2018人教版重点初中数学教材重难点总结归纳

合集下载

2018年新人教版八年级数学下册知识点归纳总结(原创)

2018年新人教版八年级数学下册知识点归纳总结(原创)

初二数学(下)知识点二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式. 9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.几何概念一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,三角形中位线. 二 定理:中心对称的有关定理 ※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.如图:平行四边形、矩形、菱形、正方形的从属关系.平行四边形矩形菱形正方形。

人教版初中数学知识点重难点归纳整理

人教版初中数学知识点重难点归纳整理

分章節知識點歸納七年級上冊第一章 有理數1 正數和負數2 有理數3 有理數的加減法4 有理數的乘除法5 有理數的乘方詳細內容1.有理數:(1)凡能寫成)0p q ,p (p q≠为整数且形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a 不一定是負數,+a 也不一定是正數;π不是有理數;(2)有理數的分類: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)相反數的和為0 ⇔ a+b=0 ⇔ a 、b 互為相反數.4.絕對值:(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;(2) 絕對值可表示為:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;絕對值的問題經常分類討論;5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a ≠0,那麼a 的倒數是a 1;若ab=1⇔ a 、b 互為倒數;若ab=-1⇔ a 、b 互為負倒數.7. 有理數加法法則:(1)同號兩數相加,取相同的符號,並把絕對值相加;(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b )+c=a+(b+c ).9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b ).10 有理數乘法法則:(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;(2)任何數同零相乘都得零;(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.11 有理數乘法的運算律:(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不a.能做除數,无意义即13.有理數乘方的法則:(1)正數的任何次冪都是正數;(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-a n或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定義:(1)求相同因式積的運算,叫做乘方;(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位元的數,這種記數法叫科學記數法.16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位元數止,所有數字,都叫這個近似數的有效數字.18.混合運算法則:先乘方,後乘除,最後加減.第二章整式的加減1整式2整式的加減詳細內容1.單項式:在代數式中,若只含有乘法(包括乘方)運算。

人教初中数学教材重难点总结

人教初中数学教材重难点总结

2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习)一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。

但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。

2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。

由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。

只有基础扎实,解决问题才能得心应手,成绩才会提高。

二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

有一定难度。

如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

2018年初中数学知识点中考总复习总结归纳(人教版)

2018年初中数学知识点中考总复习总结归纳(人教版)

2018年初中数学知识点中考总复习总结归纳2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1) 开方开不尽的数,如 J 7,幼2等;n(2)有特定意义的数,如圆周率 n 或化简后含有 n 的数,如一+8 等;3(3 )有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如sin 60。

等第二章整式的加减考点一、整式的有关概念(3分)1、 代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、 单项式只含有数字与字母的积的代数式叫做单项式。

1注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如4丄a 2b ,这种 313 2表示就是错误的,应写成a 2b 。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如 35a 3b 2c 是6次单项式。

考点二、多项式(11分)1、 多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数 项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、 同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、 去括号法则(1)括号前是“ +”,把括号和它前面的“ +”号一起去掉,括号里各项都不变号。

第一章有理数考点一、实数的概念及分类 1、实数的分类 (3分)实数 正有理数 零 负有理数 正无理数负无理数-有限小数和无限循环小数-无限不循环小数(2 )括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

人教版初中教学数学的的知识总结点学习计划以及每章节重难点

人教版初中教学数学的的知识总结点学习计划以及每章节重难点

10精选文档人教新版初中数学知识点总结(全面最新)目录一、七年级数学(上)知识点1、有理数2、整式的加减3、一元一次方程4、图形的认识初步二、七年级数学(下)知识点5、订交线与平行线6、实数7、平面直角坐标系8、二元一次方程组9、不等式与不等式组、数据的采集、整理与描绘三、八年级数学(上)知识点、三角形、全等三角形、轴对称、整式的乘除与分解因式、分式四、八年级数学(下)知识点、二次根式、勾股定理、平行四边形、一次函数、数据的剖析五、九年级数学(上)知识点、一元二次方程、二次函数、旋转、圆、概率六、九年级数学(下)知识点、反比率函数、相像、锐角三角函数、投影与视图.精选文档七年级数学(上)知识点 第一章 有理数 一.知识框架二.知识观点 1.有理数:(1)凡能写成q0)形式的数,都是有理数.(p,q 为整数且pp正有理数正整数正整数整数 零正分数(2)有理数的分类:负整数 ①有理数零②有理数负有理数负整数 分数正分数负分数负分数注意:0即不是正数,也不是负数;-a 不必定是负数, +a 也不必定是正数; 不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线 . 3.相反数:(1)只有符号不一样的两个数,互为相反数,即 a 和-a 互为相反数; 0的相反数仍是 0;(2)a+b=0 a 、b 互为相反数. 4.绝对值:绝对值的意义是数轴上表示某数的点走开原点的距离;a (a 0)a(a 0)a(a 0) (2)a0 (a0) 或a或 a a(a;a (a0)a (a0)0)正数的绝对值是其自己, 0的绝对值是 0,负数的绝对值是它的相反数;.精选文档绝对值的问题常常分类议论,零既能够和正数一组也能够和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右侧的数总比左侧的数大;大数-小数>0,小数-大数<0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;1;若a≠0,那么a的倒数是a若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.有理数加法法例:1)同号两数相加,取同样的符号,并把绝对值相加;2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数与0相加,仍得这个数.8.有理数加法的运算律:1)加法的互换律:a+b=b+a;2)加法的联合律:(a+b)+c=a+(b+c).9.有理数减法法例:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法例:1)两数相乘,同号为正,异号为负,并把绝对值相乘;2)任何数同零相乘都得零;3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11有理数乘法的运算律:1)乘法的互换律:ab=ba;2)乘法的联合律:(ab)c=a(bc);3)乘法的分派律:a(b+c)=ab+ac..有理数除法法例:除以一个数等于乘以这个数的倒数;a注意:零不可以做除数,即无心义..乘方的定义:1)求同样因式积的运算,叫做乘方;2)乘方中,同样的因式叫做底数,同样因式的个数叫做指数,乘方的结果叫做幂;.有理数乘方的法例:1)正数的任何次幂都是正数;2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n为正偶数时:(-a)n=a n或(a-b)n=(b-a)n..精选文档15.科学记数法:把一个大于10的数记成a×10n的形式,(此中1 a 10)这类记数法叫科学记数法.16.近似数的精准位:一个近似数,四舍五入到那一位,就说这个近似数的精准到那一位.17.有效数字:从左侧第一个不为零的数字起,到精准的位数止,全部数字,都叫这个近似数的有效数字.18.混淆运算法例:先乘方,后乘除,最后加减.本章内容要修业生正确认识有理数的观点,在本质生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教出版2018年度七年级上数学情况总结复习资料提纲

人教出版2018年度七年级上数学情况总结复习资料提纲

2018年七年级上册数学总结复习提纲第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

有理数分类:两种分类方法:正整数正整数整数零正有理数a、有理数负整数b、有理数正分数(按定义分类)(按符号分类)零正分数负整数分数负有理数负分数负分数2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

2018人教版 初中数学知识点总结

2018人教版 初中数学知识点总结

初中数学知识点总结七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第一章相交线与平行线 (6)第二章平面直角坐标系 (7)第三章三角形 (7)第四章二元一次方程组 (8)第五章不等式与不等式组 (9)第六章数据的收集、整理与描述 (10)八年级数学(上)知识点 (11)第一章全等三角形 (11)第二章轴对称 (11)第三章实数 (12)第四章一次函数 (13)第五章整式的乘除与分解因式 (13)八年级数学(下)知识点 (15)第一章分式 (15)第二章反比例函数 (16)第三章勾股定理 (16)第四章四边形 (17)第五章数据的分析 (18)九年级数学(上)知识点 (19)第一章二次根式 (19)第二章一元二次根式 (19)第三章旋转 (20)第四章圆 (21)第五章概率 (22)九年级数学(下)知识点 (23)第一章二次函数 (23)第二章相似 (24)第三章锐角三角函数 (25)第四章投影与视图 (26)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:)0a (a )0a (0)0a (a a或)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a1;若ab=1a 、b 互为倒数;若ab=-1a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n, 当n 为正偶数时: (-a)n=an或(a-b)n =(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a310n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

2018初中数学知识点全总结(齐全)

2018初中数学知识点全总结(齐全)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

2018年初中数学知识点总结

2018年初中数学知识点总结

2018年初中数学知识点总结2018年初中数学知识点总结大全一、基本知识1.数与代数A。

数与式1.有理数有理数包括整数和分数。

整数可以是正整数、0或负整数,而分数可以是正分数或负分数。

我们可以用数轴上的点来表示任何一个有理数。

如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

正数大于负数。

绝对值是一个数所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.两个负数比较大小,绝对值大的反而小。

有理数的加、减、乘、除运算规则与我们平常所用的一样。

2.实数实数包括有理数和无理数。

无理数是指无限不循环小数,如圆周率π。

平方根和立方根是两种常见的无理数。

实数可以在数轴上的一个点来表示。

3.代数式代数式可以是单独一个数或一个字母,也可以是由数和字母组成的式子。

㈡、函数函数是一种特殊的关系,它把自变量的值映射到因变量的值。

函数可以用函数图像、函数表、函数式等形式表示。

二、初中数学重点1.数学语言和符号数学语言和符号是数学中非常重要的一部分,它们可以帮助我们更准确地表达数学概念和思想。

2.代数代数是数学中的一个重要分支,它研究的是数和字母之间的关系。

代数中常见的概念包括代数式、方程、不等式等。

3.几何几何是数学中的另一个重要分支,它研究的是空间和形状。

几何中常见的概念包括点、线、面、角、三角形、四边形等。

4.数据分析数据分析是数学中的一个实际应用分支,它研究的是如何收集、处理和分析数据。

数据分析中常见的概念包括平均数、中位数、众数、方差、标准差等。

5.概率论概率论是数学中的一个分支,它研究的是随机事件的概率。

概率论中常见的概念包括事件、样本空间、概率、条件概率、独立事件等。

三、数学研究方法1.掌握基本概念和基本方法数学研究的第一步是掌握基本概念和基本方法。

只有掌握了这些基础知识,才能更好地理解和应用更高级的数学知识。

2018初中数学知识点中考总复习总结归纳[人版]

2018初中数学知识点中考总复习总结归纳[人版]

2018年初中数学知识点中考总复习总结归纳第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

2018人教版初中数学教材重难点总结

2018人教版初中数学教材重难点总结

2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习) 一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。

但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。

2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。

由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。

只有基础扎实,解决问题才能得心应手,成绩才会提高。

二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

有一定难度。

如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

2018年初中数学知识点总结

2018年初中数学知识点总结

2018年初中数学知识点总结大全一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

2018人教版重点初中数学教材重难点总结归纳

2018人教版重点初中数学教材重难点总结归纳

精心整理2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习)1、2、才会提高。

二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

有一定难度。

如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2它3问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。

4、三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

因为几何思维更灵活,定理、定义及辅助线的添加往往都是解决问题的关键,这就要求学生的思维更灵活,能多维度的思考问题,形成自己的解题思路和方法。

也只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,压轴5重点也是难点。

三、各年级教材知识重难点分析七年级教材重难点分析年级教材重难点分析九年级教材重难点分析型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。

以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是策略:1、狠抓基础,循序渐进。

2018年初中数学知识点中考总复习总结归纳(人教版)

2018年初中数学知识点中考总复习总结归纳(人教版)

***2018年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,等;3232(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001⋯等;(4)某些三角函数,如sin60o 等o等π3+8等;第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

12注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如a b4,这种3132表示就是错误的,应写成a b3。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如325a b c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则第2页整式的加减法:(1)去括号;(2)合并同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理分章节知识点归纳七年级上册第一章 有理数 1 正数和负数 2 有理数 3 有理数的加减法 4 有理数的乘除法 5 有理数的乘方详细内容1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减 1 整式 2 整式的加减详细内容1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

初中数学重难点知识汇总(人教版)

初中数学重难点知识汇总(人教版)

初一数学重难点总结第一章 有理数考点归纳考试内容考点要求数轴用数轴上的点表示有理数☆ 知道实数与数轴上的点一一对应相反数具有相反意义的量,会求实数的相反数☆ 相反数的性质倒数倒数的意义和性质☆ 绝对值绝对值的意义,求实数的绝对值☆☆利用绝对值的知识解决简单的化简问题和计算问题近似数、有效数字和科学记数法近似数和有效数字的概念☆☆用科学记数法表示数;在解决实际问题中,能按问题的要求对结果取近似值注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第2章 整式的加减考点归纳考试内容考点要求整式整式的有关概念:代数式,单项式☆ 多项式多项式,同类项有关概念,整式的运算法则☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第3章 一元一次方程考点归纳 考试内容考点要求方程 方程是刻画现实世界数量关系的一个数学模型☆根据具体问题中的数量关系列出方程方程的解方程的解的概念☆有方程的解求方程中待定系数的值一元一次方程一元一次方程的概念☆☆一元一次方程的解法运用一元一次方程解决简单的实际问题注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第4章 几何图形初步注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第5章 相交线与平行线考点归纳考试内容考点要求相交线对顶角、互补、互余☆垂线、点到直线的距离做已知直线的垂线平行线平行线的性质☆☆平行线间的距离平行线的判定图形的平移平移的概念及性质☆ 简单图形的平移及平移的应用☆ 注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第6章 实数考点归纳考试内容考点要求实数根据要求用有理数估计一个无理数的大致范围☆平方根、算术平方根、立方根平方根、算术平方根及立方根的概念☆☆ 求某些非负数的平方根、立方根用科学记数法表示数;在解决实际问题中,能按问题的要求对结果取近似值注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求直线,射线和线段几何图形☆ 点线面体☆ 直线,射线,线段的概念与性质☆角角的相关概念☆角的表示角的性质☆角的平分线及其性质☆☆第7章平面直角坐标系考点归纳考试内容考点要求平面直角坐标系的有关概念坐标平面内点的坐标特征的运用☆关于坐标轴、原点对称的点的坐标的特征☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第8章二元一次方程组考点归纳考试内容考点要求二元一次方程组二元一次方程组的有关概念☆☆代入消元法、加减消元法的意义选择适当的方法解二元一次方程组运用二元一次方程组解决简单的实际问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第9章不等式与不等式(组)考点归纳考试内容考点要求不等式(组)不等式的意义☆根据具体问题中的数量关系列出不等式(组)不等式的性质不等式的基本性质☆利用不等式的基本性质比较两个实数的大小解一元一次不等式(组)一元一次不等式(组)的解的意义,在数轴上表示或判定其解集☆☆解一元一次不等式和由两个一元一次不等式组成的不等式组☆☆根据具体问题中的数量关系,用一元一次不等式解决简单问题☆☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第10章数据的收集、整理和描述考点归纳考试内容考点要求数据的收集、整理和描述总体、个体、样本、样本容量的概念☆全面调查、抽样调查的概念频数、频率、组距的概念☆☆☆频率分布直方图,圆状图,折线图,条形图注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初二数学重难点总结第11章三角形考点归纳考试内容目标要求三角形的相关概念和性质三角形的稳定性、角平分线、中线、高、中位线的定义及性质☆☆与三角形相关的角☆☆多边形及其内角和☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第12章全等三角形考点归纳考试内容考点要求全等三角形的性质全等三角形对应边相等、对应角相等☆☆全等三角形的判定一般三角形:SAS,ASA,AAS,SSS ☆☆☆直角三角形:SAS,ASA,AAS,SSS,HL ☆☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第13章 轴对称考点归纳考试内容目标要求图形的轴对称轴对称的概念及性质☆☆☆ 基本图形的对成性及轴对称的应用中心对称、中心对称图形中心对称、中心对称图形☆☆ 等腰三角形等腰三角形有关概念、性质和判定☆☆☆ 等边三角形有关概念、性质和判定☆☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第14章 整式的乘法与因式分解考点归纳考试内容考点要求整式整式的有关概念☆整数指数幂整数指数幂的意义和基本性质整式加、减、乘法运算整式加、减、乘法运算的法则☆☆会进行简单的整式加、减、乘法运算乘法公式平方差公式、完全平方公式的几何背景☆☆平方差公式、完全平方公式用平方差公式、完全平方公式进行简单计算因式分解因式分解的意义及其与整式乘法之间的关系☆☆用提公因式法、公式法进行因式分解注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第15章 分式注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求分式的概念分式的概念☆确定分式有意义的条件☆ 确定分式的值为零的条件☆ 分式的性质分式的基本性质☆☆约分和通分分式的运算分式的加、减、乘、除运算法则☆☆ 简单的分式加、减、乘、除运算,用恰当方法解决与分式有关的问题第16章 二次根式考点归纳考试内容考点要求二次根式二次根式的概念与性质☆☆ 二次根式运算法则☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第17章 勾股定理考点归纳考试内容考点要求勾股定理直角三角形的概念、性质和判定☆ 勾股定理和其逆定理☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第18章 平行四边形矩形矩形的概念,性质☆☆ 矩形的判定☆☆ 菱形菱形的概念、性质☆☆ 菱形的判定☆☆ 正方形正方形具有矩形和菱形的性质☆☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求平行四边形平行四边形的概念、性质和判定☆☆☆第19章一次函数考点归纳考试内容考点要求一次函数(正比例函数)的概念对一次函数(正比例函数)概念的理解☆根据已知条件用待定系数法确定函数解析式☆☆一次函数(正比例函数)的图象与性质画一次函数图象并能根据图像解决相关的问题☆根据自变量的变化判断函数值的增减情况☆☆一次函数(正比例函数)与一元一次方程、一元一次不等式之间的关系由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标☆☆☆一次函数(正比例函数)的应用问题与一次函数有关的应用问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第20章数据的分析考点归纳考试内容考点要求数据的处理求一组数据的平均数(包括加权平均数)、众数、中位数、极差与方差☆☆用样本的平均数、方差来估计总体的平均数与方差根据具体问题,选择合适的统计量表示数据的集中程度或离散程度根据统计做出合理的判断和预测利用频数解决简单的实际问题注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初三数学重难点总结第21章一元二次方程考点归纳考试内容考点要求一元二次方程一元二次方程的概念☆一元二次方程的解法☆☆用一元二次方程根的判别式判断根的情况☆用一元二次方程解决简单的实际问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第22章二次函数的图象及性质考点归纳考试内容目标要求二次函数的概念用配方法把抛物线的解析式化为顶点式的形式☆确定二次函数函数解析式☆☆☆二次函数的图象与性质据抛物线确定的a、b、c、的符号;根据公式确定抛物线的顶点,开口方向和对称轴☆☆根据自变量的变化判断二次函数值的增减情况☆二次函数图象的平移☆☆二次函数与一元二次方程、一元二次不等式的联系根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集☆☆二次函数的应用利用二次函数解决简单的实际问题☆☆☆与二次函数有关的综合运用注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第23章旋转考点归纳考试内容考点要求图形的旋转旋转的概念及性质☆☆基本图形的旋转及旋转的应用注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第24章 圆考点归纳考试内容考点要求圆的有关概念和性质圆、弦、弧、圆心角、圆周角、同心圆、等圆的概念☆ 垂径定理及其推论的应用☆☆ 弧、弦、弦心距之间的关系圆心角、圆周角之间的关系☆☆ 圆周角定理☆ 与圆有关的位置关系点与圆的位置关系☆ 直线与圆的位置关系;切线的性质和判定☆☆☆ 弧长、扇形面积的计算求圆的周长、弧长及简单组合图形的周长☆ 求圆的面积、扇形的面积及简单组合图形的面积☆ 圆柱、圆锥的侧面展开图圆柱的侧面积和全面积的计算☆ 圆锥的侧面积和全面积的计算☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第25章 概率注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求事件不可能事件、必然事件和随机事件的定义☆概率概率的意义☆☆大量重复试验时,可以用频率估计概率运用列举法(包括列表、画树状图)计算简单事件发生的概率解决一些实际问题第26章反比例函数考点归纳考试内容考点要求反比例函数的概念对反比例函数概念的理解☆☆根据已知条件用待定系数法确定反比例函数解析式反比例函数的图象与性质会画反比例函数图象并能根据图象解决相关的问题☆☆根据自变量的变化判断反比例函数值的增减情况反比例函数遇一次函数的综合运用一次函数与反比例函数图象与性质的综合运用☆☆☆反比例函数的应用解决与反比例函数有关的应用型问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第27章相似三角形考点归纳考试内容考点要求成比例线段比例的基本性质,黄金分割☆图形的相似相似的概念及相似的判定☆☆相似的性质、多边形的相似比与周长比和面积比☆☆三角形的相似☆☆☆图形的位似位似的概念和性质☆利用位似放大或缩小图形☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第28章锐角三角函数和解直角三角形考点归纳考试内容考点要求锐角三角函数锐角三角函数的定义及其性质☆☆特殊锐角的三角函数值解直角三角形解直角三角形的概念☆☆直角三角形的边角关系解直角三角形的应用仰角、俯角、坡度☆☆☆用三角函数解决与直角三角形有关的实际问题注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初中数学重难点总结(人教版)第29章视图与投影考点归纳考试内容考点要求视图画基本几何的三视图、根据三视图描述实物☆基本几何的展开图☆投影中心投影和平行投影☆影子、视点、视角及盲区的概念注:☆表示了解,☆☆表示理解,☆☆☆表示掌握。

2018初中数学知识点全总结(齐全)

2018初中数学知识点全总结(齐全)

七年级数学〔上〕知识点人教版七年级数学上册主要包括了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识看法1.有理数:(1)凡能写成q(p, q为整数且 p0) 形式的数,都是有理数.正整数、 0、负整数统称整数;正分数、负分数统p称分数;整数和分数统称有理数.注意: 0 即不是正数,也不是负数;-a 不用然是负数, +a 也不用然是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类 :① 有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不相同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为 0a+b=0a、 b 互为相反数 .4.绝对值:(1)正数的绝对值是其自己, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点走开原点的距离;a(a0)a(a0)(2) 绝对值可表示为: a0(a0) 或a(a0) ;绝对值的问题经常分类谈论;aa(a0)5.有理数比大小:〔 1〕正数的绝对值越大,这个数越大;〔 2〕正数永远比0 大,负数永远比0 小;〔 3〕正数大于所有负数;〔 4〕两个负数比大小,绝对值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔 6〕大数 -小数> 0,小数 -大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;假设a≠ 0,那么a的倒数是1;假设ab=1a、ab 互为倒数;假设ab=-1a、 b 互为负倒数 .7.有理数加法法那么:(1〕同号两数相加,取相同的符号,并把绝对值相加;(2〕异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3〕一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:〔 1〕加法的交换律:a+b=b+a ;〔 2〕加法的结合律:〔a+b〕 +c=a+ 〔b+c〕 .9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔 -b〕 .10有理数乘法法那么:(1〕两数相乘,同号为正,异号为负,并把绝对值相乘;(2〕任何数同零相乘都得零;〔 3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11有理数乘法的运算律:(1〕乘法的交换律: ab=ba;〔 2〕乘法的结合律:〔 ab〕 c=a〔 bc〕;(3〕乘法的分配律: a〔b+c〕 =ab+ac .12.有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能够做除数,即a没心义 . 013.有理数乘方的法那么:〔 1〕正数的任何次幂都是正数;〔 2〕负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时 : (-a)n=-a n或 (a -b)n=-(b-a) n , 当 n 为正偶数时 : (-a)n =a n或 (a-b) n=(b-a) n .14.乘方的定义:(1〕求相同因式积的运算,叫做乘方;(2〕乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a× 10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法 .16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混杂运算法那么:先乘方,后乘除,最后加减.本章内容要修业生正确认识有理数的看法,在实质生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理2018人教版初中数学教材
重难点分析
(名师总结教材重点,绝对精品,建议大家下载学习)
1、
2、
才会提高。

二、初中数学中考知识重难点分析
1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。

特别是二次函数
是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

有一定难度。

如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2

3
问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。

4、三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

因为几何思维更灵活,定理、定义及辅助线的添加往往都是解决问题的关键,这就要求学生的思维更灵活,能多维度的思考问题,形成自己的解题思路和方法。

也只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,
压轴
5
重点也是难点。

三、各年级教材知识重难点分析
七年级教材重难点分析









九年级教材重难点
分析
型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。

以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是
策略:
1、狠抓基础,循序渐进。

立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升学生自信心。

等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。

能灵活运用知识点。

2、培养良好的学习习惯。

及时预习书本知识,然后带着问题去听课,提高课堂效率。

3
的增加,在学习方法上学生是很容易适应的。

特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学科(物理)也相应增加,学业加重,精力分散,有些学生有些力不从心,缺乏毅力的,就会慢慢掉队。

策略:
1、引导学生树立自己明确的目标,以增强学习的目的性、主动性。

2、从基础知识入手,增强学生学习的自信心,辅以学习方法上的指导,用简单、中等的题来训练自己的解题思路,思考“凭什么”从第一步走到第二步,它们之间的关联性、逻辑性是怎样的?从而真正形成自己的做题思维。

3
下降。

策略:
1、第一步要做好学生的思想工作,增强学生的自信心。

帮助学生从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强其学习的动力。

2、狠抓基础,循序渐进。

利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。

3、在学习的过程中,培养学生预习、带着问题上课、复习、积累、总结的习惯,让学生从“要学”变成“会学”,最后会“自学”。

不仅对现在很重要,对学生以。

相关文档
最新文档