北师大版数学八年级上册 轴对称解答题检测题(WORD版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版数学八年级上册 轴对称解答题检测题(WORD 版含答案)
一、八年级数学 轴对称解答题压轴题(难)
1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).
(1)∠A=______度;
(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;
(3)当△APQ 为等边三角形时,直接写出t 的值.
【答案】(1)60;(2)
103或203;(3)5或20 【解析】
【分析】
(1)根据等边三角形的性质即可解答;
(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;
(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.
【详解】
解:(1)60°.
(2)∵∠A=60°,
当∠APQ=90°时,∠AQP=90°-60°=30°.
∴QA=2PA .
即2022 2.t t -=⨯
解得 10.3
t = 当∠AQP=90°时,∠APQ=90°-60°=30°.
∴PA=2QA .
即2(202)2.t t -=
解得 20.3
t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为
102033或. (3)①由题意得:AP=2t ,AQ=20-2t
∴当AQ=AP时,△APQ为等边三角形
∴2t=20-2t,解得t=5
②当P于B重合,Q与C重合,则所用时间为:4÷2=20
综上,当△APQ为等边三角形时,t=5或20.
【点睛】
本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.
2.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相
交于点 F,且∠CAD=1
2
∠ABE.
(1)求证:BF=AC;
(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;
(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.
【答案】(1)答案见详解;(2)45°,(3)4.
【解析】
【分析】
(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;
(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:
∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;
(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.
【详解】
(1)设∠CAD=x,
∵∠CAD=1
2
∠ABE,∠BAC=90º,
∴∠ABE=2x,∠BAF=90°-x,
∵∠ABE+∠BAF+∠AFB=180°,
∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,
∴BF=AB;
∵AB=AC,
(2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,
∴∠AEB=90°-2x ,
∵EF =EC ,
∴∠EFC=∠ECF ,
∵∠EFC+∠ECF=∠AEB=90°-2x ,
∴∠EFC=(90°-2x )÷2=45°-x ,
∵BF =AB ,
∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,
∴∠EFD=∠BFA=90°-x ,
∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;
(3)由(2)可知:EF =EC ,
∴设EF =EC =x ,则AC=AE+EC=3+x ,
∴AB=BF=AC=3+x ,
∴BE=BF+EF=3+x+x=3+2x ,
∵∠BAC =90º,
∴222AB AE BE +=,
∴222
(3)3(32)x x ++=+,
解得:11x =,23x =-(不合题意,舍去)
∴BF=3+x=3+1=4.
【点睛】
本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.
3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.
理解:
(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;
(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;
在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);
应用:
(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.