也是()f z 在∞去心邻域内的Taylor 级数。
所以,当∞在()f z 的可去奇点<═>()f z 在∞去心邻域内Laurent 展示无z 的正幂项,即120a a ===L 。
故0()f z a ≡(常数);当∞为()f z 的m 级极点⇔()f z 在∞去心邻域内Laurent 展示中只含有限个z 的正幂项,且最高正幂为m 次(0m a ≠)。
1011() (0),0,()m mm m m n f z a a z a z a z a a n m --=++++≠=>L 即()f z 为m 次多项式;除去上述两种情况, ∞为()f z 的本性奇点⇔()f z 在∞去心邻域内Laurent 展开式中含有无限多个正幂项,因此在() z n n n f z a z ∞==<+∞∑中,有无限多个项的系数不为0。
注 (1). 对本题的结论,一定要注意成立的条件为()f z 在全面解析,否则结论不成立。
例:1()f z z =在0z <<+∞内解析(与全平面解析仅差一个点!),且以∞为可去奇点,但();f z ≠常数又1()zf z z e =+在0z <<+∞内解析,且以z =∞为一级极点,但它并不是一次多项式,也不可能与任何一次多项式等价(它以z =0为本性奇点)。
同样地,1()sin f z z z =+在0z <<+∞内解析,以∞为本性奇点,但它不是超越整函数,(它不是整函数);(2). 本题证明完全依赖于无穷远点性态的分类定义,同时注意,全平面解析的函数在00z =邻域内Taylor 展示的收敛半径R= +∞,从而此Taylor 展示成立的区域z <+∞恰是∞的去心领域,即同一展示对∞而言即是其去心领域内的Laurent 展式。
5.3 证明:如果0z 为解析函数()f z 的m 阶零点,则0z 必为()f z '的1m -阶零点。
(m >1)证 因为()f z 在0z 点解析,且0z 为其m 阶零点。
故()f z 在0z 的邻域内Taylor 展式为11010()()() m m m m f z C z z C z z -++=-+-+L 其中00. .m C z z R ≠-<由Taylor 级数在收敛圆内可逐项微分性质有'1010()()(1)() m m m m f z C m z z C m z z -+=-++-+L 0 .z z R -<0 0 m m C C m ≠∴≠Q右端即为'()f z 在0z z R -<内的Taylor 展开式,由解析函数零点定义知,'()f z 以0z 为1m -阶零点。
注 本证明仅用到解析函数零点定义及幂级数在收敛圆内可逐项求导的性质. 5.4 判断下列函数在无穷远点的性态1)1z z +2)21sin z z + 3)1z z e - 4)1sin cos z z + 解 1) 因为1()f z z z =+在0z <<+∞内解析,且所给形式即为它在该环域内的Laurent 展式,所以∞为()f z 的一级极点(0z =为一级极点).2) 因为21sin z z +在0z <<+∞内解析,且在此环域内有 21111(1)3521sin 23!5!(21)!n n z z z z Z n z z -++=+-++++L L即在∞的去心邻域里的Laurent 展式中含有无限多个z 的正幂项,故∞为21sin z z +的本性奇点(0为二级极点)。
3) 因为11()z z zze f z ee -==ze 在0z =处解析,1ze 以0z =为本性奇点。
在()f z 中令1z ξ=,得1()()f ϕξξ=。
0ξ=为1()()f ϕξξ=的本性奇点,即z =∞为()f z 的本性奇点。
4)1()sin cos f z z z =+令sin cos 0z z +=,得2i ze i =-,即2 22(0,1,2)i i k i zeek ππ-+==±±L 。
∴(0,1,2)4k z k k ππ=-+=±±L 为sin cos z z +的零点,且∵'[sin cos ]cos sin 1)0 (0,1,2)k kz k k z z z z k +=--≠=±±L ∴4k z k ππ=-+为1()sin cos f z z z =+的一级极点。
且 k k z →∞−−−→∞,故,∞为()f z 的非孤立奇点。
注 当∞为孤立奇点时,一般直接从函数在∞的去心邻域内的Laurent 展示入手,判断其类型,但对3),因()f z 有一定的特性11(()()f z f z =,故可利用这一特性进行判断。
5.5 .求出下列函数的奇点,并对孤立奇点指出类型。
1)12z ze z +2)231z e z - 3)1cos z z + 4)z e 5)11cos z 6)33sin (1)z z z e - (答 1)0,∞均为本性奇点;2)0为一级极点,∞为本性奇点;3)0为一级极点,∞为本性奇点;4)∞为唯一奇点,且为本性奇点;5)0为非独立奇点,1 (0,1,2)2k z k k ππ==±±+L 为一级极点,∞为可去奇点;6)0为可去奇点,∞为本性奇点)。
5.6 计算下列各函数在指定点的留数:1) 3,(1)(1)zz z ±∞-+在z=1,处.2) 241ze z -,在0,z =∞处。
解 1) 因为1z =为()f z 的一级极点,故由留数计算规则有331Re ,1lim (1)(1)(1)8z z s z z z ⎡⎤==⎢⎥-++⎣⎦对∞,由留数计算规则有33Re ,Re ,00(1)(1)(1)(1)z zs s z z z z ⎡⎤⎡⎤∞=-=⎢⎥⎢⎥-+-+⎣⎦⎣⎦又 ()f z 在扩充复平面内仅有孤立奇点,故留数和为0,于是可得31Re ,1(1)(1)8z s z z ⎡⎤-=-⎢⎥-+⎣⎦ 2) 241()ze f z z -=,由留数定义,[]Re (),0s f z 等于2(1)z e -在0z =处Taylor 展式中3z 项的系数。
232(2)(2)11122!3!zz z e z ⎡⎤-=-++++⎢⎥⎣⎦L 23(2)(2)2 z 2!3!z z z =----<+∞L有34,3a =- ∴ 2414Re ,03ze s z ⎡⎤-=-⎢⎥⎣⎦ 注意 ()f z 于扩充复平面内仅有两个奇点,其留数和为0,故2414Re ,3z e s z ⎡⎤-∞=⎢⎥⎣⎦。
5.7 计算下列函数在0,z =∞处的留数1)1cosz ;2) 在1sin ,0,().m z z m z =∞在处为自然数解1)1()cosf z z =在扩充平面仅有两个奇点。
注意cos ξ在ξ<+∞内Taylor 展式中只有偶次项。
故1()cosf z z =在0z <<+∞内Laurent 展式中无1z -项,即[]Re (),00s f z =。
且环域0z <<+∞也是∞的去心邻域。
故上述展式也是∞处的Laurent 展式。
因此[]Re (),0s f z ∞=2)1()sinm f z z z =, m 为自然数。
由留数定义知,[]Re (),0s f z 等于1sin z 在0z <<+∞内Lauernt 展式中(1)m z -+的系数。
注意在该环域有1111(1)1sin 3213!(21)!n n z z n z Z -=-+++++L L0, 1Res sin ,0(-1), 2 (0,1,2,)(21)!m nm z z m n n n ⎧⎪⎡⎤=⎨⎢⎥==⎣⎦⎪+⎩L 当为奇数时当5.8 计算20i e e d θπθ⎰【答案 2]π5.9 .求下列函数在指定点的留数1)11cos z 在∞点。
2)1cos z z +在∞点。
3)33sin (1)z z z e -在∞点。
(答:1)1;2)-1;3)0;)5.10 计算函数1, (,),,()()mm z z αβαβαβ≠∞-+为自然数在,处的留数。
【解】 11()() (),)()()()mmz f z m z z z ααβαββ-==≠-++为自然数∵ z β=为()f z 的一级极点,(αβ≠)∴[]1Re (),()m s f z ββα=-为求[]Re (),s f z α,注意m 为自然数,只要求1z β-在α点邻域Taylor 展式中1()m z α--的系数1m a -即可∵101111()()1nn z z z ααββαβαβα∞+-=⋅=-------∑∴11()m m a βα--=-,故[]1Re (),()m s f z αβα-=- 又由()f z 于扩充复平面仅有奇点,,αβ∞,故[][][]Re (),Re (),Re (),0s f z s f z s f z αβ∞=--=5.11 计算下列积分1)11d , 5,4,-5,-2,sin k z z k k z z ===⎰Ñ2)321d , 2,2,5sin k z z k z z π==-⎰Ñ解 1)因为积分路径1z =位于环域0z π<<内,且围绕0z =,简单、正向、闭,1sin z在该环域内解析,故可知所求积分为111d 2sin k k z z ia z z π-==⎰Ñ其中1k a -为1sin z 在环域0z π<<内Lauernt 展式1k z -项的系数。