人教版初中数学圆的知识点总复习有答案
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.圆形铁片的半径是4cmB.四边形AOBC为正方形
C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2
【答案】C
【解析】
【分析】
【详解】
解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
A.22.5°B.30°C.45°D.60°
【答案】C
【解析】
【分析】
设圆心为 ,连接 ,如图,先证明 为等腰直角三角形得到 ,然后根据圆周角定理确定 的度数.
【详解】
解:设圆心为 ,连接 ,如图,
∵弦 的长度等于圆半径的 倍,
即 ,
∴ ,
∴ 为等腰直角三角形, ,
∴ °.
故选:C.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
A.1B. C. D.
【答案】D
【解析】
【分析】
根据三角形角平分线的交点是三角形的内心,得到 最小时, 为三角形 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.
【详解】
解: , 分别平分 和 ,交于 点,
为 的内心,
最小时, 为 的内切圆的半径,
过 作 垂足分别为
四边形 为正方形,
∴CD是△APB的中位线,
∴AB=2CD= ,
∵OH⊥AB,
∴BH=AH= ,
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
在Rt△AOH中,sin∠AOH= ,
∴AO= ,
∴扇形AOB的面积为: ,
故选:A.
【点睛】
本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到 上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF的中心 的距离都不相等, 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.
故选C.
∴BE= AB,DF= CD,
∴BE=DF,
又∵OB=OD,
∴由勾股定理可知OE=OF,
即A、B、C正确,D错误,
故选:D.
【点睛】
本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.
8.如图, 中, , 为 中点,且 , , 分别平分 和 ,交于 点,则 的最小值为().
6.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
∴MN=4.
故选:B.
【点睛】
此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
13.如图,点 在圆上,若弦 的长度等于圆半径的 倍,则 的度数是( ).
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
为 的中点,
由切线长定理得:
四边形 为正方形,
故选D.
【点睛】
本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.
9.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是( )
A. B. C. D.
人教版初中数学圆的知识点总复习有答案
一、选择题
1.“直角”在几何学中无处不在,下列作图作出的 不一定是直角的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据作图痕迹,分别探究各选项所做的几何图形问题可解.
【详解】
解:选项A中,做出了点A关于直线BC的对称点,则 是直角.
选项B中,AO为BC边上的高,则 是直角.
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图 中,点 到 上任意一点的距离都相等,故②正确;
③图 中,设圆的半径为r
∴勒洛三角形的周长=
圆的周长为
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.
【答案】D
【解析】
【分析】
由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD的值.
【详解】
∵AB是⊙O的直径,CD⊥AB,
∴弧AC=弧AD,
∴∠ABD=∠ABC.
根据勾股定理求得AB=5,
∴sin∠ABD=sin∠ABC= .
故选D.
【点睛】
此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
【详解】
连接EB、EC,如图,
∵点E为△ABC的内心,
∴EB平分∠ABC,EC平分∠ACB,
∴∠1=∠2,
∵MN∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴BM=ME,
同理可得NC=NE,
∵MN∥BC,
∴△AMN∽△ABC,
∴ ,即 ,则BM=7- MN①,
同理可得CN=5- MN②,
①+②得MN=12-2MN,
∵两个阴影的面积相等,
∴阴影面积= .
故选:C
【点睛】
本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.
3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()
③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;
12.如图,点 为 的内心,过点 作 交 于点 ,交 于点 ,若 , , ,则 的长为()
A.3.5B.4C.5D.5.5
【答案】B
【解析】
【分析】
连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以 ,则BM=7- MN①,同理可得CN=5- MN②,把两式相加得到MN的方程,然后解方程即可.
5.如图,在扇形 中, ,点 是弧 上的一个动点(不与点 、 重合), 、 分别是弦 , 的中点.若 ,则扇形 的面积为()
A. B. C. D.
【答案】A
【解析】
【分析】
如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【详解】
解:如图作OH⊥AB于H.
∵C、D分别是弦AP、BP的中点.
∴ 的长度为: =2π,故C错误;
S扇形OAB= =4π,故D正确.
故选C.
【点睛】
本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
4.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A. B. C. D.
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵O在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4 ,
∴S阴影=S扇形BCE−S扇形BOD−S△OCE
=
=
故选:A.
【点睛】
本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
14.如图,在菱形 中, , ,点 是这个菱形内部或边上的一点,若以点 , , 为顶点的三角形是等腰三角形,则 , ( , 两点不重合)两点间的最短距离为()
A. B. C. D.
【答案】D
【解析】
【分析】
分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.
选项D中, 是直径AB作对的圆周角,故 是直角.
故应选C
【点睛】
本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.
2.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为( )
A.12 B. πC. D. π
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
【详解】
解:在菱形ABCD中,
∵∠ABC=60°,AB=1,
∴△ABC,△ACD都是等边三角形,
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;
②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为
7.如图,弧AB等于弧CD, 于点 , 于点 ,下列结论中错误的是()
A.OE=OFB.AB=CDC.∠AOB=∠CODD.OE>OF
【答案】D
【解析】
【分析】
根据圆心角、弧、弦的关系可得B、C正确,根据垂径定理和勾股定理可得A正确,D错误.
【详解】
解:∵ ,
∴AB=CD,∠AOB=∠COD,
∵ , ,
【答案】C
【解析】
【分析】
易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.
【详解】
连接OE,OF.
∵BD=12,AD:AB=1:2,
∴AD=4 ,AB=8 ,∠ABD=30°,
∴S△ABD= ×4 ×12=24 ,S扇形=
C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2
【答案】C
【解析】
【分析】
【详解】
解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
A.22.5°B.30°C.45°D.60°
【答案】C
【解析】
【分析】
设圆心为 ,连接 ,如图,先证明 为等腰直角三角形得到 ,然后根据圆周角定理确定 的度数.
【详解】
解:设圆心为 ,连接 ,如图,
∵弦 的长度等于圆半径的 倍,
即 ,
∴ ,
∴ 为等腰直角三角形, ,
∴ °.
故选:C.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
A.1B. C. D.
【答案】D
【解析】
【分析】
根据三角形角平分线的交点是三角形的内心,得到 最小时, 为三角形 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.
【详解】
解: , 分别平分 和 ,交于 点,
为 的内心,
最小时, 为 的内切圆的半径,
过 作 垂足分别为
四边形 为正方形,
∴CD是△APB的中位线,
∴AB=2CD= ,
∵OH⊥AB,
∴BH=AH= ,
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
在Rt△AOH中,sin∠AOH= ,
∴AO= ,
∴扇形AOB的面积为: ,
故选:A.
【点睛】
本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A到 上任意一点的距离都是DE,故正确;
勒洛三角形上任意一点到等边三角形DEF的中心 的距离都不相等, 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3× ,圆的周长= ,故说法正确.
故选C.
∴BE= AB,DF= CD,
∴BE=DF,
又∵OB=OD,
∴由勾股定理可知OE=OF,
即A、B、C正确,D错误,
故选:D.
【点睛】
本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.
8.如图, 中, , 为 中点,且 , , 分别平分 和 ,交于 点,则 的最小值为().
6.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
∴MN=4.
故选:B.
【点睛】
此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
13.如图,点 在圆上,若弦 的长度等于圆半径的 倍,则 的度数是( ).
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
为 的中点,
由切线长定理得:
四边形 为正方形,
故选D.
【点睛】
本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.
9.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是( )
A. B. C. D.
人教版初中数学圆的知识点总复习有答案
一、选择题
1.“直角”在几何学中无处不在,下列作图作出的 不一定是直角的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据作图痕迹,分别探究各选项所做的几何图形问题可解.
【详解】
解:选项A中,做出了点A关于直线BC的对称点,则 是直角.
选项B中,AO为BC边上的高,则 是直角.
【详解】
①勒洛三角形不是中心对称图形,故①错误;
②图 中,点 到 上任意一点的距离都相等,故②正确;
③图 中,设圆的半径为r
∴勒洛三角形的周长=
圆的周长为
∴勒洛三角形的周长与圆的周长相等,故③正确;
④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误
故选B
【点睛】
本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.
【答案】D
【解析】
【分析】
由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD的值.
【详解】
∵AB是⊙O的直径,CD⊥AB,
∴弧AC=弧AD,
∴∠ABD=∠ABC.
根据勾股定理求得AB=5,
∴sin∠ABD=sin∠ABC= .
故选D.
【点睛】
此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
【详解】
连接EB、EC,如图,
∵点E为△ABC的内心,
∴EB平分∠ABC,EC平分∠ACB,
∴∠1=∠2,
∵MN∥BC,
∴∠2=∠3,
∴∠1=∠3,
∴BM=ME,
同理可得NC=NE,
∵MN∥BC,
∴△AMN∽△ABC,
∴ ,即 ,则BM=7- MN①,
同理可得CN=5- MN②,
①+②得MN=12-2MN,
∵两个阴影的面积相等,
∴阴影面积= .
故选:C
【点睛】
本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.
3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()
③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;
12.如图,点 为 的内心,过点 作 交 于点 ,交 于点 ,若 , , ,则 的长为()
A.3.5B.4C.5D.5.5
【答案】B
【解析】
【分析】
连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以 ,则BM=7- MN①,同理可得CN=5- MN②,把两式相加得到MN的方程,然后解方程即可.
5.如图,在扇形 中, ,点 是弧 上的一个动点(不与点 、 重合), 、 分别是弦 , 的中点.若 ,则扇形 的面积为()
A. B. C. D.
【答案】A
【解析】
【分析】
如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【详解】
解:如图作OH⊥AB于H.
∵C、D分别是弦AP、BP的中点.
∴ 的长度为: =2π,故C错误;
S扇形OAB= =4π,故D正确.
故选C.
【点睛】
本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
4.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A. B. C. D.
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵O在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4 ,
∴S阴影=S扇形BCE−S扇形BOD−S△OCE
=
=
故选:A.
【点睛】
本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.
10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
14.如图,在菱形 中, , ,点 是这个菱形内部或边上的一点,若以点 , , 为顶点的三角形是等腰三角形,则 , ( , 两点不重合)两点间的最短距离为()
A. B. C. D.
【答案】D
【解析】
【分析】
分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.
选项D中, 是直径AB作对的圆周角,故 是直角.
故应选C
【点睛】
本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.
2.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为( )
A.12 B. πC. D. π
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
【详解】
解:在菱形ABCD中,
∵∠ABC=60°,AB=1,
∴△ABC,△ACD都是等边三角形,
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;
②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为
7.如图,弧AB等于弧CD, 于点 , 于点 ,下列结论中错误的是()
A.OE=OFB.AB=CDC.∠AOB=∠CODD.OE>OF
【答案】D
【解析】
【分析】
根据圆心角、弧、弦的关系可得B、C正确,根据垂径定理和勾股定理可得A正确,D错误.
【详解】
解:∵ ,
∴AB=CD,∠AOB=∠COD,
∵ , ,
【答案】C
【解析】
【分析】
易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.
【详解】
连接OE,OF.
∵BD=12,AD:AB=1:2,
∴AD=4 ,AB=8 ,∠ABD=30°,
∴S△ABD= ×4 ×12=24 ,S扇形=