一线三角模型及例题

一线三角模型及例题
一线三角模型及例题

相似三角形判定的复习:

1.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 2.相似三角形的判定定理:

(1)两角对应相等两三角形相似。 (2)两边对应成比例且夹角相等,两个三角形相似。 (3)三边对应成比例,两个三角形相似。 3.直角三角形相似的判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。 相似三角形的性质:

要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例 要点2:相似三角形的性质定理:

相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方

要点3:知识架构图

1、如图,锐角ABC 的高CD 和BE 相交于点O ,图中相似三角形有多少对?请分别写出.

2、如图,在锐角ABC 中,∠ADE=∠ACB ,图中相似三角形有多少对?请分别写出.

3、如图已知∠BAC=∠BDC=90°,8,16==??ADE EBC S S . 问:∠BEC 的大小确定吗?若确定,求期度数;若不确定,请说明理由.

A

B

C

D

E

4、如图,在ABC △中,90BAC ∠=o

,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂

足分别为F G ,.求证: (1)

EG CG

AD CD

=

; (2)FD ⊥DG .

5、如图,四边形ABCD 中,AC 与BD 交于点E ,AC ⊥AB,BD ⊥CD. S EBC =16,S AED =8.

(1)求

AD

BC

的值; (2)问:∠BEC 是不是定角?如果是,把它求出来;如果不是,请说明理由.

5、如图,在△ABC 中,角ACB 为直角,CD⊥AB 于点D ,又△ACE 与△BCF 都是等边三角形,连结DE 、DF ;

求证:DE⊥DF

中考热点:一线三等角型的相似三角形

一、问题引入

如图,ABC ?中,90B ∠=?,CD AC ⊥,过D 作DE AB ⊥交BC 延长线与E 。

求证:ABC CED ??:

三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形

其他常见的一线三等角图形

(等腰三角形中底边上一线三等角) (等腰梯形中底边上一线三等角)

(直角坐标系中一线三等角) (矩形中一线三等角)

等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。

(1)等腰三角形中一线三等角

例1、 如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作

DEF B ∠=∠,射线EF 交线段AC 于F .

(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.

讲解:1、本题中,第一问的结论是这类题共同的特性,只要等腰三角形底边上有三等角,必有三角形相似;

2、第二问中根据相似求线段的长,也很常见;有时候会反过来问,线段的长是多少是,三角线相似。变式练习1就是这类题型;

3、第三问中间的三角形与左右两个形似时有两种情况,一种是DF 与底边平行,一种是E 为中点;

4、在等腰三角形,将腰延长会交于一点,也构成等腰三角形,故而以上三点,在等腰梯形中也适用。

变式练习1 (浦东新区22题)

如图,已知等边△ABC 的边长为8,点D 、F 、E 分别在边AB 、BC 、AC 上,3BD =,E 为

AC 中

点,当△BPD 与△PCE 相似时,求BP 的值.

变式练习2(宝山22题) 如图6,已知ΔABC 中,AB AC =,点E 、F 在边BC 上,满足∠EAF =∠C .求证:2BF CE AB ?=;

变式练习3

如图,在三角形ABC 中,AB=4,AC=2,∠A =900

,点D 为腰AC 中点,点E 在底边BC 上,且DE ⊥BD ,求△CED 的面积。 变式练习4

已知∠ABC=90°,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD

PC AB

=

,当AD AB p ,且点Q 在线段AB 的延长线上时,求QPC ∠的大小.

(2)等腰梯形中一线三等角

例1、(长宁区18题)如图,等腰梯形ABCD 中,AD ∥BC ,AD =BC =45B =?,直角三角

板含45度角的顶点E 在边BC 上移动,一直角边始终经过点

A ,斜边与CD 交于点F .若△ABE 为等腰三角形,则

CF 的长等于 .

例2、如图,梯形ABCD 中,AB ∥DC , ∠B =90°,E 为BC 上一点,且△ABE ∽△ECD 。

(1)若BC =8,AB=3,DC =4,求BE 的长 (2)若BC = ,AB=3,DC =4,求BE 的长. (3)若BC =6,AB=3,DC =4,求BE 的长.

例3、如图,梯形ABCD 中,AB ∥CD ,∠ABC=900,AB=8,CD=6,在AB 上取动点P ,连结DP ,作PQ ⊥DP ,使得PQ 交射线BC 与点E ,设AP=x ,BE=y 。 (1)当BC=4时,试求y 关于x 的函数关系式;

(2)当BC 在什么范围时,存在点P ,使得PQ 经过点C (直接写出结果)。

例4、(徐汇区25).如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF

B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .

(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF

CD ⊥,求BE 的长.

例4、(杨浦区基础考)四边形

ABCD 中,AD ∥BC ,()090ABC αα∠=<

P 为射线BC 上动点(不与点B 、C 重合),点E 在直线DC 上,且APE α∠=.记1PAB ∠=∠,2EPC ∠=∠,BP x =,CE y =.

(1)当点P 在线段BC 上时,写出并证明1∠与2∠的数量关系;

(2)随着点P 的运动,(1)中得到的关于1∠与2∠的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的x 的取值范围; (3)若cos α=

1

3

,试用x 的代数式表示y . (3)坐标系中一线三等角

例1、(金山区24)如图,住平面直角系中,直线

AB :()4

40y x a a

=

+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,

当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC ⊥时 (1)求证:ABO ?∽BCD ?;(2)求线段CD 的长(用a 的代数式表示);

(3)若直线AE 的方程是

13

16

y x b =-

+,求tan BAC ∠的值. 例2、如图,在直角坐标系中,直线1

22

y x =+与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作矩形

ABCD,使AD =,求点D的坐标.

变式练习1

在平面直角坐标系XOY 中,AOB ?的位置如图所示,已知0

060,90=∠=∠A AOB ,点A 的坐标为(

)

1,

3-

(1) 求点B 的坐标;

(2) 若抛物线c bx ax y ++=2

经过A 、O 、B 三点,求函数解析式。

变式练习2

如图所示:RT △AOB 中∠AO B =90°,OA=4,OB=2,点B 在反比例函数

2

y x

=

图像上,求过点A 的双曲线解析式。

变式练习3

如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).求过点A 、O 、B 的抛物线的表达式;

(4)矩形中一线三等角

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D 处.已知折叠线CE

且CE =

3

tan 4

EDA ∠=

,求直线CE与x轴交点的坐标; 例6、(长宁区24题).如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E . (1)判断△EAP 与△PDC 一定相似吗?请证明你的结论; (2)设PD x =,AE y =,求

y 与x 的函数关系式,并写出它的定义域;

(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在, 请简要说明理由.

“一线三等角”专题练习

一、知识梳理:

1、如图1,AB =AC ,∠ B =∠ADE ,那么一定存在的相似三角形有 ;

2、如图2,AB =AC ,∠ B =∠EDF ,那么一定存在的相似三角形有 ;

B

图1 图2

3、在等腰△ABC 中,腰长10厘米,底边长16厘米,点P 在底边上以0.5厘米/秒的速度从点B 向点C 移动.当点P

运动到PA 与腰垂直的位置时,点P 的运动时间为 秒. 二、经典例题解析

1、如图,在ΔABC 中, AB =AC=4,BC =6,∠ B =∠ADE ,点D 、E 分别在BC 、AC 上(点D 与B 、C 不重合),设BD =x ,AE =y ,求y 关于x 的函数解析式及x 的取值范围。

2、如图:在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,DH ⊥BC 于H ,AB = 6,BC = 16,DC = 10,线段BC 上有一动点E (不与点C 重合),过点E 作EF ⊥DC 交线段DC 于点F. (1)求CH 的长;

(2)设BE = x ,EF = y ,求y 关于x 的函数解析式及x 的取值范围; (3)当以E 、F 、C 为顶点的三角形与△ABE 相似时,求BE 的长.

B

3、如图,在Rt △ABC 中,∠ACB =90o ,AB =10,AC =6,点E 、F 分别是边AC 、BC 上的动点,过点E 作ED ⊥AB 于点D ,过点F 作FG ⊥AB 于点G ,DG 的长始终为2. (1)当AD =3时,求DE 的长;

(2)当点E 、F 在边AC 、BC 上移动时,设x AD =

,y FG =,

求y 关于x 的函数解析式,并写出函数的定义域; (3)在点E 、F 移动过程中,△AED 与△CEF 能否相似,

若能,求AD 的长;若不能,请说明理由.

4、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图3,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;

(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直

线AD 于点M ,那么

①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;

②当BEP DMF

S S ??=4

9

时,求BP 的长.

5、(2009闸北22题)(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)

如图七,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA, OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,但是点P 不 与点0、点A 重合.连结CP , D 点是线段AB 上一点,连结PD. (1)求点B 的坐标; (2)当∠C PD=∠OAB,且

AB BD =8

5

,求这时点P 的坐标. E

D

C

B

A P

A

B

C E

D G

F

6、如图,已知在△ABC 中,AB=AC=8,cosB=5

8

,D 是边BC 的中点,点E 、F 分在边AB 、AC 上,且∠EDF=∠B ,连接EF .

(1)如果BE=4,求CF 的长; (2)如果EF ∥BC ,求EF 的长.

7、(徐汇2009年 25题)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D

为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;

(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.

知识总结:

补 充:关于“一线三等角”图形的提炼及变式: 总结:

在教学中要突出重点、深化学生对于“一线三等角”模型的理解;把握难点:“一线三等角”模型变式; 通过问题建构,关注课堂再生资源的挖掘,引导学生对于几何综合习题的有效分解具体的

1.在教学中通过“回忆旧知”环节的师生互动过程让95%学生掌握解函数型综合题需要的必备知识储备. 2.在教学中通过一个“一线三等角”模型综合题的有效分析引导过程,让95%的学生树立几何型综合题的解决的信心,让75%的学生能够顺利解决前两小题,培养更多的学生具备解决最后压轴点一小题的能力.

3.在教学中通过有效分解策略的实施,打破他们对综合题的畏惧心理,让同学们加深对于题目条件的使用:条件用完,即使题目没有求解完毕,也得到相应的分数,提高问题解决的能力,在这个师生共同探讨的过程中鼓励学生尝试着加强解后反思与培养他们欣赏试题的能力.

【课后作业】

A B

C D

E

F

A

B

C

D

1、如图,已知正方形ABCD 的边长为4,P 是射线CD 上一动点. 将一把三角尺的直角顶点与P 重合,一条直角边始

终经过点B ,另一条直角边所在直线与射线AD 相交于点E. 设CP=x ,DE=y. (1)当点P 在线段CD 上时,求证:△BPC ∽△PED ;

(2)当点P 在线段CD 的延长线上时,求y 与x 的函数解析式及自变量x 的取值范围; (3)当DE=1时,求CP 的长.

2、如图,在矩形ABCD 中,E 为AD 的中点,EF EC ⊥交AB 于点F ,联结()FC AB AE >. (1)AEF △与EFC △是否相似?若相似,证明你的结论;若不相似,请说明理由; (2)设

AB

k BC

=,是否存在这样的k 值,使得AEF BFC △∽△?若存在,证明你的结论并求出k 的值;若不存在,请说明理由.

3、等腰△ABC ,AB=AC=8,∠BAC=120°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在

点P ,三角板绕P 点旋转.

(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:△BPE ~△CFP ;

(2)操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F . ① 探究1:△BPE 与△CFP 还相似吗?(只需写出结论) ② 探究2:连结EF ,△BPE 与△PFE 是否相似?请说明理由; ③ 设EF=m ,△EPF 的面积为S ,试用m 的代数式表示S .

4、如图,在边长为1的正方形ABCD 中,点E 在边BC 上(与端点不重合),点F 在射线DC 上. (1)若AF =AE ,并设CE =x ,△AEF 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)当CE 的长度为何值时,△AEF 和△ECF 相似 (3)若4

1

=

CE

,延长FE 与直线AB 交于点G ,当CF 的长度为何值时,△EAG 是等腰三角形?

5、如图,在△ABC 中,AC =BC =2,∠C =900

,点D 为腰BC 中点,点E 在底边AB 上,且DE ⊥AD ,则BE 的长为 . 6、如图,ABC 中,∠ACB=90°,∠A=60°,AC=2,CD ⊥AB ,垂足为D.任意作∠EDF=60°,点E 、F 分别在AC 、BC 上.设AE=x ,BF=y.

(1)求y 关于x 的函数关系式,并指出它的定义域;

E

B

B

(2)当x 为何值时,BDF 是等腰三角形.

7、如图:AB 是等腰直角三角形ABC 的斜边,点M 在边AC 上,点N 在边BC 上,沿直线MN 将△MCN 翻折,使点C 落在AB 上,设其落点为P.

(1)当P 是边AB 中点时,求证:

PA CM

PB CN =

; (2)当P 不是边AB 中点时,PA CM

PB CN

=

是否仍然成立?请证明你的结论. 8、如图第13题图-1,在Rt △ABC 中,∠C =90°,AC =BC ,D 是AB 边上一点,E 是在AC 边上的一个动点(与点A 、C 不重合),DF ⊥DE ,DF 与射线BC 相交于点F 。

(1)如图第13题图-2,如果点D 是边AB 的中点,求证:DE =DF ; (2)如果AD ∶DB =m ,求DE ∶DF 的值;

(3)如果AC =BC =6,AD ∶DB =1∶2,设AE =x ,BF =y ,求y 关于x 的函数关系式,并写出定义域.

9、已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足

PQ AD

PC AB

=

(如图14-1). (1)当2AD =,且点Q 与点B 重合时(如图14-2所示),求线段PC 的长;

(2)在图8中,联结AP .当3

2AD =

,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBC

S y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; (3)当AD AB <,且点Q 在线段AB 的延长线上时(如图14-3所示),求QPC ∠的大小.

第13题图-1

第13题图-2

A

D P

C

B

Q 14-1

D

A

P

C

B

(Q ) 14-2

14-3

C

A

D

P

B Q

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

(完整word版)几何模型:一线三等角模型.docx

一线三等角模型 一 . 一线三等角概念 “一线三等角” 是一个常见的相似模型, 指的是有 三个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角, 也可以是锐角或钝角。 不同地区对此有不同的称呼, “K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角” 。二 . 一线三等角的分类 全等篇 C D D C A P B A P B 锐角 直角 D D D C A P B 同侧 钝角 D A A B P P B A B P C C 相似篇 C 异侧 D C D C A P B A P B 锐角 直角 D D C A P B 同侧 钝角 D D A B P A B P A B P C C C 异侧 三、“一线三等角”的性质 1. 一般情况下,如图 3-1 ,由∠ 1=∠ 2=∠ 3,易得△ AEC ∽△ BDE. 2. 当等角所对的边相等时,则两个三角形全等 . 如图 3-1 ,若 CE=ED ,则△ AEC ≌△ BDE.

3.中点型“一线三等角” 如图 3-2,当∠ 1=∠2=∠3,且 D 是 BC 中点时,△ BDE∽△ CFD∽△ DFE. 4. “中点型一线三等角“的变式( 了解 ) 如图 3-3,当∠ 1=∠2 且BOC 901 BAC 时,点O是△ABC的内心.可以考虑构2 造“一线三等角”. 如图 3- 4“中点型一线三等角”通常与三角形的内心或旁心相关, BOC901 BAC 这是内心的性质,反之未必是内心. 2 在图 3-4(右图)中,如果延长BE 与 CF,交于点 P ,则点 D 是△ PEF 的旁心 . 5.“一线三等角”的各种变式(图 3-5 ,以等腰三角形为例进行说明) 图 3-5 其实这个第 4 图,延长 DC 反而好理解 . 相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况 . a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,不上“一等角”构造模型解题;

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

相似三角形模型分析大全

. 第一部分相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

. (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。 8字 型 拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解 母子型相似三角形 例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠.

例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于 E 、 F . 求证:EG EF BE ?=2 . 点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习: 1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .

求证:OE OA OC ?=2 . 2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

几何模型:一线三等角模型知识讲解

几何模型:一线三等 角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 同侧 锐角直角钝角 P 异侧 相似篇 A 同侧锐角直角钝角 异侧

三、“一线三等角”的性质 1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE. 3.中点型“一线三等角” 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1 902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 902 BOC BAC ∠=?+∠这是内心的性质,反之未必是内心. 在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 ) 图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

初三数学:相似三角形常见模型

相似三角形常见模型一 【知识清单】 【典例剖析】 知识点一:A 字型的相似三角形 A 字型、反A 字型(斜A 字型) B (平行) B (不平行) (1)如图,若BC DE ∥,则ABC ADE ∽△△

(2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连 接 DE ,可得?=∠+∠180C BDE ,线段BC DE 21= ,AE AD 3 2 =,求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, ::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 F E D C B A C B D E M 1F 1E 1M E F A B C M N A B C D E F

知识点二:8字型相似三角形 B C C (蝴蝶型) (平行)(不平行) (1)如图,若CD AB∥,则DOC AOB∽△ △ (2)如图,若C A∠ = ∠,则CDJ ABJ∽△ △ 1、已知,P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD,BC,CD的延长线,AB的延长线分别相交于点E,F,G,H 求证: PE PH PF PG = 2、如图,设 AB BC CA AD DE EA ==,求证:12 ∠=∠ 变式练习: 1、(2010?威海)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1. P H G F E D C B A E

一线三等角模型、双垂直模型[自己总结]

如图,AB=12 米,CA⊥AB 于点A,DB⊥ AB 于点B,且AC=4 米,点P 从 B 向 A 运动, 每分钟走1米,点Q从B点向D 运动,每分钟走2米,P、Q两点同时出发,运动几分钟 如图①所示,在△ABC 中,∠C=90°,AC=BC,过点 C 在△ABC 外作直线MN,AM⊥M N 于点M,BN⊥MN 于点N. (1)求证:MN=AM+BN. (2)如图②.若过点C 直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于N,(1)中的 结论是否仍然成立?说明理由. 图① 图②

如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC. 1)求证:AM 平分∠DAB 2)试说明线段DM与AM有怎样的位置关系? 3)线段CD、AB、AD间有怎样的关系?直接写出结果。 如图,△ABE≌△EDC,E 在BD 上,AB⊥BD,垂足为B,△AEC 是等腰直角三角形吗?为什么?

练3】正方形ABCD,E 是BC上一点,AE ⊥EF,交∠DCH 的平分线于点F,求证AE=EF

交AC 于点E,CB 的延长线于点F。求证:AB=BF 。(8 分) 如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE, (1)试判断AC与CE的位置关系,并说明理由. (2)若将CD沿CB方向平移得到图②③④⑤的情形,其余条件不变,此时第(1)问中AC与CE的位置关系还成立吗?结论还成立吗?请任选一个说明理由. 如图,在△ABC 中,AB=AC,DE 是过点A 的直线,BD⊥DE 于D,CE⊥DE 于点E;如图所示,在Rt ABC中,ABC = 90,

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

相似三角形常见模型与型例题讲解

第一部分 相似三角形模型分析 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) B C D E (平行) C B D E (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G B E F

一线三等角的变形一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2) DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G , 使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各 5分) 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为 y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. 双垂型 1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED 2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3, A C D E B D E A B C A B P D E (第25题图) G M F E H D C B A

相关文档
最新文档