一线三角模型及例题
专题 一线三等角模型
专题4一线三等角模型在直线AB 上有一点P,以A,B,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C,D.1.当点P 在线段AB 上,且∠3两边在AB 同侧时.(1)如图,若∠1为直角,则有△ACP∽△BPD.(2)如图,若∠1为锐角,则有△ACP∽△BPD.2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时.如图,则有△ACP∽△BPD.3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时.如图,则有△ACP∽△BPD.解题策略经典例题【例1】.(2022·全国·八年级课时练习)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,.E.求证:DE=BD+CE(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.【例2】.(2022·全国·八年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是____________;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB 的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【例3】.(2022·浙江绍兴·模拟预测)如图,△ABC中∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求CQ BP的值.培优训练一、解答题1.(2022·全国·八年级课时练习)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时.①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请写出等量关系,并予以证明.(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:________.2.(2022·江苏·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC 平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF 是等边三角形.3.(2022·全国·九年级专题练习)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为ACB=∠AED=90°,可得△ABC∽△DAE,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,AB=AC=10,BC=12,点P是BC边上的一个动点(不与B、C重合),点D是AC边上的一个动点,且∠APD=∠B.①求证:△ABP∽△PCD;②当点P为BC中点时,求CD的长;拓展:(3)在(2)的条件下如图2,当△APD为等腰三角形时,请直接写出BP的长.4.(2022·山东烟台·七年级期末)问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,易证:DE=______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为−2,0,点A的坐标为−6,3,请直接写出B点的坐标.5.(2021·浙江·义乌市绣湖中学教育集团八年级阶段练习)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线y=34x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若△APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.6.(2022·江苏·八年级专题练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD 上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)7.(2022·全国·八年级课时练习)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF 交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,则有S1S2(填“>、=、<”)8.(2021·北京·东北师范大学附属中学朝阳学校八年级期中)如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,①求证:∠EAC=∠BCF.②猜想EF、AE、BF的数量关系并证明.(2)将直线l绕点C顺时针旋转,使l与底边AB交于点D(D不与AB点重合),请你探究直线l,EF、AE、BF之间的关系.(直接写出)9.(2021·四川达州·九年级期中)模型探究:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:BE=CD;模型应用:(2)已知直线l1:y=2x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,如图2,求直线l2的函数表达式;(3)如图3,已知点A、B在直线y=12x+4上,且AB=42.若直线与y轴的交点为M,M为AB中点.试判断在x轴上是否存在一点C,使得△ABC是以AB为斜边的等腰直角三角形.10.(2022·全国·八年级课时练习)如图,线段AB=6,射线BG⊥AB,P为射线BG上一点,以AP为边做正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使得∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合),(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)△AEF的周长是否为定值,若是,请求出这个定值,若不是,请说明理由.11.(2022·全国·八年级课时练习)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDE=115°时,∠BAD=°,点D从B向C运动时,∠BAD逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BAD等于多少时,△ADE是等腰三角形.12.(2022·重庆江北·八年级期末)如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别在坐标轴的正半轴上.(1)如图1,若a、b满足(a−4)2+b−3=0,以B为直角顶点,AB为直角边在第一象限内作等腰直角△ABC,则点C的坐标是(________);(2)如图2,若a=b,点D是OA的延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰直角△BDE,连接AE,求证:∠ABD=∠AED;(3)如图3,设AB=c,∠ABO的平分线过点D2,−2,直接写出a−b+c的值.13.(2021·湖北·咸宁市第三初级中学八年级期中)如图,在等腰Rt△ABC中,∠ABC=90°,点A、B分别在x 轴、y轴上.(1)如图①,若点C的横坐标为5,求点B的坐标;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CD AM的值;(3)如图③,若点A的坐标为−4,0,点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限中作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴上移动时,PB的长度是否发生改变?若不变求PB的值;若变化,求PB的取值范围.14.(2022·江西·丰城九中七年级期末)综合与探究:在平面直角坐标系中,已知A(0,a),B(b,0)且a,b 满足(a﹣3)2+|a﹣2b﹣1|=0(1)求A,B两点的坐标(2)已知△ABC中AB=CB,∠ABC=90°,求C点的坐标(3)已知AB=10,试探究在x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.15.(2022·全国·八年级课时练习)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠EDC=°,∠DEC=°;点D从点B向点C运动时,∠BDA逐渐变.(填“大”或“小”)(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.16.(2021·北京·北师大实验中学九年级开学考试)在正方形ABCD中,点E在射线CB上(不与点B,C重合),连接DB,DE,过点E作EF⊥DE,并截取EF=DE(点D,F在BC同侧),连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②用等式表示线段BD,BE,BF之间的数量关系,并证明;(2)如图2,点E在CB边的延长线上,其他条件均不变,直接写出线段BD,BE,BF之间的数量关系.17.(2022·全国·八年级课时练习)在综合实践课上,李老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰△ABC纸片中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当∠BPC=100°时,α=______°;(2)当AP等于何值时,△APD≌△BCP?请说明理由;(3)在点P的滑动过程中,存在△PCD是等腰三角形吗?若存在,请求出夹角α的大小;若不存在,请说明理由.18.(2021·河南·舞阳县教研室八年级期中)如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中,点B坐标为(0,2),点C坐标为(6,0).(1)过点A作AD⊥x轴,求OD的长及点A的坐标;(2)连接OA,若Р为坐标平面内不同于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标;(3)已知OA=10,试探究在x轴上是否存在点Q,使△OAQ是以OA为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.19.(2021·山东·肥城市汶阳镇初级中学七年级阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB.E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,直接写出BE,EF,AF间的等量关系:__________.②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系,并对结论进行证明;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.20.(2022·全国·八年级课时练习)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.。
一线三等角典型例题
“ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东·德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.变式1 ( 2012 年烟台) ( 1) 问题探究如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK =∠ACD1.作D1M ⊥ KH,D2N ⊥ KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.( 2) 拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1= ∠BH2K2=∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.2 如图8,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形例1、在△ABC中,AB =2,∠B = 45°,以点A为直角顶点作等腰Rt△ADE,点D 在BC上,点E 在AC上,若CE=5,求CD的长。
专题 相似三角形一线三等角模型(学生版)
专题04相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.是边A.3B.5C.2D.1B (1)如图2,在53⨯个方格的纸上,小正方形的顶点为格点、边长均为1,AB 为端点在格点的已知线段.请用三种不...同连接格点.....的方法,作出以线段AB 为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt APC △中,90A ∠=,AC AP >,延长AP 至点B ,使AB AC =,作A ∠的等联角CPD ∠和PBD ∠.将APC △沿PC 折叠,使点A 落在点M 处,得到MPC ,再延长PM 交BD 的延长线于E ,连接CE 并延长交PD 的延例5.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.例6.(2023·浙江·九年级专题练习)在Rt ABC 中,90BAC ∠=︒,2AB AC ==,点D 在BC 所在的直线上运动,作45ADE ∠=︒(A 、D 、E 按逆时针方向).(1)如图,若点D 在线段BC 上运动,DE 交AC 于E .①求证:ABD DCE △△∽;②当ADE V 是等腰三角形时,求AE 的长;(2)如图,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,求出线段CD 的长度;若不存在,请简要说明理由;(3)若点D 在BC 的反向延长线上运动,是否存在点D ,使ADE V 是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.上一点,轴9,23A.()9,3B.()3.(2023·湖南长沙·九年级专题练习)如图,在矩形4.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.分别在边6.(2022秋·安徽淮北·九年级校考阶段练习)如图,在四边形分别在线段AD、DC上(点E与点A、CD=,在BC边上取中点E,连接DE,过点E 8.(2023·山东烟台·九年级统考期末)如图,在正方形ABCD中,4做EF ED⊥与AB交于点G,与DA的延长线交于点F.(1)求证:BEG CDE△∽△;(2)求AFG的面积.⊥交AB于点M,9.(2023·上海·九年级假期作业)在矩形ABCD中,3AB=,4=AD,点E是边AD上一点,EM EC∠=∠.(1)求证:AE是AM和AN的比例中项;(2)当点N在线段AB的延点N在射线MB上(如图),且ANE DCE长线上时,联结AC,且AC与NE互相垂直,求MN的长.的两个等腰直角三角形,(3)【拓展探究】在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.312.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ==,8cm BC =,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ∠=∠,交线段AB 于点D .(1)求证:BDE CEA△∽△(2)设BE x =,AD y =,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.13.(2023春·广东深圳·八年级校考期中)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.①请按要求画图:将ABC 绕点A 顺时针方向旋转90︒,点B 的对应点为点B ',点C 的对应点为点C ',连接BB ';②在①中所画图形中,AB B '∠=______︒.【问题解决】如图2,在Rt ABC △中,190BC C =∠=︒,,延长CA 到D ,使1CD =,将斜边AB 绕点A 顺时针旋转90︒到AE ,连接DE ,求ADE ∠的度数.【拓展延伸】如图3,在四边形ABCD 中,AE BC ⊥,垂足为E ,BAE ADC ∠=∠,1BE CE ==,3CD =,2=AD AB ,求BD 的长.14.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA =,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k =-<,AD y ⊥轴,将BC 绕点B 顺时针旋转90︒,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ∠-∠=︒,求点E 的坐标.九年级专题练习)某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在BC=.点E是线段AD上的动点(点E不与18.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,4AB=,6⊥,交AB于点F.点A,D重合),连接CE,过点E作EF CE∽;(1)求证:AEF DCE⊥,垂足为G,连接AG.点M是线段BC的中点,连接GM.(2)如图2,连接CF,过点B作BG CF①求AG GM+的最小值;②当AG GM+取最小值时,求线段DE的长.。
一线三等角相似模型
一线三等角相似一.一线三直角1.如图,住平面直角系中,直线AB :()440y x a a=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC⊥时(1)求证:ABO ∆∽BCD ∆;(2)求线段CD 的长(用a 的代数式表示); (3)若直线AE 的方程是1316y x b =-+,求tan BAC ∠的值.2.如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断△EAP 与△PDC 一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.E PDCBA3.如图,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,P 为垂足,PE交DC于点E,(1)设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;(2)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.解:(1)∵AB∥CD ,∴∠A+∠D=180°∵∠A=90°,∴∠D=90°,∴∠A=∠D又∵PE⊥BP ,∴∠APB+∠DPE=90°,又∠APB+∠ABP=90°,∴∠ABP=∠DPE,∴△ABP∽△DPE∴,即∴(2)欲使四边形ABED为矩形,只需DE=AB=2,即,解得∵,∵均符合题意,故AP=1或4.4.(2018上海,23,12分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE-BE;(2)联结BF,如果,求证:EF=EP.【思路分析】(1)证∴△BEA与△AFD全等即可(2)运用相似得比例,从而得到△BFP是等腰三角形,根据等腰三角形三线合一可得.【解答过程】证明:(1)∵四边形ABCD是正方形,BE⊥AP,DF⊥AP,∴∠BAE+∠ABE=90°,∠BAE+∠DAF=90°,∴∠ABE=∠DAF,在△BEA与△AFD中,,∴△BEA≌△AFD,∴BE=AF,∴EF=AE-AF=AE-BE(2) 在△AFD与△PEB中∵∠DAF=∠BPE, ∠BEP=∠DFA=90°,∴△AFD∽△PEB,∴∵且AF=BE,∴即∵,∴BF=PB在等腰三角形BFP中,∵BE⊥FP,∴EF=EP二.等腰三角形中底边上一线三等角1.已知在等腰∆ABC 中,AB=AC,D 是BC 的中点,∠EDF=∠B, (1)求证:DFDECD BE =(2)求证:∆BDE ∽∆DFE2.已∆ABC是等腰直角三角形,点O为斜边AB的中点,∠EOF=45°(1)求证:∆AOE∽∆BFO(2)若AB=4,求AE•BF如图,已知在△ABC中,AB=AC=6,BC=5,D是AB上一点,BD=2,E是BC上一动点,联结DE,并作DEF B∠=∠,射线EF交线段AC于F.(1)求证:△DBE∽△ECF;(2)当F是线段AC中点时,求线段BE的长;(3)联结DF,如果△DEF与△DBE相似,求FC的长.BC (备用图)3.已知:∆ABC 中,点D 为边BC 上一点,点E 在边AC 上,且∠ADE=∠B (1)如图1,若AB=AC ,求证:AC BDCD CE =(2)如图2,若AD=AE ,求证:AEBDCD CE =如图,在菱形ABCD 中,∠D=60°,E 为AB 的中点、 (1)如图1,连接EC,求证:EC ⊥CD;(2)如图2,连接ED,作∠BED 的角平分线交BC 于点F,求CFBF的值。
中考数学“一线三等角”模型解析
中考数学“一线三等角”模型解析一、“一线三等角”模型定义两个相等的角一边在同一直线上,另一边在该直线的同侧或异侧,第三个与之相等的角的顶点在前一组等角的顶点所确定的线段上或线段的延长线上,该角的两边分别位于一直线的同侧或异侧,并与两等角两边相交,就会形成一组相似三角形,习惯上把该组相似三角形称为“一线三等角型”相似三角形 .二、“一线三等角”模型类型(1)点P 在线段AB 上,则有△ACP∽△BPD .①锐角一线三等角锐角一线三等角模型②直角一线三等角直角一线三等角模型③钝角一线三等角钝角一线三等角模型(2)点P 在线段AB 的延长线上,则有△ACP∽△BPD .①锐角一线三等角锐角一线三等角模型②直角一线三等角直角一线三等角模型③钝角一线三等角钝角一线三等角模型三、“一线三等角”模型常出现的题型1、等腰三角形中,在底边上作一角与底角相等;2、等腰梯形中上(下)底作一角与上(下)底角相等;3、矩形(正方形);4、矩形和正方形的翻折(简称:一线三直角);5、等边三角形的翻折;6、坐标系中的一线三直角包括已知相似比求点的坐标或直角三角形的讨论性问题 .四、典例解析(一)一线三等角模型——等腰三角形【例题1】如图,已知:在Rt△ABC 中,∠ACB = 90°,AC = BC = 4 , 点M 是边AB 的中点,点E 、G 分别是边AC 、BC 上的一点,∠EMG = 45°,AC 与MG 的延长线相交于点F,(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;(2)连接EG,当AE = 3 时,求EG 的长 .解析:(1)△AEM∽△BMG(一线三等角型);△FEM∽△FMA(共角共边型). (2)AE = 3 , CE = 1 ,由△AEM∽△BMG 可计算出BG = 8/3 ,则CG = 4/3 .在Rt△CEG 中,由勾股定理可得EG = 5/3 .另解:点M 是AB 的中点,恰好是“中点型一线三等角”,则有△AEM∽△BMG∽△MEG .对可解△AEM 由余弦定理可计算出ME = √5 ,由△AEM∽△MEG,可得AE/ME = ME/EG ,即3/√5 = √5/EG ,解得EG = 5/3 .(二)一线三等角模型——等腰梯形【例题2】已知在梯形ABCD 中,AD∥BC,AD < BC,且AD = 5 , AB = DC = 2 . (1)如图,点P 为AD 上的一点,且满足∠BPC = ∠A .①求证:△ABP∽△DPC;②求AP 的长 .(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE = ∠A ,PE 交直线BC 于点E , 同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP = x , CQ = y , 求y 关于x 的函数解析式,并写出函数的定义域;②当CE = 1 时,写出AP 的长 .解析:(1)①由等腰梯形同一底上两个底角相等+ 三角形内角和及平角(∠APD)等于180°,可证△ABP∽△DPC .②∵△ABP∽△DPC ,∴AP/DC = AB/PD ,∴AP/2 = 2/(5 - AP),解得AP = 1 或AP = 4 .(2)①建立y 关于x 的函数解析式,AP = x , DP = 5 - x , CQ = y , 则DQ = 2 = y , 易证:△ABP∽△DPQ,∴AB/PD = AP/DQ ,即2/(5 - x)= x/(2 + y),∴y = -1/2 x^2 + 5x/2 - 2 ,定义域:由于点Q 在线段DC 的延长线上,故DQ > 2 , 即y + 2 > 2 ,∴y = -1/2 x^2 + 5x/2 - 2 > 0 , 即1 < x < 4 .②分类讨论点E 的位置如下:1、当点E 在线段BC 上时,CE = 1 , 过C 点作PQ 的平行线交AD 于点H ,由△ABP∽△DHC,∴AB/DH = AP/DC ,∴2/(5 - 1 - x)= x/2 ,解得x = 2 .2、当点E 在线段BC 的延长线上时,CE = 1 , 过点E 作CD 的平行线交AD 的延长线于点M ,由△ABP∽△MPE,∴AB/MP = AP/ME ,∴2/(5 + 1 - x)= x/2 ,解得x1 = 3 - √5 , x2 = 3 + √5 > 5 (舍去).五、小结1、此次课程展示了相似模型“一线三等角型”在初中数学范围内常见的两种考题形式;2、从压轴题中的复杂图形提炼出基本图形、快速灵活运用基本结论、反思、拓展提高,通过知识间的串联,找出一些通性通法,来提高解题效率 .。
中考数学几何专题——一线三等角模型
一线三等角模型模型识别:条件:左图:Z ABC=Z ACE=Z CDE=90°中图:Z ABC=Z ACE=Z CDE=60°右图:Z ABC=Z ACE=Z CDE=45°结论:所有图形都存在的结论①乂ABC~^CDE;②AB X DE=BC X CD另外:一线三等角模型也经常用来建立方程或函数关系。
题型一:三直角1、如下左图,A ABC是等腰直角三角形,DE过直角顶点A,Z D=Z E=90°,则下列结论正确的是.①CD=AE:②Z1=Z2:③Z3=Z4;④AD=BE2、如上右图,AB丄BC,CD丄BC,垂足分别为B、C,AB=BC,E为BC的中点,且AE丄BD 于F,若CD=4cm,则AB的长度为.3、如下左图,已知图中4条直线互相平行,相邻两条平行线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则COS a=.4、如上右图,AE丄AB且AE=AB,BC丄CD且BC=CD,请按照图中所标注的数据,计算图中实线所围城的面积S是.5、如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为6、如图,A ABC中,Z ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线打、13上,且l,1之间的距离为l,l、1之间的距离为31223(1)求AC的长(2)点B到AC的距离8、在A ABC中Z C=90°,AC=4,BC=3,O是AB上的一点,且——AB点P是AC上的一个动点,PQ丄0P交线段BC于点Q,(不与点B、C重合),设AP=x,CQ=y,试求y关于x9、在直角△ABC中,Z C=90°AB=5,3tan B=—点D是BC的中点,点E是AB边上的7、如图,在厶ABC中,以AB、AC为直角边,分别向外作等腰Rt^ABE和等腰Rt^ACF,连接EF,过点A作AD丄BC,垂足为D,反向延长DA交EF于点M,证明:EM=FM.动点,DF丄DE交射线AC于点F。
全等之一线三等角模型(含答案)
全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌(1)(2)1.如图,正方形的顶点在直线上,,于点,于点.求证:≌.若,求点到直线的距离.2.如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .(1)(2)3.如图,在中,,,于点,于点,,.求证:.求线段的长度.4.如图,点在线段上,,,,且,,,,求的度数.5.如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则 .6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .(1)(2)7.如图,,,,,垂足分别为,.证明:≌.若,,求的长.(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .A. B. C. D.10.如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)(3)12.如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:A. B. C. D.13.如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).14.如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 15.如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图图图图(1)(2)(3)17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)(1)(2)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:①如图①,若,,则;(填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌【备注】【教法指导】通过例1.1可以详细给学生示范一下三垂直模型的书写过程,其中倒角用的是“同角的余角相等”,提醒书生注意1.如图,正方形的顶点在直线上,,于点,于点.(1)(2)(1)(2)【解析】【标注】求证:≌.若,求点到直线的距离.【答案】(1)(2)证明见解析..∵四边形是正方形,,,∴,,,∴,,∴,∴在与中,,∴≌.过作,∵四边形是正方形,,∴,,,,∴,,,∴在与中,,∴≌,∴,∴在中,,,,∴点到直线的距离.【知识点】正方形与全等综合2.【解析】【标注】如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .【答案】∵四边形是正方形,∴,,∵则是直角三角形,∴,,又∵,∴,在和中,,∴≌,∴,∴.【知识点】三垂直模型3.如图,在中,,,于点,于点,,.(1)(2)(1)(2)【解析】【标注】求证:.求线段的长度.【答案】(1)(2)证明见解析..∵,,,∴,,∴,在和中,,∴≌,∴.∵≌,∴,,∴.【知识点】三垂直模型4.【解析】如图,点在线段上,,,,且,,,,求的度数.【答案】.连接、.∵,,.∴.【标注】在和中,∴≌∴,,∴.∴为等腰三角形.同理可得为等腰三角形.∴..【能力】分析和解决问题能力【知识点】SAS【知识点】全等三角形的性质5.【解析】【标注】如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则.【答案】由三垂直模型易证≌,∴.【知识点】坐标与距离;三垂直模型6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .【解析】【标注】【答案】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【知识点】根据坐标描点、根据点写坐标;三垂直模型(1)(2)7.(1)【解析】如图,,,,,垂足分别为,.证明:≌.若,,求的长.【答案】(1)(2)证明见解析..∵,,,∴,∴,,∴,在和中,(2)【标注】,∴≌.∵≌,∴,,∴().【知识点】一线三等角模型(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图【答案】(1)(2)(3)证明见解析.证明见解析..(1)(2)(3)【解析】【标注】∵中,,∴,又直线经过点,且于,于,∴,∴,∴,在和中,,∴≌(),∴,,∴.∵中,,直线经过点,且于,于,∴,,而,∴≌,∴,,∴.∵中,,直线经过点,且于,于,∴,,∴,∵,∴≌,∴,,∴;、、之间的关系为.【能力】推理论证能力【能力】运算能力【知识点】AAS【知识点】全等三角形的对应边与角9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .【解析】【标注】【答案】由题意可得:,,,在和中,,∴(),故,,则两条凳子的高度之和为:.故答案为:.【知识点】全等三角形实际生活中的应用A. B. C. D.10.方法一:【解析】如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).【答案】A ∵,,∴,∵在和中,,方法二:【标注】∴≌(),同理 ≌(),∴,,,,∵梯形的面积,,,∴图中实线所围成的图形的面积.∵且,,,,,∴,,≌,∴,.同理证得≌得,.故,故.故选:.【知识点】三垂直模型(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)【解析】【标注】【答案】(1)(2)证明见解析...∵,,,∴,∴,∴.∵,在和中,,∴≌,∴,,∴.∵,∴.成立.∵,,,∴.∵,,∴.∵,在和中,,∴≌,∴,.∵,∴.【能力】推理论证能力【能力】分析和解决问题能力【知识点】全等三角形的性质【知识点】AAS(1)(2)(3)12.(1)【解析】如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.【答案】(1)(2)(3)证明见解析...∵四边形和为正方形,(2)(3)∴,,,∴,∵,∴,∴,∵,∴≌(),∴.,理由如下:过点作于,∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.,理由如下:过点作于,【标注】∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.【知识点】正方形与全等综合2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:【备注】【教法指导】注意三个相等的角度可以在直线同侧,也可以在直线异侧.A. B. C. D.13.【解析】如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).【答案】B如图所示∵,,∴,∵为等边三角形,∴,∵线段绕点逆时针旋转得到线段,【标注】要使点恰好落在上,∴,,∵,,∴,在和中,∵,∴≌,∴.故选.【知识点】等边三角形的性质14.【解析】【标注】如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 【答案】∵,,∴,在和中,,∴≌,∴,∵,,∴.【知识点】一线三等角模型15.【解析】【标注】如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .【答案】∵,∴与等高,底边比值为,∴与面积比为,又的面积为,∴与面积分别为和.∵,∴.∵,,∴.在和中,,∴≌.∴,∴.【知识点】三角形的周长与面积问题16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.【解析】【标注】应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图【答案】见解析拓展:证明:∵,∴.∵,,又,∴.在和中,,∴≌.应用:解:∵,∴.∵,,,∴.在和中,,∴≌.∴.∵在中,,∴.∵,∴.∴.【知识点】全等三角形实际生活中的应用17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.图图图(1)(2)(3)图(1)【解析】如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)【答案】(1)(2)(3)证明见解析.证明见解析.如图,∵直线,直线,∴,∵,∴,∵,∴,在与中,,∴≌,∴,,∴,∴.图(2)图(3)【标注】.如图,证明如下:∵,∴,∴,在和中,,∴≌,∴,,∴,∴.∵≌,∴,,∵和均为等边三角形,∴,,∴,即,在和中,,∴≌,∴且,∵,∴,∴,∴是等边三角形,∴.【知识点】多解或多种判定混合(1)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:21(2)【标注】①如图①,若,,则 ; (填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图【答案】(1)(2)();.,先证明,再证明≌..【知识点】全等三角形的性质。
人教版八年级数学上册《一线三等角模型》专项练习-附含答案
人教版八年级数学上册《一线三等角模型》专项练习-附含答案【模型说明】 C D E BA应用:通过证明全等实现边角关系的转化 便于解决对应的几何问题;【例题精讲】例1.(基本“K ”型)如图 一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°) 若OA =50cm OB =28cm 则点C 离地面的距离是____ cm .【答案】28【详解】解:过点C 作CD ∠OB 于点D 如图∠90CDB AOB ∠=∠=︒∠ABC ∆是等腰直角三角形∠AB =CB 90ABC ∠=︒∠90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∠ABO BCD ∠=∠在ABO ∆和BCD ∆中AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABO BCD AAS ∆≅∆∠28cm CD BO ==故答案为:28.例2.(特殊“K ”型)在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC =,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和. 【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立 理由见解析(3)△FBD 与△ACE 的面积之和为4【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90° ∴∠BAD +∠EAC =∠BAD +∠DBA =90° ∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE ∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE ∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC ∴∠CAE =∠ABD在△ABD 和△CAE 中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ) ∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.例3.(“K ”型培优)已知:ABC 中 90ACB ∠=︒ AC CB = D 为直线BC 上一动点 连接AD 在直线AC 右侧作AE AD ⊥ 且AE AD =.(1)如图1 当点D 在线段BC 上时 过点E 作EH AC ⊥于H 连接DE .求证:EH AC =; (2)如图2 当点D 在线段BC 的延长线上时 连接BE 交CA 的延长线于点M .求证:BM EM =;(3)当点D 在直线CB 上时 连接BE 交直线AC 于M 若25AC CM = 请求出ADB AEMS S △△的值. 【答案】(1)见解析;(2)见解析;(3)43或47【详解】证明(1)∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAH CAD 90∠=︒-∠ADC CAD EAH ADC ∴∠=∠在AHE 与DCA △中 90AHE ACB EAH ADCAE AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AHE DCA AAS ∴△≌△ EH AC ∴=; (2)如图2 过点E 作EN AC ⊥ 交CA 延长线于N∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS 则BM EM =; (3)如图 当点D 在线段BC 上时∠25AC CM = ∠可设5AC a = 2CM a =由(1)得:AHE DCA △≌△ 则AH CD = 5===EH AC BC a由∠90EHM BCM ∠=∠=︒ BMC EMH ∠=∠ ∠MHE MCB △≌△(AAS ) ∠CM HM = 即2HM CM a == ∠522AH AC CM HM a a a a =--=--= ∠3AM AH HM a CD AH a ==5EH AC a == 4BD BC CD a =-= 11454221133522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EH a a ; 如图 点D 在CB 延长线上时 过点E 作EN AC ⊥ 交AC 延长线于N∠25AC CM = ∠可设5AC a = 2CM a =∠EN AC ⊥ AE AD ⊥ ∠90ANE EAD ACB ∠=∠=∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= AN CD = 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS ∠2==CM NM a 5NE BC AC a === ∠9AN AC CM MN a =++=7AM AC CM a =+= 9AN CD a == ∠4BD a = 11454221177522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EN a a 点D 在BC 延长线上 由图2得:AC CM < ∠25AC CM =不可能 故舍去综上:ADB AEM S S △△的值为43或47 【变式训练1】如图 90,ABC FA AB ∠=⊥于点A 点D 在直线AB 上,AD BC AF BD ==.(1)如图1 若点D 在线段AB 上 判断DF 与DC 的数量关系和位置关系 并说明理由;(2)如图2 若点D 在线段AB 的延长线上 其他条件不变 试判断(1)中结论是否成立 并说明理由.【答案】(1)DF =DC DF ∠DC ;理由见解析;(2)成立 理由见解析【解析】(1)解:∠90,ABC FA AB ∠=⊥∠90ABC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .(2)∠90,ABC FA AB ∠=⊥∠90DBC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .【变式训练2】在ABC 中 90ACB ∠=︒ AC BC = 直线MN 经过点C 且AD MN ⊥于D BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时.∠请说明ADC CEB △≌△的理由;∠请说明DE AD BE =+的理由;(2)当直线MN 绕点C 旋转到图2的位置时 DE 、AD 、BE 具有怎样的等量关系?请写出等量关系 并予以证明.(3)当直线MN 绕点C 旋转到图3的位置时 DE 、AD 、BE 具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)∠理由见解析;∠理由见解析(2)DE AD BE =- 证明见解析(3)DE BE AD =-【解析】(1)解:∠∠AD MN ⊥于D BE MN ⊥于E∠90ADC BEC ∠=∠=︒∠90ACB ∠=︒ ∠90ACD BCE ∠+∠=︒90ACD DAC ∠+∠=︒ ∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠∠ADC CEB △≌△ ∠AD EC = CD BE =∠DC CE DE += ∠AD EB DE +=(2)结论:DE AD BE =-∠BE EC ⊥ AD CE ⊥∠90ADC BEC ∠=∠=︒∠90EBC BCE ∠+∠=︒∠90ACB ∠=︒∠90ACE BCE ∠+∠=︒∠ACD EBC ∠=∠∠ADC CEB △≌△∠AD EC = CD BE =∠DE EC CD AD EB =-=-(3)结论:DE BE AD =-∠90ACB ∠=︒∠90ACD BCE ∠+∠=︒∠BE MN ⊥ AD MN ⊥∠90ADC DEC ∠=∠=︒∠90ACD DAC ∠+∠=︒∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠AD EC = CD BE =∠DE CD EC EB AD =-=-.【变式训练3】(1)如图1 在∠ABC 中 ∠BAC =90° AB =AC 直线m 经过点A BD ∠直线m CE ∠直线m 垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2 将(1)中的条件改为:在∠ABC 中 AB =AC D 、A 、E 三点都在直线m 上 并且有∠BDA =∠AEC =∠BAC =α 其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立 请给出证明;若不成立 请说明理由.(3)拓展应用:如图3 D E 是D A E 三点所在直线m 上的两动点(D A E 三点互不重合) 点F 为∠BAC 平分线上的一点 且∠ABF 和∠ACF 均为等边三角形 连接BD CE 若∠BDA =∠AEC =∠BAC 求证:∠DEF 是等边三角形.【答案】(1)见详解;(2)成立 理由见详解;(3)见详解【详解】(1)证明:BD ⊥直线m CE ⊥直线m 90BDA CEA ∴∠=∠=︒90BAC ∠=︒ 90BAD CAE ∴∠+∠=︒90BAD ABD ∠+∠=︒ CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;解:(2)成立 理由如下:α∠=∠=BDA BAC180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;(3)证明:∠∠ABF 和∠ACF 均为等边三角形∠,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒ ∠∠BDA =∠AEC =∠BAC =120°∠180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒ ∠CAE ABD ∠=∠∠()ADB CEA AAS ∆∆≌ ∠AE BD =∠,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠ ∠FBD FAE ∠=∠∠DBF EAF ∆∆≌(SAS ) ∠,FD FE BFD AFE =∠=∠∠60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒ ∠∠DFE 是等边三角形.【课后作业】1.如图是高空秋千的示意图 小明从起始位置点A 处绕着点O 经过最低点B 最终荡到最高点C 处 若90AOC ∠=︒ 点A 与点B 的高度差AD =1米 水平距离BD =4米 则点C 与点B 的高度差CE 为( )A.4米B.4.5米C.5米D.5.5米【答案】B【详解】解:作AF∠BO于F CG∠BO于G∠∠AOC=∠AOF+∠COG=90° ∠AOF+∠OAF=90° ∠∠COG=∠OAF在∠AOF与∠OCG中AFO OGCOAF COGAO OC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠AOF∠∠OCG(AAS) ∠OG=AF=BD=4米设AO=x米在Rt∠AFO中 AF2+OF2=AO2即42+(x-1)2=x2解得x=8.5.则CE=GB=OB-OG=8.5-4=4.5(米).故选:B.2.如图 ∠ABC=∠ACD=90° BC=2 AC=CD则△BCD的面积为_________.【答案】2【详解】解:如图作DE垂直于BC的延长线垂足为E∠90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒ ∠BAC DCE ∠=∠在ABC 和CED 中 ∠90BAC DCE ABC CED AC CD ∠=∠⎧⎪∠==︒⎨⎪=⎩∠()ABC CED AAS ≌ ∠2BC DE == ∠122BCD S BC DE =⨯⨯= 故答案为:2.3.如图 ABC 为等边三角形 D 是BC 边上一点 在AC 上取一点F 使=CF BD 在AB 边上取一点E 使BE DC = 则EDF ∠的度数为( )A .30B .45C .60D .70【答案】C 【详解】∠ABC 是等边三角形 ∠∠B=∠C=60°在∠EDB 和∠DFC 中 60BD CF B C BE CD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠EDB ∠∠DFC ∠∠BED=∠CDF ∠∠B=60° ∠∠BED+∠BDE= 120° ∠∠CDF+∠BDE= 120°∠∠EDF=180°-(∠CDF+∠BDE )=180°-120°=60°.故选C.4.已知∠ABC 中 ∠ACB =90° AC =BC .BE 、AD 分别与过点C 的直线垂直 且垂足分别为D E .学习完第十二章后 张老师首先让同学们完成问题1:如图1 若AD =2.5cm DE =1.7cm 求BE 的长;然后 张老师又提出问题2:将图1中的直线CE 绕点C 旋转到∠ABC 的外部 BE 、AD 与直线CE 的垂直关系不变 如图2 猜想AD 、DE 、BE 三者的数量关系 并给予证明.【答案】BE 的长为0.8cm ;DE =AD +BE .【详解】解:如图1 ∠∠ACB =∠BEC =∠ADC =90°∠∠ACD +∠BCE =90°=∠ACD +∠CAD ∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE =2.5cm BE =CD∠DE =1.7cm ∠BE =CD =CE -DE =2.5-1.7=0.8cm ∠BE 的长为0.8cm ;如图2 DE =AD +BE 理由如下:∠∠ACB =∠BEC =∠ADC =90° ∠∠ACD +∠BCE =90°=∠ACD +∠CAD∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE BE =CD ∠DE =AD +BE .5.如图 在ABC 中 AB BC =.(1)如图∠所示 直线NM 过点B AM MN ⊥于点M ⊥CN MN 于点N 且90ABC ∠=︒.求证:MN AM CN =+.(2)如图∠所示 直线MN 过点B AM 交MN 于点M CN 交MN 于点N 且AMB ABC BNC ∠=∠=∠ 则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立 理由见解析【详解】证明:(1)∠AM MN ⊥ ⊥CN MN∠90AMB BNC ∠=∠=︒ ∠90ABM BAM ∠+∠=︒∠90ABC ∠=︒ ∠90ABM CBN ∠+∠=︒ ∠BAM CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = BM CN = ∠BN MB MN += ∠MN AM CN =+;(2)MN AM CN =+仍然成立 理由如下:∠180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒∠AMB ABC ∠=∠ ∠MAB CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = NC MB =∠MN MB BN =+ ∠MN AM CN =+.6.如图 在∠ABC 中 ∠ACB =90° AC =BC 直线l 经过顶点C 过A 、B 两点分别作l 的垂线AE 、BF E 、F 为垂足.(1)当直线l 不与底边AB 相交时∠求证:∠EAC =∠BCF .∠猜想EF 、AE 、BF 的数量关系并证明.(2)将直线l 绕点C 顺时针旋转 使l 与底边AB 交于点D (D 不与AB 点重合) 请你探究直线l EF 、AE 、BF 之间的关系.(直接写出)【答案】(1)∠证明见解析 ∠EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【详解】(1)证明:∠∵AE ⊥EF BF ⊥EF ∠ACB =90°∴∠AEC =∠BFC =∠ACB =90°∴∠EAC +∠ECA =90° ∠ECA +∠FCB =90° ∴∠EAC =∠FCB∠EF =AE +BF ;证明:在△EAC 和△FCB 中 AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△FCB (AAS )∴CE =BF AE =CF∴EF =CE +CF =AE +BF即EF =AE +BF ;(2)∠当AD >BD 时 如图①∵∠ACB =90° AE ⊥l 直线同理可证∠BCF =∠CAE (同为∠ACD 的余角)又∵AC =BC BF ⊥l 直线即∠BFC =∠AEC =90°∴△ACE ≌△CBF (AAS )∴CF =AE CE =BF∵CF =CE +EF =BF +EF∴AE =BF +EF ;∠当AD <BD 时 如图②∵∠ACB =90° BF ⊥l 直线同理可证∠CBF =∠ACE (同为∠BCD 的余角)又∵AC =BC BE ⊥l 直线 即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS )∴CF =AE BF =CE∵CE =CF +EF =AE +EF ∴BF =AE +EF .7.(1)某学习小组在探究三角形全等时 发现了下面这种典型的基本图形.如图1 已知:在ABC 中 90BAC ∠=︒ AB AC = 直线l 经过点A BD ⊥直线l CE ⊥直线l 垂足分别为点D E .求证:DE BD CE =+.(2)组员小明想 如果三个角不是直角 那结论是否会成立呢?如图2 将(1)中的条件改为:在ABC 中 AB AC = D A E 三点都在直线l 上 并且有BDA AEC BAC α∠=∠=∠= 其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立 请你给出证明;若不成立 请说明理由.(3)数学老师赞赏了他们的探索精神 并鼓励他们运用这个知识来解决问题:如图3 过ABC 的边AB AC 向外作正方形ABDE 和正方形ACFG AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△ 则AEI S =△______. 【答案】(1)见解析;(2)结论成立 理由见解析;(3)3.5【详解】解:(1)证明:如图1中 ∠BD ∠直线l CE ∠直线l∠∠BDA =∠CEA =90°∠∠BAC =90°∠∠BAD +∠CAE =90°∠∠BAD +∠ABD =90°∠∠CAE =∠ABD在∠ADB 和∠CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中∠∠BDA =∠BAC =α∠∠DBA +∠BAD =∠BAD +∠CAE =180°-α∠∠DBA =∠CAE在∠ADB 和∠CEA 中BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(3)如图3 过E 作EM ∠HI 于M GN ∠HI 的延长线于N .∠∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∠EM =GN在∠EMI 和∠GNI 中GIN EIM EM GNGNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠EMI ∠∠GNI (AAS )∠EI =GI∠I 是EG 的中点.∠S △AEI =12S △AEG =3.5.故答案为:3.5.8.如图 在∠ABC 中 AB =AC =2 ∠B =∠C =40° 点D 在线段BC 上运动(点D 不与点B 、C 重合) 连接AD 作∠ADE =40° DE 交线段AC 于点E .(1)当∠BDA =105°时 ∠EDC = ° ∠DEC = °;点D 从点B 向点C 运动时 ∠BDA 逐渐变 .(填“大”或“小”)(2)当DC 等于多少时 ∠ABD ∠∠DCE ?请说明理由.(3)在点D 的运动过程中 ∠ADE 的形状可以是等腰三角形吗?若可以 请直接写出∠BDA 的度数;若不可以 请说明理由.【答案】(1)35105︒︒, 小;(2)2 理由见解析;(3)110︒或80°【详解】(1)40B C ∠=∠=︒ 40ADE ∠=︒1801804040100BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒180140ADB EDC ADE ∠+∠=︒-∠=︒180140ADB BAD B ∠+∠=︒-∠=︒180140DEC EDC C ∠+∠=︒-∠=︒BAD EDC ∴∠=∠ ADB DEC ∠=∠∴当∠BDA =105°时∴∠EDC =1801801054035BAD ADB B ∠=︒-∠-∠=︒-︒-︒=︒∠DEC =ADB ∠105=︒;当点D 从点B 向点C 运动时 BAD ∠逐渐变大 180140BDA B BAD BAD ∠=︒-∠-∠=︒-∠ 则∠BDA 逐渐变小故答案为:35105︒︒,小; (2)BAD EDC ∠=∠ ADB DEC ∠=∠当DC AB =2=时 ABD DCE ∴≌(AAS ) 2DC ∴=(3)∠ADE 的形状可以是等腰三角形 BDA ∠=110︒或80︒40B C ∠=∠=︒ 1804040100BAC ∴∠=︒-︒-︒=︒∠当DA DE =时 ()118040702DAE DEA ∠=∠=︒-︒=︒ 1007030BAD BAC DAC ∴∠=∠-∠=︒-︒=︒1801804030110BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒;∠当EA ED =时 ADE ∠=40,1804040100DAE DEA ∠=︒∠=︒-︒-︒=︒1004060BAD BAC DAE ∴∠=∠-∠=︒-︒=︒180180406080BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒∠当AE AD =时 ADE ∠=40,1804040100DEA DAE ∠=︒∠=︒-︒-︒=︒100BAC ∠=︒∴此时D 点与B 点重合由题意可知点D 不与点B 、C 重合∴此种情况不存在综上所述当∠ADE是等腰三角形时BDA∠=110︒或80︒.9.如图线段AB=6 射线BG∠AB P为射线BG上一点以AP为边做正方形APCD且点C、D与点B在AP两侧在线段DP上取一点E使得∠EAP=∠BAP直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:△AEP∠∠CEP;(2)判断CF与AB的位置关系并说明理由;(3)△AEF的周长是否为定值若是请求出这个定值若不是请说明理由.【答案】(1)证明见解析;(2)CF∠AB理由见解析;(3)是为16.【详解】解:(1)证明:∠四边形APCD 正方形 ∠DP平分∠APC PC=P A ∠APC=90°∠∠APE=∠CPE=45°在∠AEP与∠CEP中AP CPAPE CPEPE PE=⎧⎪∠=∠⎨⎪=⎩∠∠AEP∠∠CEP(SAS);(2)CF∠AB理由如下:∠∠AEP∠∠CEP ∠∠EAP=∠ECP∠∠EAP=∠BAP ∠∠BAP=∠FCP ∠∠APC=90° ∠∠FCP+∠CMP=90° ∠∠AMF=∠CMP ∠∠AMF+∠P AB=90° ∠∠AFM=90° ∠CF∠AB;(3)过点C作CN∠PB.∠CF∠AB BG∠AB ∠∠PNC=∠B=90° FC∠BN∠∠CPN=∠PCF=∠EAP=∠P AB又AP=CP ∠∠PCN∠∠APB(AAS) ∠CN=PB=BF PN=AB∠∠AEP∠∠CEP ∠AE=CE∠∠AEF的周长=AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=16.故∠AEF的周长是否为定值为16.。
专题02全等模型一线三等角(K字)模型(解析版)八年级数学上册常见几何模型全归纳之模型解读与提分精练
专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2022·河南濮阳市·八年级期末)已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅ ;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【答案】(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB AC BAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.例2.(2022·绵阳市·八年级课时练习)(1)如图1,在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:△ABD ≌△CAE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论△ABD ≌△CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE ,若∠BDA =∠AEC =∠BAC ,求证:△DEF是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥ 直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒ ,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒ ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;解:(2)成立,理由如下:α∠=∠= BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:∵△ABF 和△ACF 均为等边三角形,∴,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,∴∠BDA =∠AEC =∠BAC =120°,∴180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,∴CAE ABD ∠=∠,∴()ADB CEA AAS ∆∆≌,∴AE BD =,∵,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠,∴FBD FAE ∠=∠,∴DBF EAF ∆∆≌(SAS ),∴,FD FE BFD AFE =∠=∠,∴60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒,∴△DFE 是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.例3.(2022秋·河北张家口·八年级校考期中)如图1,在长方形ABCD 中,4AB cm =,3BC cm =,点P 在线段AB 上以1/cm s 的速度由A 向终点B 运动,同时,点Q 在线段BC 上由点B 向终点C 运动,它们运动的时间为()t s .【解决问题】若点Q 的运动速度与点P 的运动速度相等,当1t =时,回答下面的问题:(1)_________AP cm =;(2)此时ADP ∆与BPQ ∆是否全等,请说明理由;(3)求证:DP PQ ⊥;【变式探究】若点Q 的运动速度为 /x cm s ,是否存在实数x ,使得ADP ∆与BPQ ∆全等?若存在,请直接【答案】解决问题(1)1;(2)全等;【分析】解决问题(1)当t=1时,AP 判定;(3)利用同角的余角相等证明∠①ADP ∆≌BPQ ∆②ADP ∆≌BQP ∆【详解】解:解决问题(1)∵t=1,点P 的运动速度为1cm (2)全等,理由是:当t=1时,可知在△ADP 与△BPQ 中,AD PB A B AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△(3)∵△ADP ≌△BPQ ,∴∠APD=∠②若ADP ∆≌BQP ∆,AP=BP ,即点AB 中点,此时AP=2,t=2÷1=2s ,AD=BQ=3综上:当ADP ∆与BPQ ∆全等时,x 的取值为1或32.【点睛】本题考查了全等三角形的判定和性质,注意在运动中对三角形全等进行分类讨论,从而得出不同情况下的点Q 速度.例4.(2023·湖南岳阳·统考一模)如图,在与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=______°,∠AED=______°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【答案】(1)25°,65°;(2)2,理由见详解;(3)可以,110°或80°.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,ADB DECB CAB DC∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
一线三垂直模型经典例题
一线三垂直模型经典例题一、问题描述:在平面几何中,一线三垂直模型是常见的几何模型之一。
通过该模型,我们可以分析得到一些有趣的性质和结论。
本文将介绍一道经典的例题,通过解答该题目,我们可以更好地理解和应用一线三垂直模型。
二、例题背景:考虑一个三角形ABC,其中点D是边BC上的一点。
假设通过点D 分别作AD线段的垂直平分线和BD线段的垂直平分线,分别与AB、AC相交于点E和F。
我们需要证明EF与BC平行。
三、解题过程:1. 建立坐标系:假设点A的坐标为(0, 0),点B的坐标为(b, 0),点C的坐标为(c, d)。
由于点D是边BC上的一点,所以点D的坐标可以表示为(Dx, 0),其中b > Dx > c。
2. 确定点E和F的坐标:由于AE是AD的垂直平分线,所以AE与AD垂直且AE=ED。
我们需要找出点E的坐标。
首先,由于AD是垂直于BC的,所以它的斜率为NaN(不确定)。
由于AE是AD的垂直平分线,所以AE的斜率为0。
令点E的坐标为(E, 0),则斜率0可以表示为(E - Dx) / (0 - Dx) = 0,解得E = Dx。
因此,点E的坐标为(E, 0) = (Dx, 0)。
同理,我们可以得到点F的坐标为(F, 0) = (Dx, 0)。
3. 确定线段EF的斜率:根据点E和F的坐标,我们可以计算线段EF的斜率:斜率k = (F - E) / (0 - Dx) = (0 - Dx - Dx) / (0 - Dx) = 2。
4. 确定线段BC的斜率:根据点B和C的坐标,我们可以计算线段BC的斜率:斜率k_BC = (d - 0) / (c - b) = d / (c - b)。
由于EF与BC平行,所以线段EF的斜率与线段BC的斜率相等,即2 = d / (c - b)。
解得d = 2(c - b)。
5. 证明EF与BC平行:根据步骤4的结论,我们可以得到d = 2(c - b)。
因此,EF与BC平行。
一线三角模型及例题
相似三角形判定的复习:1.相似三角形的预备定理:平行于三角形一边的直线和其他两边或两边的延长线相交,所截成的三角形与原三角形相似;2.相似三角形的判定定理:1两角对应相等两三角形相似; 2两边对应成比例且夹角相等,两个三角形相似;3三边对应成比例,两个三角形相似;3.直角三角形相似的判定定理:1直角三角形被斜边上的高分成两个直角三角形和原三角形相似;2一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似;相似三角形的性质:要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例要点2:相似三角形的性质定理:相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比相似三角形的性质定理2:相似三角形的周长的比等于相似比相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方要点3:知识架构图1、如图,锐角∆ABC的高CD和BE相交于点O,图中相似三角形有多少对请分别写出.2、如图,在锐角∆ABC中,∠ADE=∠ACB,图中相似三角形有多少对请分别写出.3、如图已知∠BAC=∠BDC=90°,8,16==∆∆ADE EBC S S . 问:∠BEC 的大小确定吗 若确定,求期度数;若不确定,请说明理由.4、如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F G ,.求证:1EG CG AD CD =; 2FD ⊥DG .GFE D C B A5、如图,四边形ABCD 中,AC 与BD 交于点E,AC ⊥AB ,BD ⊥CD. S ∆EBC =16,S ∆AED =8.1求AD BC的值; 2问:∠BEC 是不是定角 如果是,把它求出来;如果不是,请说明理由.5、如图,在△ABC 中,角ACB 为直角,CD⊥AB 于点D,又△ACE 与△BCF 都是等边三角形,连结DE 、DF ;求证:DE⊥DFAB C DEE A D C FB中考热点:一线三等角型的相似三角形一、问题引入如图,ABC ∆中,90B ∠=︒,CD AC ⊥,过D 作DE AB ⊥交BC 延长线与E;求证:ABC CED ∆∆B E ADC三等角型相似三角形是以等腰三角形等腰梯形或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:其他常见的一线三等角图形等腰三角形中底边上一线三等角等腰梯形中底边上一线三等角A BDC EF直角坐标系中一线三等角矩形中一线三等角等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变;此规律需通过认真做题,细细体会;1等腰三角形中一线三等角例1、如图,已知在△ABC中,AB=AC=6,BC=5,D是AB上一点,BD=2,E是BC上一动点,联结DE,并作DEF B ∠=∠,射线EF 交线段AC 于F .1求证:△DBE ∽△ECF ; 2当F 是线段AC 中点时,求线段BE 的长;3联结DF ,如果△DEF 与△DBE 相似,求FC 的长. F B AC DE 讲解:1、本题中,第一问的结论是这类题共同的特性,只要等腰三角形底边上有三等角,必有三角形相似;2、第二问中根据相似求线段的长,也很常见;有时候会反过来问,线段的长是多少是,三角线相似;变式练习1就是这类题型;3、第三问中间的三角形与左右两个形似时有两种情况,一种是DF 与底边平行,一种是E 为中点;4、在等腰三角形,将腰延长会交于一点,也构成等腰三角形,故而以上三点,在等腰梯形中也适用; 变式练习1 浦东新区22题如图,已知等边△ABC 的边长为8,点D 、F 、E 分别在边AB 、BC 、AC 上,3BD =,E 为AC 中 点,当△BPD 与△PCE 相似时,求BP 的值.变式练习2宝山22题如图6,已知ΔABC 中,AB AC =,点E 、F 在边BC 上,满足∠EAF =∠C .求证:2BF CE AB ⋅=; F E C BA变式练习3 A D如图,在三角形ABC 中,AB=4,AC=2,∠A =900,点D 为腰AC 中点,点E 在底边BC 上,且DE ⊥BD,求△CED 的面积;变式练习4已知∠ABC=90°,AD ∥BC,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB = ,当AD AB ,且点Q 在线段AB 的延长线上时,求QPC ∠的大小.2等腰梯形中一线三等角例1、长宁区18题如图,等腰梯形ABCD 中,AD ∥BC ,2AD =,42BC =,∠45B =˚,直角三角板含45度角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若△ABE 为等腰三角形,则CF 的长等于 .第18题E FDCB A例2、如图,梯形ABCD 中,AB ∥DC , ∠B =90°,E 为BC 上一点,且△ABE ∽△ECD ;1若BC =8,AB=3,DC =4,求BE 的长 2若BC = 43 ,AB=3,DC =4,求BE 的长.3若BC =6,AB=3,DC =4,求BE 的长.例3、如图,梯形ABCD 中,AB ∥CD,∠ABC=900,AB=8,CD=6,在AB 上取动点P,连结DP,作PQ ⊥DP,使得PQ 交射线BC 与点E,设AP=x,BE=y;1当BC=4时,试求y 关于x 的函数关系式;2当BC 在什么范围时,存在点P,使得PQ 经过点C 直接写出结果;例4、徐汇区25.如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .1求证:△MEF ∽△BEM ;2若△BEM 是以BM 为腰的等腰三角形,求EF 的长;3若EF CD ⊥,求BE 的长.例4、杨浦区基础考四边形ABCD 中,AD ∥BC ,()090ABC αα∠=<<,3AB DC ==,5BC =.点P 为射线BC 上动点不与点B 、C 重合,点E 在直线DC 上,且APE α∠=.记1PAB ∠=∠,2EPC ∠=∠,BP x =,CE y =.1当点P 在线段BC 上时,写出并证明1∠与2∠的数量关系;2随着点P 的运动,1中得到的关于1∠与2∠的数量关系,是否改变 若认为不改变,请证明;若认为会改变,请求出不同于1的数量关系,并指出相应的x 的取值范围;3若cos α=13,试用x 的代数式表示y .3坐标系中一线三等角例1、金山区24如图,住平面直角系中,直线AB :()440y x a a=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动不与点O 点D 重合且AB BC ⊥时1求证:ABO ∆∽BCD ∆;2求线段CD 的长用a 的代数式表示;3若直线AE 的方程是1316y x b =-+,求tan BAC ∠的值.例2、如图,在直角坐标系中,直线122y x =+与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作矩形ABCD,使5AD = ,求点D的坐标.变式练习1在平面直角坐标系XOY 中,AOB ∆的位置如图所示,已知0060,90=∠=∠A AOB ,点A 的坐标为()1,3- (1) 求点B 的坐标;(2) 若抛物线c bx ax y ++=2经过A 、O 、B 三点,求函数解析式;变式练习2如图所示:RT △AOB 中∠AO B =90°,OA=4,OB=2,点B 在反比例函数2y x=图像上,求过点A 的双曲线解析式;变式练习3如图,在平面直角坐标系中,OB ⊥OA,且OB =2OA,点A 的坐标是-1,2.求过点A 、O 、B 的抛物线的表达式;4矩形中一线三等角如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D 处.已知折叠线CE 且55CE =, 3tan 4EDA ∠=,求直线CE与x轴交点的坐标;例6、长宁区24题.如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E .1判断△EAP 与△PDC 一定相似吗 请证明你的结论;2设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;3是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍 若存在,请求出PD 的长度;若不存在, 请简要说明理由.EPDCB A“一线三等角”专题练习一、知识梳理:1、如图1,AB =AC,∠ B =∠ADE,那么一定存在的相似三角形有 ;2、如图2,AB =AC,∠ B =∠EDF,那么一定存在的相似三角形有 ;B 图1 图2 3、在等腰△ABC 中,腰长10厘米,底边长16厘米,点P 在底边上以0.5厘米/秒的速度从点B 向点C 移动.当点P运动到PA 与腰垂直的位置时,点P 的运动时间为 秒.二、经典例题解析1、如图,在ΔABC 中, AB =AC=4,BC =6,∠ B =∠ADE ,点D 、E 分别在BC 、AC 上点D 与B 、C 不重合,设BD =x ,AE =y ,求y 关于x 的函数解析式及x 的取值范围;B2、如图:在直角梯形ABCD 中,AD ∥BC,∠B = 90°,DH ⊥BC 于H,AB = 6,BC = 16,DC = 10,线段BC 上有一动点E 不与点C 重合,过点E 作EF ⊥DC 交线段DC 于点F.1求CH 的长;2设BE = x,EF = y,求y 关于x 的函数解析式及x 的取值范围;3当以E 、F 、C 为顶点的三角形与△ABE 相似时,求BE 的长.B3、如图,在Rt △ABC 中,∠ACB =90º,AB =10,AC =6,点E 、F 分别是边AC 、BC 上的动点,过点E 作ED ⊥AB 于点D ,过点F 作FG ⊥AB 于点G ,DG 的长始终为2. 1当AD =3时,求DE 的长;2当点E 、F 在边AC 、BC 上移动时,设x AD =,y FG =,求y 关于x 的函数解析式,并写出函数的定义域; 3在点E 、F 移动过程中,△AED 与△CEF 能否相似,若能,求AD 的长;若不能,请说明理由.4、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. 1如图3,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;2如果点P 在BC 边上移动点P 与点B 、C 不重合,且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长. 5、2009闸北22题本题满分10分,第1小题满分3分,第2小题满分7分ABC ED GFEDCBAP如图七,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA, OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,但是点P 不 与点0、点A 重合.连结CP, D 点是线段AB 上一点,连结PD. 1求点B 的坐标; 2当∠C PD=∠OAB,且AB BD =85,求这时点P 的坐标.6、如图,已知在△ABC 中,AB=AC=8,cosB=58,D 是边BC 的中点,点E 、F 分在边AB 、AC 上,且∠EDF=∠B,连接EF .1如果BE=4,求CF 的长; 2如果EF ∥BC,求EF 的长.7、徐汇2009年 25题如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F .1当6=AE 时,求AF 的长;2当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; 3当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.知识总结:补 充:关于“一线三等角”图形的提炼及变式:A BCDEFABCD当α为锐角时:BBB当α为直角时:当α为钝角时:E总结:在教学中要突出重点、深化学生对于“一线三等角”模型的理解;把握难点:“一线三等角”模型变式; 通过问题建构,关注课堂再生资源的挖掘,引导学生对于几何综合习题的有效分解具体的1.在教学中通过“回忆旧知”环节的师生互动过程让95%学生掌握解函数型综合题需要的必备知识储备. 2.在教学中通过一个“一线三等角”模型综合题的有效分析引导过程,让95%的学生树立几何型综合题的解决的信心,让75%的学生能够顺利解决前两小题,培养更多的学生具备解决最后压轴点一小题的能力.3.在教学中通过有效分解策略的实施,打破他们对综合题的畏惧心理,让同学们加深对于题目条件的使用:条件用完,即使题目没有求解完毕,也得到相应的分数,提高问题解决的能力,在这个师生共同探讨的过程中鼓励学生尝试着加强解后反思与培养他们欣赏试题的能力.课后作业1、如图,已知正方形ABCD 的边长为4,P 是射线CD 上一动点. 将一把三角尺的直角顶点与P 重合,一条直角边始终经过点B,另一条直角边所在直线与射线AD 相交于点E. 设CP=x,DE=y. 1当点P 在线段CD 上时,求证:△BPC ∽△PED ;2当点P 在线段CD 的延长线上时,求y 与x 的函数解析式及自变量x 的取值范围; 3当DE=1时,求CP 的长.2、如图,在矩形ABCD 中,E 为AD 的中点,EF EC ⊥交AB 于点F ,联结()FC AB AE >. 1AEF △与EFC △是否相似 若相似,证明你的结论;若不相似,请说明理由; 2设ABk BC=,是否存在这样的k 值,使得AEF BFC △∽△ 若存在,证明你的结论并求出k 的值;若不存在,请说明理由.(第12题)FBCA ED3、等腰△ABC,AB=AC=8,∠BAC=120°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P 点旋转.1如图a,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:△BPE ~△CFP ;2操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F . ① 探究1:△BPE 与△CFP 还相似吗 只需写出结论 ② 探究2:连结EF,△BPE 与△PFE 是否相似 请说明理由; ③ 设EF=m,△EPF 的面积为S,试用m 的代数式表示S .4、如图,在边长为1的正方形ABCD 中,点E 在边BC 上与端点不重合,点F 在射线DC 上. 1若AF =AE ,并设CE =x ,△AEF 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; 2当CE 的长度为何值时,△AEF 和△ECF 相似 3若41=CE ,延长FE 与直线AB 交于点G ,当CF 的长度为何值时,△EAG 是等腰三角形 BCB5、如图,在△ABC 中,AC =BC =2,∠C =900,点D 为腰BC 中点,点E 在底边AB 上,且DE ⊥AD ,则BE 的长为 .6、如图,∆ABC 中,∠ACB=90°,∠A=60°,AC=2,CD ⊥AB,垂足为D.任意作∠EDF=60°,点E 、F 分别在AC 、BC 上.设AE=x,BF=y.1求y 关于x 的函数关系式,并指出它的定义域; 2当x 为何值时,∆BDF 是等腰三角形.7、如图:AB 是等腰直角三角形ABC 的斜边,点M 在边AC 上,点N 在边BC 上,沿直线MN 将△MCN 翻折,使点C 落在AB 上,设其落点为P.1当P 是边AB 中点时,求证:PA CMPB CN =; 2当P 不是边AB 中点时,PA CMPB CN=是否仍然成立 请证明你的结论.8、如图第13题图-1,在Rt △ABC 中,∠C =90°,AC =BC ,D 是AB 边上一点,E 是在AC 边上的一个动点与点A 、C 不重合,DF ⊥DE ,DF 与射线BC 相交于点F ;1如图第13题图-2,如果点D 是边AB 的中点,求证:DE =DF ;EB2如果AD ∶DB =m ,求DE ∶DF 的值;3如果AC =BC =6,AD ∶DB =1∶2,设AE =x ,BF =y ,求y 关于x 的函数关系式,并写出定义域.9、已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=如图14-1. 1当2AD =,且点Q 与点B 重合时如图14-2所示,求线段PC 的长;2在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; 3当AD AB <,且点Q 在线段AB 的延长线上时如图14-3所示,求QPC ∠的大小.第13题图-1第13题图-2AD PQDAPCCADP BC B14-1 B Q14-2 14-3Q。
一线三等角模型经典例题
一线三等角模型经典例题英文回答:The one-to-one correspondence between three lines and three angles is a fundamental concept in geometry. In aone-to-one correspondence, each line corresponds to a unique angle, and vice versa. This concept is often illustrated using the classic example of an equilateral triangle.In an equilateral triangle, all three sides are equalin length, and all three angles are equal in measure. Let's call each angle A, B, and C. According to the one-to-one correspondence, line AB corresponds to angle C, line BC corresponds to angle A, and line AC corresponds to angle B.To further understand this concept, let's consider an example. Imagine you have an equilateral triangle with side length 5 units. According to the one-to-one correspondence, each angle will measure 60 degrees. So, angle A, angle B,and angle C will all be 60 degrees.Now, let's say we want to find the measure of angle A. According to the one-to-one correspondence, angle A corresponds to line BC. Since all sides of the equilateral triangle are equal, line BC will also have a length of 5 units. We can use the formula for the measure of an anglein a triangle to find the measure of angle A. The formula is: angle measure = (side length opposite to the angle / length of the side) 180 degrees. Plugging in the values, we get: angle A = (5 / 5) 180 = 180 degrees.Similarly, we can find the measures of angle B and angle C using the one-to-one correspondence. Angle B corresponds to line AC, and angle C corresponds to line AB. By plugging in the values into the formula, we find that both angle B and angle C also measure 180 degrees.In conclusion, the one-to-one correspondence between three lines and three angles in a one-line three-angle model is a fundamental concept in geometry. It allows us to determine the measure of an angle by corresponding it to aline in the model. This concept is often illustrated using the example of an equilateral triangle. Understanding this concept is crucial for solving geometry problems involving angles.中文回答:一线三等角模型中的一一对应关系是几何学中的基本概念。
专题07 全等三角形经典模型一线三等角模型(四大类型)(原卷版)
专题07 全等三角形经典模型一线三等角模型(四大类型)【题型一:标准“K”型图】【题型二:做辅助线构造“K”型图】【题型三:“K”型图与平面直角坐标综合】【题型四:特殊“K”型图】【方法技巧】模型一一线三垂直全等模型如图一,∠D=∠BCA=∠E=90°,BC=AC。
结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。
结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解【类型一:标准“K”型图】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;CD EBA(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE 之间的等量关系.【变式1-1】如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE ⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE .=1,求S△BFC【类型二:做辅助线构造“K”型图】【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.(1)若∠CAE=20°,求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a,BE=b,CE=c.则△ABC的面积为.(用含a,b,c的式子表示)【变式2-1】已知Rt△ABC和Rt△ADE,AB=AC,AD=AE.连接BD、CE,过点A作AH⊥CE于点H,反向延长线段AH交BD于点F.(1)如图1,当AB=AD时①请直接写出BF与DF的数量关系:BF=DF(填“>”、“<”、“=”)②求证:CE=2AF(2)如图2,当AB≠AD时,上述①②结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【变式2-2】直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF 延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【类型三:“K”型图与平面直角坐标综合】【典例3】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式3-1】如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4)B.(4,3)C.(4,7)D.(3,7)【变式3-4】问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,请直接写出BD、CE、DE的数量关系.拓展延伸:(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC请写出DE、BD、CE三条线段的数量关系,并说明理由.实际应用:(3)如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求B点的坐标.【变式3-5】(1)如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于点D,BE⊥DE于点E,求证:△ADC≌△CEB;(2)如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于点D,BE⊥CE于点E,AD=2.5cm,DE=1.7cm,求BE 的长;(3)如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求点B坐标.【变式3-6】在直角坐标平面内,点A(3,0),点B是第二象限内任意一点(如图所示).线段AB绕点A旋转90°后的图形为AC,连接BC.(1)当线段AB绕点A顺时针旋转时,①如果点B的坐标为(﹣1,2),过点B作BH⊥OA,垂足为点H,直接写出线段AH的长;②如果点B的横坐标为a,且BC∥OA,求点B的纵坐标;(用含a的代数式表示)(2)设点B的坐标为(m,n),直接写出点C的坐标.(用含m、n的代数式表示)【变式3-7】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,P A与CQ有何位置和数量关系,猜想并证明;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.【变式3-8】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式4-1】如图,△ABC为等边三角形,点D为BC边上一点,先将三角板60°角的顶点与D点重合,平放三角板,再绕点D转动三角板,三角板60°角的两边分别与边AB、AC交于点E、点F,当DE=DF时,如图(2)所示.求证:△BDE≌△CFD.【变式4-2】如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.【变式4-3】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.。
重难点01全等三角形中“一线三等角”模型(原卷版)-八年级数学
重难点01全等三角形中“一线三等角”模型1.识别几何模型。
2.利用“一线三等角”模型解决问题图一如图一,∠D=∠BCA=∠E=90°,BC=AC。
结论:Rt△BDC≌Rt△CEA图二如图二,∠D=∠BCA=∠E,BC=AC。
结论:△BEC≌△CDA例题1.如图,∠A=∠B=90°,E 是线段AB 上一点,且AE=BC,∠1=∠2.(1)求证:ADE ≌BEC △;(2)若CD=10,求DEC 的面积.【变式1】.已知,如图,AB⊥BD 于点B,CD⊥BD 于点D,P 是BD 上一点,且AP=PC,AP⊥PC.(1)求证:△ABP≌△PDC(2)若AB=3,CD=4,连接AC,求AC 的长.【变式2】如图1,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别为D、E.(1)求证:△ADC≌△CEB;(2)猜想线段AD、BE、DE 之间具有怎样的数量关系,并说明理由;(3)题设条件不变,根据图2可得线段AD、BE、DE 之间的数量关系是.【变式3】已知:D,A,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD,CE.(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅ ;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD,CE,DE 三条线段之间的数量关系,并说明理由.【变式4】已知:在△ABC中,∠BAC=90°,AB=AC,AE是多点A的一条直线,且BD⊥AE于D,CE⊥AE于点E.当直线AE处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE处于如图2的位置时,则BD、DE、CE的关系如何?请说明理由.例2、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C 重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当DC等于多少是,△ABD≌△DCE?请证明你的结论.一.选择题(共5小题)1.(2021秋•兰陵县期末)如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm 2.(2021秋•合肥期末)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE =ED,BC=20,AB=8,则BE的长度为()A.12B.10C.8D.63.(2020秋•襄汾县期末)如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E 在同一条直线上,连接AE、BD、FG,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④CF=CG,以上结论正确的有()A.1个B.2个C.3个D.4个4.(2021秋•龙湾区期中)如图,OA⊥OB,OB=4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使∠CDO=45°,当P在射线OA上自O向A运动时,PD的长度的变化()A.一直增大B.一直减小C.先增大后减小D.保持不变5.(2021秋•德州期中)如图,A、C、E三点在向一直线上,△ABC、△CDE都是等边三角形,连接AD,BE,OC,则有以下四个结论:①△ACD≌△BCE;②△CPQ是等边三角形;③OC平分∠AOE;④△BPO≌△EDO.其中正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题(共4小题)6.(2021秋•邗江区期末)如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.7.(2021秋•苏州期末)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股定理为背景的邮票.如图,在Rt△ABC中,∠BAC=90°,AC=3,AB=4.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为.8.(2022秋•靖江市月考)如图,在△ABC中,∠ACB为钝角,把边AC绕点A沿逆时针方向旋转90°得AD,把边BC绕点B沿顺时针方向旋转90°得BE,作DM⊥AB于点M,EN⊥AB于点N,若AB=5,EN=2,则DM=.9.(2021秋•江阴市校级月考)如图,在平面直角坐标系中,以A(2,0)、B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C的坐标为(用t的代数式表示).三.解答题(共15小题)10.(2022秋•大丰区月考)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.11.(2022秋•沭阳县月考)已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB=CD,求证:BC=DE.12.(2021秋•沭阳县校级月考)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE的等量关系?并说明理由.13.(2020秋•滨海县月考)如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE ⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.14.(2022秋•嘉峪关期末)如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,点P在BE上,已知AP=PF,∠APF=90°.(1)求证:△ABP≌△PEF;(2)求BE的长.15.(2022秋•新乡期末)已知在平面直角坐标系中,A(4,0),B(0,3),以线段AB 为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°.求点C坐标.16.(2022秋•长沙县期末)在△ABC中,∠ACB=90°,AC=BC,过点C作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)若MN在△ABC外(如图1),求证:MN=AM+BN;(2)若MN与线段AB相交(如图2),且AM=2.6,BN=1.1,则MN=.17.(2022秋•秦淮区校级月考)已知,在△ABC中,AB=AC,D,A,E三点都在直线m 上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s 的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.18.(2022秋•灌云县月考)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.19.(2021秋•东台市月考)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN,BE⊥MN,垂足分别为点D,E.求证:DE=AD+BE.20.(2021秋•沭阳县校级月考)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:.21.(2020秋•灌南县校级月考)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,直接写出DE、AD、BE的关系为:(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.22.(2022秋•东台市月考)【一线三等角模型】如图1:点A、B、C在一条直线上,∠A =∠DBE=∠C,当BD=BE时,有△ABD≌△CEB.理由:∵∠A=∠DBE,∴∠D+∠DBA=180°﹣∠A,∠DBA+∠CBE=180°﹣∠DBE,∴∠D =∠CBE﹣﹣﹣﹣﹣﹣﹣﹣请将全等证明过程补充完整.【模型运用】如图2:∠ABC=∠CAD=90°,AB=4,AC=AD,求△BAD的面积;【能力提升】如图3:在等边△DEF中,A,C分别为DE、DF边上的动点,AE=2CD,连接AC,以AC为边在△DEF内作等边△ABC,连接BF,当点A从点E向点D运动(不与点D重合)时,∠CFB的度数变化吗?如不变请求出它的度数,如变化,请说明它是怎样变化的?23.(2022秋•乌鲁木齐期末)如图,平面直角坐标系中点B(﹣2,0),点A(0,5),以点A为直角顶点在第二象限内作等腰直角三角形ABC,过点C作CE垂直于y轴,垂足为点E,(1)证明:△ABO≌△CAE,并求点C的坐标.(2)在坐标平面内是否存在一点P(不与点C重合),使△PAB与△ABC全等?若存在,求出点P的坐标;若不存在,请说明理由.24.(2022秋•榆树市期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.ABCA.3B.22.(2022秋·八年级课时练习)一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,面这道题:如果每块砖的厚度A.40cm B.48cm3.(2023春·全国·七年级专题练习)如图,AB=6cm,DE=2cm,则BD6.(2022秋·八年级课时练习)如图,直线的直角三角板的顶点A、B、C分别在直线等于,则的长等于EF =__________.8.(2023春·上海·七年级专题练习)如图,AE AB ⊥,且,AE AB BC CD =⊥,且BC CD =,请按照图中所标注的数据计算FH 的长为_______.9.(2023春·全国·七年级专题练习)如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是____cm .三、解答题10.(2022秋·八年级课时练习)如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC 的长.11.(2022秋·八年级课时练习)如图,在ABC 中,AB BC =.(1)如图①所示,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒.求证:MN AM CN =+.(2)如图②所示,直线MN 过点B ,AM 交MN 于点M ,CN 交MN 于点N ,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由.12.(2022秋·江苏·八年级专题练习)问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.13.(2022秋·河南驻马店·八年级统考期末)一个等腰直角三角板如图搁置在两柜之间,且点D ,C ,E 在同一直线上,已知稍高的柜高AD 为80cm ,两柜距离DE 为140cm.求稍矮的柜高BE .14.(2022秋·浙江宁波·八年级校考期中)如图,在Rt ABC △中,90BAC AB AC ∠=︒=,,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,垂足为D ,E .若4cm 3cm BD CE ==,,求DE 的长.(1)判断DF 与DC 的数量关系为,位置关系为(2)如图2,若点D 在线段AB 的延长线上,点中结论是否成立,并说明理由.16.(2022秋·八年级课时练习)(1)尝试探究:AF 是过点A 的一条直线,且B ,C 在AE 线段AD 相等的线段是;DE 与BD 、CE (2)类比延伸:如图②,90ABC ∠=︒,BA 求点C 的坐标.(3)拓展迁移:在(2)的条件下,在坐标平面内找一点△ABC 全等.直接写出点P 的坐标.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,AD =5,BE =2,求线段DE 的长.18.(2023春·全国·八年级专题练习)(1)如图1,等腰直角三角形ABC 的直角顶点在直线l 上.过点A 作AD l ⊥交于点D ,过点B 作BE l ⊥交于点E ,求证:ADC CEB ≅ ;(2)如图2,在平面直角坐标系中,直线124l y x =+:分别与y 轴,x 轴交于点A ,B ,将直线1l 绕点A 顺时针旋转45︒得到2l ,求2l 的函数表达式;(3)如图3,在平面直角坐标系,点()6,4B ,过点B 作AB y ⊥交于点A ,过点B 作BC x ⊥交于点C ,P 为线段BC 上的一个动点,点(),24Q a a -位于第一象限.问点,,A P Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出a 的值;若不能,请说明理由.19.(2022秋·吉林长春·八年级校考期末)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.20.(2022秋·广东惠州·八年级校考期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.21.(2022秋·河北邯郸·八年级校考期中)如图,在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_______︒,BAD ∠=_______︒,AED =∠_______︒;点D 从B 向C 运动时,BDA ∠逐渐变_______(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.22.(2023春·河南洛阳·八年级统考期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A .小华分别过B 、C 两点作直线l 的垂线,垂足分别为点D 、E .易证ABD CAE △△≌,此时,线段DE 、BD 、CE 的数量关系为:_________;(2)拓展应用:如图乙,ABC 为等腰直角三角形,90ACB ∠=︒,已知点C 的坐标为(2,0)-,点B 的坐标为(1,2).请利用小华的发现直接写出点A 的坐标:_____;(3)迁移探究:①如图丙,小华又作了一个等腰ABC ,AB AC =,且90BAC ∠≠︒,她在直线l 上取两点D 、E ,使得BAC BDA AEC ∠=∠=∠,请你帮助小华判断(1)中线段DE 、BD 、CE 的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,ABC 中,2AB AC =,90BAC ∠≠︒,点D 、E 在直线l 上,且BAC BDA AEC ∠=∠=∠,请直接写出线段DE 、BD 、CE 的数量关系.。
专题11 全等三角形中的一线三等角模型(解析版)
专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。
【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。
【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。
【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。
一线三等角典型例题
一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015年山东•德州卷)⑴问题:如图1,在四边形ABCD 中,点P为AB 上一点,/ DPC=/ A=Z B=90 ° .求证:AD- BC=AP - BP.⑵探究:如图2,在四边形ABCD 中,点P为AB上一点,当/ DPC=Z A=Z B=时,上述结论是否依然成立?说明理由.⑶应用:请利用(1)、⑵获得的经验解决问题:如图3,在△ ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足/ DPC=Z A.设点的运动时间为t (秒),当以D为圆心,以DC为半径的圆与A B相切,求t的值.变式1 ( 2012年烟台)(1)问题探究如图6,分别以厶ABC的边AC与边BC为边,向△ ABC外作正方形ACD1E1 和正方形BCD 2E2,过点C 作直线KH交直线AB于点H,使/ AHK = / ACD .作D1M丄KH,D2N丄KH,垂足分别为点M、N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使/ AHK1 = / BH2K2 = / ACD1 . 作D1M ±K 1H1,D2N丄K 2H2,垂足分别为点M、N . D1M = D 2N是否仍成立?若成立,给出证明;若不成立,说明理由.2 如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变.D 1M = D 2N是否仍成立?(要求:在图8中补全图形,注明字母,直接写出结论,不需证明)、添加辅助线后运用基本图形t △ ADE,点在BC 上,例1、在厶ABC中,AB =2,/ B = 45。
,以点A为直角顶点作等腰R 点E在AC上,若CE=5,求CD的长。
例2、(2013年海淀区一模22题最后一问)如图,11、12、13是同一平面内的三条平行线,11、12 之间的距离是21/5,12、13之间的距离是21/10,等边△ ABC的三个顶点分别在11、12、13上,求△ ABC的边长.例3、如图,在矩形纸片A BCD中,AE = 5,EC = 4,在AE 边上取点G,现将纸片沿EG 翻折,使点A落在CD 边上的点F处,当AE=3时,求BG 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形判定的复习:1.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
2.相似三角形的判定定理:(1)两角对应相等两三角形相似。
(2)两边对应成比例且夹角相等,两个三角形相似。
(3)三边对应成比例,两个三角形相似。
3.直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。
相似三角形的性质:要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例 要点2:相似三角形的性质定理:相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方要点3:知识架构图1、如图,锐角ABC 的高CD 和BE 相交于点O ,图中相似三角形有多少对?请分别写出.2、如图,在锐角ABC 中,∠ADE=∠ACB ,图中相似三角形有多少对?请分别写出.3、如图已知∠BAC=∠BDC=90°,8,16==∆∆ADE EBC S S . 问:∠BEC 的大小确定吗?若确定,求期度数;若不确定,请说明理由.ABCDE4、如图,在ABC △中,90BAC ∠=o,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F G ,.求证: (1)EG CGAD CD=; (2)FD ⊥DG .5、如图,四边形ABCD 中,AC 与BD 交于点E ,AC ⊥AB,BD ⊥CD. S EBC =16,S AED =8.(1)求ADBC的值; (2)问:∠BEC 是不是定角?如果是,把它求出来;如果不是,请说明理由.5、如图,在△ABC 中,角ACB 为直角,CD⊥AB 于点D ,又△ACE 与△BCF 都是等边三角形,连结DE 、DF ;求证:DE⊥DF中考热点:一线三等角型的相似三角形一、问题引入如图,ABC ∆中,90B ∠=︒,CD AC ⊥,过D 作DE AB ⊥交BC 延长线与E 。
求证:ABC CED ∆∆:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形其他常见的一线三等角图形(等腰三角形中底边上一线三等角) (等腰梯形中底边上一线三等角)(直角坐标系中一线三等角) (矩形中一线三等角)等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。
此规律需通过认真做题,细细体会。
(1)等腰三角形中一线三等角例1、 如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.讲解:1、本题中,第一问的结论是这类题共同的特性,只要等腰三角形底边上有三等角,必有三角形相似;2、第二问中根据相似求线段的长,也很常见;有时候会反过来问,线段的长是多少是,三角线相似。
变式练习1就是这类题型;3、第三问中间的三角形与左右两个形似时有两种情况,一种是DF 与底边平行,一种是E 为中点;4、在等腰三角形,将腰延长会交于一点,也构成等腰三角形,故而以上三点,在等腰梯形中也适用。
变式练习1 (浦东新区22题)如图,已知等边△ABC 的边长为8,点D 、F 、E 分别在边AB 、BC 、AC 上,3BD =,E 为AC 中点,当△BPD 与△PCE 相似时,求BP 的值.变式练习2(宝山22题) 如图6,已知ΔABC 中,AB AC =,点E 、F 在边BC 上,满足∠EAF =∠C .求证:2BF CE AB ⋅=;变式练习3如图,在三角形ABC 中,AB=4,AC=2,∠A =900,点D 为腰AC 中点,点E 在底边BC 上,且DE ⊥BD ,求△CED 的面积。
变式练习4已知∠ABC=90°,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=,当AD AB p ,且点Q 在线段AB 的延长线上时,求QPC ∠的大小.(2)等腰梯形中一线三等角例1、(长宁区18题)如图,等腰梯形ABCD 中,AD ∥BC ,AD =BC =45B =˚,直角三角板含45度角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若△ABE 为等腰三角形,则CF 的长等于 .例2、如图,梯形ABCD 中,AB ∥DC , ∠B =90°,E 为BC 上一点,且△ABE ∽△ECD 。
(1)若BC =8,AB=3,DC =4,求BE 的长 (2)若BC = ,AB=3,DC =4,求BE 的长. (3)若BC =6,AB=3,DC =4,求BE 的长.例3、如图,梯形ABCD 中,AB ∥CD ,∠ABC=900,AB=8,CD=6,在AB 上取动点P ,连结DP ,作PQ ⊥DP ,使得PQ 交射线BC 与点E ,设AP=x ,BE=y 。
(1)当BC=4时,试求y 关于x 的函数关系式;(2)当BC 在什么范围时,存在点P ,使得PQ 经过点C (直接写出结果)。
例4、(徐汇区25).如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMFB ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EFCD ⊥,求BE 的长.例4、(杨浦区基础考)四边形ABCD 中,AD ∥BC ,()090ABC αα∠=<<o o ,3AB DC ==,5BC =.点P 为射线BC 上动点(不与点B 、C 重合),点E 在直线DC 上,且APE α∠=.记1PAB ∠=∠,2EPC ∠=∠,BP x =,CE y =.(1)当点P 在线段BC 上时,写出并证明1∠与2∠的数量关系;(2)随着点P 的运动,(1)中得到的关于1∠与2∠的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的x 的取值范围; (3)若cos α=13,试用x 的代数式表示y . (3)坐标系中一线三等角例1、(金山区24)如图,住平面直角系中,直线AB :()440y x a a=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC ⊥时 (1)求证:ABO ∆∽BCD ∆;(2)求线段CD 的长(用a 的代数式表示);(3)若直线AE 的方程是1316y x b =-+,求tan BAC ∠的值. 例2、如图,在直角坐标系中,直线122y x =+与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作矩形ABCD,使AD =,求点D的坐标.变式练习1在平面直角坐标系XOY 中,AOB ∆的位置如图所示,已知0060,90=∠=∠A AOB ,点A 的坐标为()1,3-(1) 求点B 的坐标;(2) 若抛物线c bx ax y ++=2经过A 、O 、B 三点,求函数解析式。
变式练习2如图所示:RT △AOB 中∠AO B =90°,OA=4,OB=2,点B 在反比例函数2y x=图像上,求过点A 的双曲线解析式。
变式练习3如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).求过点A 、O 、B 的抛物线的表达式;(4)矩形中一线三等角如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D 处.已知折叠线CE且CE =3tan 4EDA ∠=,求直线CE与x轴交点的坐标; 例6、(长宁区24题).如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E . (1)判断△EAP 与△PDC 一定相似吗?请证明你的结论; (2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在, 请简要说明理由.“一线三等角”专题练习一、知识梳理:1、如图1,AB =AC ,∠ B =∠ADE ,那么一定存在的相似三角形有 ;2、如图2,AB =AC ,∠ B =∠EDF ,那么一定存在的相似三角形有 ;B图1 图23、在等腰△ABC 中,腰长10厘米,底边长16厘米,点P 在底边上以0.5厘米/秒的速度从点B 向点C 移动.当点P运动到PA 与腰垂直的位置时,点P 的运动时间为 秒. 二、经典例题解析1、如图,在ΔABC 中, AB =AC=4,BC =6,∠ B =∠ADE ,点D 、E 分别在BC 、AC 上(点D 与B 、C 不重合),设BD =x ,AE =y ,求y 关于x 的函数解析式及x 的取值范围。
2、如图:在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,DH ⊥BC 于H ,AB = 6,BC = 16,DC = 10,线段BC 上有一动点E (不与点C 重合),过点E 作EF ⊥DC 交线段DC 于点F. (1)求CH 的长;(2)设BE = x ,EF = y ,求y 关于x 的函数解析式及x 的取值范围; (3)当以E 、F 、C 为顶点的三角形与△ABE 相似时,求BE 的长.B3、如图,在Rt △ABC 中,∠ACB =90o ,AB =10,AC =6,点E 、F 分别是边AC 、BC 上的动点,过点E 作ED ⊥AB 于点D ,过点F 作FG ⊥AB 于点G ,DG 的长始终为2. (1)当AD =3时,求DE 的长;(2)当点E 、F 在边AC 、BC 上移动时,设x AD =,y FG =,求y 关于x 的函数解析式,并写出函数的定义域; (3)在点E 、F 移动过程中,△AED 与△CEF 能否相似,若能,求AD 的长;若不能,请说明理由.4、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图3,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMFS S ∆∆=49时,求BP 的长.5、(2009闸北22题)(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)如图七,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA, OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,但是点P 不 与点0、点A 重合.连结CP , D 点是线段AB 上一点,连结PD. (1)求点B 的坐标; (2)当∠C PD=∠OAB,且AB BD =85,求这时点P 的坐标. EDCBA PABC ED GF6、如图,已知在△ABC 中,AB=AC=8,cosB=58,D 是边BC 的中点,点E 、F 分在边AB 、AC 上,且∠EDF=∠B ,连接EF .(1)如果BE=4,求CF 的长; (2)如果EF ∥BC ,求EF 的长.7、(徐汇2009年 25题)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.知识总结:补 充:关于“一线三等角”图形的提炼及变式: 总结:在教学中要突出重点、深化学生对于“一线三等角”模型的理解;把握难点:“一线三等角”模型变式; 通过问题建构,关注课堂再生资源的挖掘,引导学生对于几何综合习题的有效分解具体的1.在教学中通过“回忆旧知”环节的师生互动过程让95%学生掌握解函数型综合题需要的必备知识储备. 2.在教学中通过一个“一线三等角”模型综合题的有效分析引导过程,让95%的学生树立几何型综合题的解决的信心,让75%的学生能够顺利解决前两小题,培养更多的学生具备解决最后压轴点一小题的能力.3.在教学中通过有效分解策略的实施,打破他们对综合题的畏惧心理,让同学们加深对于题目条件的使用:条件用完,即使题目没有求解完毕,也得到相应的分数,提高问题解决的能力,在这个师生共同探讨的过程中鼓励学生尝试着加强解后反思与培养他们欣赏试题的能力.【课后作业】A BC DEFABCD1、如图,已知正方形ABCD 的边长为4,P 是射线CD 上一动点. 将一把三角尺的直角顶点与P 重合,一条直角边始终经过点B ,另一条直角边所在直线与射线AD 相交于点E. 设CP=x ,DE=y. (1)当点P 在线段CD 上时,求证:△BPC ∽△PED ;(2)当点P 在线段CD 的延长线上时,求y 与x 的函数解析式及自变量x 的取值范围; (3)当DE=1时,求CP 的长.2、如图,在矩形ABCD 中,E 为AD 的中点,EF EC ⊥交AB 于点F ,联结()FC AB AE >. (1)AEF △与EFC △是否相似?若相似,证明你的结论;若不相似,请说明理由; (2)设ABk BC=,是否存在这样的k 值,使得AEF BFC △∽△?若存在,证明你的结论并求出k 的值;若不存在,请说明理由.3、等腰△ABC ,AB=AC=8,∠BAC=120°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P ,三角板绕P 点旋转.(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:△BPE ~△CFP ;(2)操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F . ① 探究1:△BPE 与△CFP 还相似吗?(只需写出结论) ② 探究2:连结EF ,△BPE 与△PFE 是否相似?请说明理由; ③ 设EF=m ,△EPF 的面积为S ,试用m 的代数式表示S .4、如图,在边长为1的正方形ABCD 中,点E 在边BC 上(与端点不重合),点F 在射线DC 上. (1)若AF =AE ,并设CE =x ,△AEF 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)当CE 的长度为何值时,△AEF 和△ECF 相似 (3)若41=CE,延长FE 与直线AB 交于点G ,当CF 的长度为何值时,△EAG 是等腰三角形?5、如图,在△ABC 中,AC =BC =2,∠C =900,点D 为腰BC 中点,点E 在底边AB 上,且DE ⊥AD ,则BE 的长为 . 6、如图,ABC 中,∠ACB=90°,∠A=60°,AC=2,CD ⊥AB ,垂足为D.任意作∠EDF=60°,点E 、F 分别在AC 、BC 上.设AE=x ,BF=y.(1)求y 关于x 的函数关系式,并指出它的定义域;EBBA(2)当x 为何值时,BDF 是等腰三角形.7、如图:AB 是等腰直角三角形ABC 的斜边,点M 在边AC 上,点N 在边BC 上,沿直线MN 将△MCN 翻折,使点C 落在AB 上,设其落点为P.(1)当P 是边AB 中点时,求证:PA CMPB CN =; (2)当P 不是边AB 中点时,PA CMPB CN=是否仍然成立?请证明你的结论. 8、如图第13题图-1,在Rt △ABC 中,∠C =90°,AC =BC ,D 是AB 边上一点,E 是在AC 边上的一个动点(与点A 、C 不重合),DF ⊥DE ,DF 与射线BC 相交于点F 。