北师大版数学八年级上册 轴对称解答题检测题(WORD版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级上册 轴对称解答题检测题(WORD 版含答案)

一、八年级数学 轴对称解答题压轴题(难)

1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).

(1)∠A=______度;

(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;

(3)当△APQ 为等边三角形时,直接写出t 的值.

【答案】(1)60;(2)

103或203;(3)5或20 【解析】

【分析】

(1)根据等边三角形的性质即可解答;

(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;

(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.

【详解】

解:(1)60°.

(2)∵∠A=60°,

当∠APQ=90°时,∠AQP=90°-60°=30°.

∴QA=2PA .

即2022 2.t t -=⨯

解得 10.3

t = 当∠AQP=90°时,∠APQ=90°-60°=30°.

∴PA=2QA .

即2(202)2.t t -=

解得 20.3

t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为

102033或. (3)①由题意得:AP=2t ,AQ=20-2t

∴当AQ=AP时,△APQ为等边三角形

∴2t=20-2t,解得t=5

②当P于B重合,Q与C重合,则所用时间为:4÷2=20

综上,当△APQ为等边三角形时,t=5或20.

【点睛】

本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.

2.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相

交于点 F,且∠CAD=1

2

∠ABE.

(1)求证:BF=AC;

(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;

(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.

【答案】(1)答案见详解;(2)45°,(3)4.

【解析】

【分析】

(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;

(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:

∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;

(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.

【详解】

(1)设∠CAD=x,

∵∠CAD=1

2

∠ABE,∠BAC=90º,

∴∠ABE=2x,∠BAF=90°-x,

∵∠ABE+∠BAF+∠AFB=180°,

∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,

∴BF=AB;

∵AB=AC,

(2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,

∴∠AEB=90°-2x ,

∵EF =EC ,

∴∠EFC=∠ECF ,

∵∠EFC+∠ECF=∠AEB=90°-2x ,

∴∠EFC=(90°-2x )÷2=45°-x ,

∵BF =AB ,

∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,

∴∠EFD=∠BFA=90°-x ,

∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;

(3)由(2)可知:EF =EC ,

∴设EF =EC =x ,则AC=AE+EC=3+x ,

∴AB=BF=AC=3+x ,

∴BE=BF+EF=3+x+x=3+2x ,

∵∠BAC =90º,

∴222AB AE BE +=,

∴222

(3)3(32)x x ++=+,

解得:11x =,23x =-(不合题意,舍去)

∴BF=3+x=3+1=4.

【点睛】

本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.

3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.

理解:

(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;

(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;

在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);

应用:

(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.

相关文档
最新文档