一线三等角模型

合集下载

初二《全等三角形》数学模型之“一线三等角”模型

初二《全等三角形》数学模型之“一线三等角”模型

初二《全等三角形》数学模型之“一线三等角”模型.doc在初中数学中,全等三角形是一个重要的知识点,其中有许多模型。

掌握好这些模型,对于研究几何和提高成绩都有帮助。

今天我要介绍的是“一线三等角”模型。

这个模型贯穿初中几何的始终,也是相似三角形一个非常重要的知识点。

一线三等角”是指三个相等的角的顶点在同一条直线上。

例如,如果在直线AB上,有∠1=∠2=∠3,那么这就是一个“一线三等角”模型。

对于这个模型,我们可以得到以下性质:1.只要题目中满足“一线三等角”的条件,三角形必相似。

2.如果题目中还有对应边相等的条件,那么三角形就必全等。

一线三等角”模型常见的背景图形包括正方形、等边三角形、等腰三角形等等。

例如,正方形ABCD中,有一个直角的顶点在边AB上。

又如,等腰直角三角形ABC中,有一个45°角的顶点在边AB上。

下面以一个例题来说明如何运用“一线三等角”模型:已知在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE。

解析:因为BD⊥直线m,CE⊥直线m,所以有∠BDA=∠CEA=90°。

又因为∠BAC=90°,所以∠BAD+∠CAE=90°。

又∠BAD+∠ABD=90°,所以∠CAE=∠ABD。

因为AB=AC,所以△ADB≌△CEA,从而AE=BD,AD=CE。

因此,XXX。

如果将条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角。

请问结论DE=BD+CE是否成立?如果成立,请给出证明;如果不成立,请说明理由。

一线三等角模型

一线三等角模型

几何模型04——一线三等角一、一线三等角(45度)基本图形:例1.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接PA,PC,若∠CPA =∠ABO,求m的值.解:作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CP A>45°,故不合题意.所以m>0.因为∠CP A=∠ABO=45°,所以∠BP A+∠OPC=∠BAP+∠BP A=135°,即∠OPC=∠BAP,则∠PCD∠∠APB,所以=,即=,解得m=12.例2.如图,∠ABC中,AB=3,∠B=45°,以点A为直角顶点作等腰Rt∠ADE,点D在BC上,点E在AC上,若CE=2,求CD的长解:过点E作EF与CD交于点F,使∠EFD=45°,过点E作EG∠CD,∠∠B=∠ADE=45°,∠∠BAD=∠EDF,∠∠ABD∠∠DFE,∠,∠∠ADE是等腰直角三角形,∠DE=AD,∠AB=3,∠DF=3,∠∠EFD=45°,∠AED=45°,∠∠EFC=∠DEC=135°,∠∠EFC∠∠DEC,∠,∠EC=2,∠EC2=FC•CD=FC•(3+FC),∠(2)2=FC(3+FC),∠FC2+3FC﹣20=0,解得:FC=﹣5(舍)或2.∠CD=DF+FC=2+3=5练习1.已知:点A(0,4),B(0,﹣6),C为x轴正半轴上一点,且满足∠ACB =45°,求OC提示:练习2.如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,求点P的坐标.二、一线三等角(60度)基本图形:例3.如图,正∠ABC中,P为BC上一点,D为AC上一点,∠APD=60°,BP=1,2D3C ,则∠ABC的边长为.解:设∠ABC的边长为x,∠∠ABC是等边三角形,∠∠DCP=∠PBA=60°.∠∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∠∠BAP=∠CPD.∠∠ABP∠∠CPD.∠,∠=.∠x=3.即∠ABC的边长为3.练习3.如图,∠ABC为等边三角形,D是BC边上一点,在AC边上取一点F,使CF=BD,在AB上取一点E,使BE=DC,则∠EDF=.三、一线三垂直基本图形:例4.(1)如图1,∠ABC为等腰直角三角形,AC=BC,AC∠BC,点A(0,3),C(1,0),求点B的坐标;(2)如图2,∠ABC为等腰直角三角形,AC=BC,AC∠BC,点A(﹣1,0),C(1,3),求点B的坐标;(3)如图3,∠ABC为等腰直角三角形,AC=AB,AC∠AB,点B(2,2),C (4,﹣2),求点A的坐标.解:(1)如图,作BD∠x轴于D点,∠BD∠x轴于D点,∠∠AOC=∠CDB=90°,∠∠ACB=90°,∠∠ACO+∠BCD=90°,∠∠ACO+∠OAC=90°,∠∠OAC=∠BCD,在∠AOC和∠CDB中,,∠∠AOC∠∠CDB(AAS),∠CD=AO,OC=BD,∠点C(1,0),A(0,3),∠OC=1,BD=1,CD=3,∠OD=4,∠点B的坐标为(4,1);(2)如图2,过点C作直线l∠x轴,作AE∠l于E,BF∠l于F,∠∠ACB是等腰直角三角形,∠AC=BC,∠AEC=∠ACB=∠BFC=90°,∠∠ACE+∠EAC=90°,∠ACE+∠BCF=90°,∠∠EAC=∠BCF,在∠AEC和∠CFB中,,∠∠AEC∠∠CFB(AAS),∠AE=CF=3,BF=EC=2,∠EF=5,∠点B的坐标为(4,1);(3)如图3,过点A作直线l∠y轴,过点B作BE∠l于点E,过点C作CF∠l 于点F∠BE∠l,CF∠l,∠∠BEA=∠CF A=90°=∠BAC,∠∠BAE+∠CAF=90°=∠BAE+∠ABE,∠∠ABE=∠CAF,在∠ABE和∠CAF中,,∠∠ABE∠∠CAF(AAS),∠BE=AF,CF=BE,设点A(m,n),∠点B(2,2),C(4,﹣2),∠2﹣n=4﹣m,n+2=2﹣m,∠m=1,n=﹣1,∠点A的坐标为(1,﹣1)练习4.如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B,最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为()A.4米B.4.5米C.5米D.5.5米例5.已知直线l1:y=﹣x+4与x、y轴分别交于点A、B,直线l2过点B,且与l1的夹角等于45°,如图2,求直线l2的函数表达式.解:由y=﹣x+4得,OB=4,OA=3,作∠BAC=90°,交l2于C,作CD∠OA于D,∠∠ABC=45°,∠可得∠BAC是等腰直角三角形,由上知:∠AOB∠∠CDA,∠AD=OB=4,CD=OA=3,∠OD=OA+AD=7,∠C(7,3),设l2的解析式是:y=kx+b,∠,∠,∠y=﹣x+4,练习5.如图,将边长为5的正方形OACD放在平面直角坐标系中,O是坐标原点,点D的横坐标为3,求A的坐标.练习6.如图,在∠ABC中,∠BAC=60°,∠ABC=90°,直线l1∠l2∠l3,l1与l2之间的距离为1,l2与l3之间的距离等于2,且l1、l2、l3分别经过点A、B、C,则边AC的长为.练习7.如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ∠EP,交CD于点Q,则CQ的最大值为()A.6 B.2C.3 D.4例6.如图,直角梯形ABCD中,AD∠BC,AB∠BC,AD=3,BC=5,将腰DC 绕点D逆时针方向旋转90°至DE,连接AE,求∠ADE的面积解:过点D作DG垂直于BC于G,过E作EF垂直于AD交AD的延长线于F,∠∠EDF+∠CDF=90°,∠CDF+∠CDG=90°,∠∠EDF=∠CDG,又∠∠EFD=∠CGD=90°,DE=DC,∠∠EDF∠∠CDG(AAS),∠EF=CG,∠CG=BC﹣BG=5﹣3=2,∠EF=2,∠S∠ADE=×AD×EF=×3×2=3.练习8.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B 三点共线,AB=4,则阴影部分的面积是.练习8.已知,如图,Rt∠ABC中,∠ACB=90°,AC=BC,D为BC上一点,CE∠AD 于E,若CE=2,则S∠BEC=.例6.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,求点C的坐标解:如图,过B作BF∠AC于F,过F作FD∠y轴于D,过A作AE∠DF于E,则∠ABF为等腰直角三角形,易得∠AEF∠∠FDB,设BD=a,则EF=a,∠点A(2,3)和点B(0,2),∠DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∠AE+OD=3,∠2﹣a+2﹣a=3,解得a=,∠F(,),设直线AF的解析式为y=k'x+b,则,解得,∠y=3x﹣3,解方程组,可得或,∠C(﹣1,﹣6),练习9.如图,已知点A(3,3),点B(0,2),点A在二次函数y=x2+bx﹣9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交二次函数图象于点C,则点C的坐标为.练习10.如图,已知抛物线y=x2+2x﹣3过点A(1,0),B(0,﹣3),与x轴交于另一点C.若在第三象限的抛物线上存在点P,使∠PBC为以点B为直角顶点的直角三角形,求点P的坐标;解:过点P作PD∠y轴,垂足为D,令y=0,得x2+2x﹣3=0,解得x1=﹣3,x2=1,∠点C(﹣3,0),∠B(0,﹣3),∠∠BOC为等腰直角三角形,∠∠CBO=45°,∠PB∠BC,∠∠PBD=45°,∠PD=BD.∠可设点P(x,﹣3+x),则有﹣3+x=x2+2x﹣3,∠x=﹣1,∠P点坐标为(﹣1,﹣4);四、一线三等角(普通角度)例7.如图,在平面直角坐标系中,点O为坐标原点,直线y=,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=,设点P的横坐标为t,∠ABC的面积为S,求S与t的函数关系;解:过点A作EA∠AB交PC于点E,过E点作EG∠y轴,垂足为G,过点P作PF∠y轴,垂足为F,∠∠P AE=90°,∠∠P AF+∠EAG=90°,∠∠P AF+∠APF=90°,∠∠APF=∠EAG,∠∠EGA=∠AFP=90°,∠∠AEG∠∠P AF,∠tan∠APC=,∠==,设P(t,),则PF=﹣t,AF=﹣,∠AG==﹣,EG==﹣,∠点A的坐标为:(0,2),∠E(),设PE的解析式为:y=ax+b,由P(t,),E()可得:,解得:,∠C(0,2﹣),∠AC=2﹣﹣2=﹣,∠BO=4,∠S==﹣t,练习11.如图,在∠ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),点D,F分别在边AB,AC上,且满足∠DEF=∠B.(1)求证:∠BDE∠∠CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.五、课后练习1.如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC、GA、GF.已知AG∠GF,AC=,则AB的长为()A.B.2B.C.D.2.如图,正方形ABCD中,M为BC上一点,ME∠AM,ME交AD的延长线于点E,若AB=12,BM=5,则DE的长为()A.B.18B.C.D.3.如图所示,已知∠ABC中,∠BAC=45°,AD∠BC于D,BD=2,CD=3,试求AD的长.4.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是.5.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.如图,当点A 的横坐标为﹣时,则点B的坐标为.6.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.7.如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;。

(完整版)几何模型:一线三等角模型

(完整版)几何模型:一线三等角模型

一线三等角模型一.一线三等角概念“一线三等角”是一个常见的相似模型, 上构成的相似图形,这个角可以是直角, 不同的称呼,“K 形图”, 二•一线三等角的分类 全等篇指的是有三个等角的顶点在同一条直线 也可以是锐角或钝角。

不同地区对此有 “弦图”三、“一线三等角” 1. 一般情况下,如图2•当等角所对的边相等时,则两个三角形全等 易得△ AE3A BDE..如图 3-1,若 CE=ED 则厶 AE3A BDE.锐角同侧异侧相似篇 锐角同侧异侧“三垂直”,等,以下称为“一线三等角”。

的性质3-1,由/1 = / 2=7 3,AVABOCff构造模型解题在图3-4造“一线三等角如图3- 4 如图3-3,当/仁/ 2且 BOC 90 4•“中点型一线三等角“的变式(了中点时,△ BD 0A CFS A DFE.阳3-13.中点型“一线三等角”如图3-2,当/仁/ 2=7 3,且 D 是BC^3-3图 3^“中点型一线三等角”通常与三角形的内心或旁心相关,1 90BAC 这是内心的性质,反之未必是内心 .2(右图)中,如果延长 BE 与CF ,交于点P ,则点D 是厶PEF 的旁心-BAC 时,点0是厶ABC 的内心.可以考虑构 25.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明图3-5其实这个第4图,延长DC 反而好理解.相当于两侧型的,不延长理解,以为 是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进 行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况.a. 图形中已经存在“一线三等角”,直接应用模型解题;b. 图形中存在“一线二等角”,不上“一等c.图形中只有直线上一个角,不上“二等角”构造模型解题•体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题•2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在x 轴或y轴(也可以是平行于x轴或y轴的直线)上构造线三等角解决问题更是重要的手段•3.构造一线三等角的步骤:找角、定线、构相似在DC的延长銭上截取CE= —, CD的延怅:規上藪取DF= —>贝I」mZAEP= t3nZPFB= t3M J»JZAEP= ZPFH= a= ZAPR ,所1^APAlw ABPF .在CP上蔵取CE= —, 1£ DP蒙取DF=—,则tmZAEC= tanZBFD=taDGiWlZAEC= ZBFD= a= ZA?B^^iPAE«iBPF ・坐标系中,要讲究“线”的特殊性如图3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过C、D两点作直线I的垂线是必不可少的。

几何模型:一线三等角模型知识讲解

几何模型:一线三等角模型知识讲解

几何模型:一线三等角模型一线三等角模型.一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线“弦图”等,以下称为“一线三等角”。

有不同的称呼,K形图”,“三垂直”,上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此同侧异侧二•一线三等角的分类全等篇图3-13.中点型“一线三等角如图 3-2,当/ 1=7 2=7 3,且 D 是 BC中点时,△ BD 0A CFS A DFE. 三、“一线三等角”的性质1. 一般情况下,如图 3-1,由/ 1 = / 2=7 3,易得△ AE3A BDE.2.当等角所对的边相等时,则两个三角形全等 .如图3-1,若CE=ED,则厶AEC^A BDE.4.“中点型一线三等角“的变式(了解)如图3-3,当7仁7 2且 BOC 90如图3- 4 “中点型一线三等角”通常与三角形的内心或旁心相关,图3-5其实这个第4图,延长DC 反而好理解.相当于两侧型的,不延长理解,以为 是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进 行解题 四、“一线三等角”的应用-BAC 时,点0是厶ABC 的内心.可以考虑构2造“一线三等等角”的各种变式3-5,以等腰三角形为例进行说明 在图3-4 (右图)中,如果延长 BE 与CF ,交于点P ,则点D 是厶PEF 的旁心.J K”BOC 901BAC 这是内心的性质,反之未必是内心 25.“C 、1. “一线三等角”应用的三种情况•a. 图形中已经存在“一线三等角”,直接应用模型解题;b. 图形中存在“一线二等角”,不上“一等角”构造模型解题;c. 图形中只有直线上一个角,不上“二等角”构造模型解题.体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题.2. 在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在x轴或y轴(也可以是平行于x轴或y轴的直线)上构造线三等角解决问题更是重要的手段.3. 构造一线三等角的步骤:找角、定线、构相似»IJtmZAEC=tan^BFD^ tana iWJZAEC^ ZBFD=a= ZAPS i所以AP/L E S ABPF・坐标系中,要讲究“线”的特殊性如图3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过D两点作直线I的垂线是必不可少的。

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

《一线三等角模型》课件

《一线三等角模型》课件

在建筑设计中,一线三 等角模型可防止建筑形 态过于普通化,同时保 证建筑的美学性与功能 性。
一线三等角模型的应用领域
室内设计
可以用于设计会议室、酒店等 场所。
建筑设计
可以用于设计公共建筑、景观 等。
家具设计
可以用于设计桌椅、灯具等家 具。
建模方法
1
建立坐标系
根据设计需求,建立二维坐标系。
2
构造一线三等角模型的形式
《一线三等角模型》PPT 课件
本PPT课件将介绍一线三等角模型的建模方法和应用,以及如何用Python实 现该模型。
什么是一线三等角模型?
1 基本概念
一条长度为1的线段在 平面上,等分成三段, 依次连接首尾得到一个 三角形,这即为一线三 等角模型。
2 特性
3 优点
等边、等角、狭长、占 用空间小、视觉上飘逸、 新颖。
上海环球金融中心 建筑设计
建筑主体外形线条流畅,中 心部分采用一线三等角模型 造型,整个建筑寓意成长、 挑战和超越。
实战演示
1
怎样运用Python实现一线三等角模型
介绍程序员如何使用Python语言进行一线三等角模型的建模和参数化,方便后 续分析应用。
2
ห้องสมุดไป่ตู้
实战演示案例
通过一线三等角模型和Python语言实现的案例,展示该模型方法和应用的可行 性。
总结
一线三等角模型的应用前景
这一模型的美学和实用性优点促进了其在设计领域中的广泛应用,未来发展前景广阔。
未来的研究与发展方向
未来的研究将着重在拓展该模型的应用领域,提高建模准确性和自动化程度。
在坐标系中,通过角平分线和圆心等方法构造出一线三等角模型。
3

全等之一线三等角模型(含答案)

全等之一线三等角模型(含答案)

全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌(1)(2)1.如图,正方形的顶点在直线上,,于点,于点.求证:≌.若,求点到直线的距离.2.如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .(1)(2)3.如图,在中,,,于点,于点,,.求证:.求线段的长度.4.如图,点在线段上,,,,且,,,,求的度数.5.如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则 .6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .(1)(2)7.如图,,,,,垂足分别为,.证明:≌.若,,求的长.(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .A. B. C. D.10.如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)(3)12.如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:A. B. C. D.13.如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).14.如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 15.如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图图图图(1)(2)(3)17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)(1)(2)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:①如图①,若,,则;(填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌【备注】【教法指导】通过例1.1可以详细给学生示范一下三垂直模型的书写过程,其中倒角用的是“同角的余角相等”,提醒书生注意1.如图,正方形的顶点在直线上,,于点,于点.(1)(2)(1)(2)【解析】【标注】求证:≌.若,求点到直线的距离.【答案】(1)(2)证明见解析..∵四边形是正方形,,,∴,,,∴,,∴,∴在与中,,∴≌.过作,∵四边形是正方形,,∴,,,,∴,,,∴在与中,,∴≌,∴,∴在中,,,,∴点到直线的距离.【知识点】正方形与全等综合2.【解析】【标注】如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .【答案】∵四边形是正方形,∴,,∵则是直角三角形,∴,,又∵,∴,在和中,,∴≌,∴,∴.【知识点】三垂直模型3.如图,在中,,,于点,于点,,.(1)(2)(1)(2)【解析】【标注】求证:.求线段的长度.【答案】(1)(2)证明见解析..∵,,,∴,,∴,在和中,,∴≌,∴.∵≌,∴,,∴.【知识点】三垂直模型4.【解析】如图,点在线段上,,,,且,,,,求的度数.【答案】.连接、.∵,,.∴.【标注】在和中,∴≌∴,,∴.∴为等腰三角形.同理可得为等腰三角形.∴..【能力】分析和解决问题能力【知识点】SAS【知识点】全等三角形的性质5.【解析】【标注】如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则.【答案】由三垂直模型易证≌,∴.【知识点】坐标与距离;三垂直模型6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .【解析】【标注】【答案】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【知识点】根据坐标描点、根据点写坐标;三垂直模型(1)(2)7.(1)【解析】如图,,,,,垂足分别为,.证明:≌.若,,求的长.【答案】(1)(2)证明见解析..∵,,,∴,∴,,∴,在和中,(2)【标注】,∴≌.∵≌,∴,,∴().【知识点】一线三等角模型(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图【答案】(1)(2)(3)证明见解析.证明见解析..(1)(2)(3)【解析】【标注】∵中,,∴,又直线经过点,且于,于,∴,∴,∴,在和中,,∴≌(),∴,,∴.∵中,,直线经过点,且于,于,∴,,而,∴≌,∴,,∴.∵中,,直线经过点,且于,于,∴,,∴,∵,∴≌,∴,,∴;、、之间的关系为.【能力】推理论证能力【能力】运算能力【知识点】AAS【知识点】全等三角形的对应边与角9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .【解析】【标注】【答案】由题意可得:,,,在和中,,∴(),故,,则两条凳子的高度之和为:.故答案为:.【知识点】全等三角形实际生活中的应用A. B. C. D.10.方法一:【解析】如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).【答案】A ∵,,∴,∵在和中,,方法二:【标注】∴≌(),同理 ≌(),∴,,,,∵梯形的面积,,,∴图中实线所围成的图形的面积.∵且,,,,,∴,,≌,∴,.同理证得≌得,.故,故.故选:.【知识点】三垂直模型(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)【解析】【标注】【答案】(1)(2)证明见解析...∵,,,∴,∴,∴.∵,在和中,,∴≌,∴,,∴.∵,∴.成立.∵,,,∴.∵,,∴.∵,在和中,,∴≌,∴,.∵,∴.【能力】推理论证能力【能力】分析和解决问题能力【知识点】全等三角形的性质【知识点】AAS(1)(2)(3)12.(1)【解析】如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.【答案】(1)(2)(3)证明见解析...∵四边形和为正方形,(2)(3)∴,,,∴,∵,∴,∴,∵,∴≌(),∴.,理由如下:过点作于,∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.,理由如下:过点作于,【标注】∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.【知识点】正方形与全等综合2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:【备注】【教法指导】注意三个相等的角度可以在直线同侧,也可以在直线异侧.A. B. C. D.13.【解析】如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).【答案】B如图所示∵,,∴,∵为等边三角形,∴,∵线段绕点逆时针旋转得到线段,【标注】要使点恰好落在上,∴,,∵,,∴,在和中,∵,∴≌,∴.故选.【知识点】等边三角形的性质14.【解析】【标注】如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 【答案】∵,,∴,在和中,,∴≌,∴,∵,,∴.【知识点】一线三等角模型15.【解析】【标注】如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .【答案】∵,∴与等高,底边比值为,∴与面积比为,又的面积为,∴与面积分别为和.∵,∴.∵,,∴.在和中,,∴≌.∴,∴.【知识点】三角形的周长与面积问题16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.【解析】【标注】应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图【答案】见解析拓展:证明:∵,∴.∵,,又,∴.在和中,,∴≌.应用:解:∵,∴.∵,,,∴.在和中,,∴≌.∴.∵在中,,∴.∵,∴.∴.【知识点】全等三角形实际生活中的应用17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.图图图(1)(2)(3)图(1)【解析】如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)【答案】(1)(2)(3)证明见解析.证明见解析.如图,∵直线,直线,∴,∵,∴,∵,∴,在与中,,∴≌,∴,,∴,∴.图(2)图(3)【标注】.如图,证明如下:∵,∴,∴,在和中,,∴≌,∴,,∴,∴.∵≌,∴,,∵和均为等边三角形,∴,,∴,即,在和中,,∴≌,∴且,∵,∴,∴,∴是等边三角形,∴.【知识点】多解或多种判定混合(1)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:21(2)【标注】①如图①,若,,则 ; (填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图【答案】(1)(2)();.,先证明,再证明≌..【知识点】全等三角形的性质。

全等三角形中“一线三等角”模型

全等三角形中“一线三等角”模型

第11讲全等三角形中“一线三等角”模型(核心考点讲与练)【基础知识】过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。

过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:【考点剖析】1、已知:在△ABC中,∠BAC=90°,AB=AC,AE是多点A的一条直线,且BD⊥AE于D,CE⊥AE于点E.当直线AE处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE处于如图2的位置时,则BD、DE、CE的关系如何?请说明理由.解析:(1)∵BD⊥AE,CE⊥AE∴∠BDA=∠AEC=90°∵∠BAC=90°∴∠BAD+∠EAC=90°∴∠ABD=∠EAC在△ABD和△CAE中∠ADB=∠CEA=90°∠ABD=∠EACAB=CA∴△ABD≌△CAE(AAS)AD=CE,BD=AE∵AE=AD+DE∴BD=DE+CE(2)在△ABD和△CAE中∠ADB=∠CEA=90°AB=CA∴△ABD≌△CAE(AAS)∴AD=CE,BD=AE∵AE=DE-AD∴BD=DE-CE.2、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当DC等于多少是,△ABD≌△DCE?请证明你的结论.解析:∵∠B=40°∴∠BAD+∠BDA=140°∵∠ADE=40°∴∠BAD=∠CDE在△ABD和△DCE中∠B=∠C∠BAD=∠CDEAB=DC∴△ABD≌△DCE3、已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,E是AC边上的点,AF⊥BE交BC于点D,如果AE=CD 证明:BF平分∠ABC证明:AB+AE=BC【解析】(1)作AC的垂线交AD的延长线于点M证△BAE≌△ACM(AS A)得CM=AE=CD∴∠M=∠CDM=∠AEB=∠BAD∴AB=BD∴BF平分∠ABD(等腰三角形三线合一)(2)AB+AE=BD+DC=BC4、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E,求证:CE=BD.解析:延长CE、BA相交于点F.∵∠EBF+∠F=90°,∠ACF+∠F=90°∴∠EBF=∠ACF.又∵AB=AC,∠BAC=∠CAF∴△ABD≌△ACF(ASA)∴BD=CF在△BCE和△BFE中∠EBF=∠CBEBE=BE∠CEB=∠FEB∴△BCE≌△BFE(ASA)∴CE=EF∴CE=CF=BD【过关检测】一.选择题(共7小题)1.(2021秋•兰陵县期末)如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于( )A.6cm B.8cm C.10cm D.4cm【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=2cm,CD=AB=6cm,∴BD=BC+CD=2+6=8cm,故选:B.【点评】本题主要考查了全等三角形的判定及性质,应熟练掌握.2.(2021秋•九龙坡区校级期末)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=7cm,BE=3cm,则DE的长是( )A.3cm B.3.5cm C.4cm D.4.5cm【分析】根据同角的余角相等,得∠CAD=∠BCE,再利用AAS证明△ACD≌△CBE,得CD=BE=3cm,CE=AD=7cm,从而得出答案.【解答】解:∵AD⊥CE,BE⊥CE,∴∠BEC=∠CDA=90°,∴∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=3cm,CE=AD=7cm,∴DE=CE﹣CD=7﹣3=4cm,故选:C.【点评】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,证明△ACD≌△CBE是解题的关键.3.(2022春•北碚区校级期中)如图,在四边形ABCD中,AD⊥AB,AC⊥BC,且AD=CD=AB=2,则BC为( )A.1B.C.D.【分析】过点D作DE⊥AC于点E,证明△DAE≌△ABC(AAS),由全等三角形的性质得出AE=BC,设CB=x,则AC=2x,由勾股定理得出(2x)2+x2=22,求出x的值则可得出答案.【解答】解:过点D作DE⊥AC于点E,∵AD⊥AB,AC⊥BC,∴∠DAB=∠ACB=90°,∴∠DAE+∠CAB=90°,∠CAB+∠B=90°,∴∠DAE=∠B,又∵AD=AB,∴△DAE≌△ABC(AAS),∴AE=BC,∵AD=CD,DE⊥AC,∴AE=CE,设CB=x,则AC=2x,∵AC2+BC2=AB2,∴(2x)2+x2=22,∴x,∴BC,故选:B.【点评】本题考查了直角三角形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,熟练掌握勾股定理是解题的关键.4.(2021秋•合肥期末)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )A.12B.10C.8D.6【分析】根据一线三等角模型证明△ABE≌△ECD,可得AB=EC,即可解答.【解答】解:∵∠ABE=∠AED=90°,∴∠A+∠AEB=90°,∠AEB+∠DEC=90°,∴∠A=∠DEC,∵∠ABE=∠ECD=90°,AE=ED,∴△ABE≌△ECD(AAS),∴AB=CE=8∵BC=20,∴BE=BC﹣CE=20﹣8=12,故选:A.【点评】本题考查了等腰直角三角形,全等三角形的判定与性质,熟练掌握一线三等角模型是解题的关键.5.(2021秋•岑溪市期末)如图,在等腰直角三角形ABC中,AB=BC,∠ABC=90°,点B在直线l上,过A作AD⊥l于D,过C作CE⊥l于E.下列给出四个结论:①BD=CE;②∠BAD与∠BCE互余;③AD+CE=DE.其中正确结论的序号是( )A.①②B.①③C.②③D.①②③【分析】根据同角的余角相等可得∠ABD=∠BCE,再根据“AAS”可得△ABD≌△BCE,再逐项分析可得结论.【解答】解:∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=90°,∵∠ABC=90°,∴∠ABD+∠EBC=∠BCE+∠EBC=90°,即∠ABD=∠BCE,在△ABD和△BEC中,,∴△ABD≌△BCE(AAS),∴BD=CE,故①正确;∵∠BAD+∠ABD=90°,∠ABD=∠BCE,∴∠BAD+∠BCE=90°,即∠BAD与∠BCE互余,故②正确;∵△ABD≌△BCE,∴AD=EB,DB=CE,∵BE+D=DE,∴AD+CE=DE,故③正确.故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△CBE是解题的关键.6.(2020秋•襄汾县期末)如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,连接AE、BD、FG,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④CF=CG,以上结论正确的有( )A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG 是等边三角形,易得③正确;证出△CFG是等边三角形,得出FG=CG.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,在△BCF与△ACG中,,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确);同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确).∵∠ACG=60°,∴△CFG是等边三角形,∴FG=CG,故④正确;故选:D.【点评】此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.7.(2021秋•武昌区校级月考)如图,在Rt△ABC中,∠ABC=90°,BD是高,E是△ABC外一点,BE=BA,∠E=∠C,若DE BD,AD,BD,则△BDE的面积为( )A.B.C.D.【分析】根据SAS证明△ABF与△BED全等,进而利用全等三角形的性质解答即可.【解答】解:∵∠ABD=∠C=∠E,AB=BE,在BD上截取BF=DE,在△ABF与△BED中,,∴△ABF≌△BED(SAS),∴S△BDE =S△ABF.∴S△ABDBD•AD••.∵DE BD,∴BF BD,∴S△ABF S△ABD,∴S△BDE.故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABF与△BED全等.二.填空题(共6小题)8.(2021秋•台江区期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE=7,AB=4,则BD的长为 3 .【分析】利用AAS证明△ACD≌△BDE,得BE=AD,从而解决问题.【解答】解:∵BE⊥AD,∴∠EBD=∠CAD=90°,∴∠BDE+∠ADC=90°,∠BDE+∠E=90°,∴∠E=∠ADC,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴BE=AD,∴BD=AD﹣AB=BE﹣AB=7﹣4=3,故答案为:3.【点评】本题主要考查了全等三角形的判定与性质,同角的余角相等等知识,证明△ACD≌△BDE是解题的关键.9.(2021秋•重庆期末)如图,已知AB=AD,请添加一个条件,使得△ABC≌△ADC,则添加的条件可以为 ∠BAC=∠DAC,CB=CD (只填写一个即可).【分析】根据全等三角形的判定方法即可解决问题.【解答】解:由题意AB=AD,AC=AC,∴根据SAS,可以添加∠BAC=∠DAC,使得△ABC≌△ADC,根据SSS,可以添加CB=CD,使得△ABC≌△ADC,故答案为:∠BAC=∠DAC,CB=CD.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.10.(2021秋•北仑区期末)如图,等边三角形ABC中,放置等边三角形DEF,且点D,E分别落在AB,BC上,AD=5,连结CF,若CF平分∠ACB,则BE的长度为 2.5 .【分析】如图,在BC上截取EG=BD,连接FG,根据SAS证明△BED≌△GFE,得FG=CG=BE,最后证明AD=2BE可得结论.【解答】解:如图,在BC上截取EG=BD,连接FG,∵△ABC和△DEF是等边三角形,∴DE=EF,AB=BC,∠DEF=∠B=∠ACB=60°,∵∠DEC=∠BDE+∠B=∠DEF+∠FEG,∴∠BDE=∠FEG,在△BED和△GFE中,,∴△BED≌△GFE(SAS),∴∠B=∠EGF=60°,BE=FG,∵FG平分∠ACB,∴∠ACF=∠ECF=30°,∵∠EGF=∠GFC+∠FCG,∴∠GFC=∠GCF=30°,∴FG=CG=BE,∵AB=BC,BD=EG,∴AD=BE+CG=2BE=5,∴BE=2.5.故答案为:2.5.【点评】本题考查了等边三角形性质,全等三角形判定和性质,解决问题的关键是作辅助线,构造三角形全等.11.(2021秋•苏州期末)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股定理为背景的邮票.如图,在Rt△ABC中,∠BAC=90°,AC=3,AB=4.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为 12 .【分析】如图,过点A作AA'⊥BC于A',先根据面积法可得AA'的长,证明△AA'C≌△CGK(AAS),可得CG=AA',最后根据长方形的面积公式可计算其答案.【解答】解:如图,过点A作AA'⊥BC于A',∵∠BAC=90°,AC=3,AB=4,∴BC=5,AB•AC BC•AA',∵S△ABC∴,∴AA',∵四边形ACKL是正方形,∴AC=CK,∠ACK=90°,∴∠ACA'+∠KCG=∠ACA'+∠CAA'=90°,∴∠KCG=∠CAA',在△AA'C和△CGK中,,∴△AA'C≌△CGK(AAS),∴CG=AA',∴长方形CDPG的面积=CD•CG=512.故答案为:12.【点评】本题考查了勾股定理和三角形全等的性质和判定,正确作辅助线构建三角形全等是本题的关键.12.(2021秋•房山区期末)如图,在△ABC中,AB=AC,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是 (180°﹣2α) 度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS),∴∠EDC=∠DFB,∴∠EDF=∠B=(180°﹣∠A)÷2=90°∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:(180°﹣2α).【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B.再根据三角形的内角和定理以及等腰三角形的性质进行推导.13.(2021秋•蜀山区期末)如图,在△ABC中,点D、E分别为边AC、BC上的点,且AD=DE,AB=BE,∠A=70°,则∠CED= 110 度.【分析】根据SSS证明△ADB与△EDB全等,进而利用全等三角形的性质解答即可.【解答】解:在△ADB与△EDB中,,∴△ADB≌△EDB(SSS),∴∠A=∠DEB=70°,∴∠CED=180°﹣∠DEB=180°﹣70°=110°,故答案为:110.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ADB与△EDB全等.三.解答题(共12小题)14.(2021秋•赫山区期末)如图在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于点D,BE⊥MN于点N,求证:(1)△ADC≌△CEB;(2)DE=AD+BE.【分析】(1)由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS 可以证明)△ADC≌△CEB;(2)由(1)中的全等得:DC=BE,AD=EC,根据线段的和可得结论.【解答】证明:(1)∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.【点评】本题考查了全等三角形的性质和判定,属于常考题型,熟练掌握全等三角形的判定方法是关键;在证明角相等时常利用同角的余角相等来证明角的大小关系;要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.15.(2021秋•霍林郭勒市期末)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE 于D,AD=2.5cm,DE=1.7cm,求BE的长.【分析】先证明△ACD≌△CBE,再求出EC的长,解决问题.【解答】解:∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.再根据全等三角形的性质解决问题.16.(2021秋•嵊州市期末)【问题提出】(1)已知:如图1,AD⊥DE于点D,BE⊥DE于点E,点C在线段DE上,AC=BC且AC⊥BC,求证:△ADC≌△CEB.【问题解决】(2)如图2,点D,C,E在直线l上.点A,B在l的同侧,AC⊥BC,若AD=AC=BC=BE=5cm,CD=6cm,求CE的长.【分析】(1)根据同角的余角相等可得∠A=∠BCE,然后利用AAS即可证明结论;(2)作AG⊥CD于G,BH⊥CE于H,根据等腰三角形的性质得CG=3cm,利用勾股定理得AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),得CH=AG=4cm,从而得出答案.【解答】(1)证明:∵AD⊥DE于点D,BE⊥DE,∴∠D=∠E=90°,∴∠ACD+∠BCE=90°,∠ACD+∠A=90°,∴∠A=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:作AG⊥CD于G,BH⊥CE于H,∵AD=AC,AG⊥CD,∴CG=3cm,在Rt△ACG中,由勾股定理得,AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),∴CH=AG=4cm,∵BC=BE,BH⊥CE,∴CE=2CH=8cm.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的性质,勾股定理等知识,熟练掌握基本几何模型是解题的关键.17.(2021秋•顺义区期末)已知:在△ABC中,AB=AC,直线l过点A.(1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.①依题意补全图1;②用等式表示线段DE,BD,CE之间的数量关系,并证明.(2)如图2,当∠BAC≠90°时,设∠BAC=α(0°<α<180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 DE=BD+CE .【分析】(1)①由题意画出图形即可;②证明△CEA≌△ADB(AAS),根据全等三角形的性质得到AD=CE,BD=AE,结合图形证明结论;(2)根据三角形的外角性质得到∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质解答.【解答】解:(1)①依题意补全图形如图1所示.②用等式表示DE,BD,CE之间的数量关系为DE=BD+CE.证明:∵CE⊥l,BD⊥l,∴∠CEA=∠ADB=90°.∴∠ECA+∠CAE=90°.∵∠BAC=90°,直线l过点A,∴∠CAE+∠BAD=180°﹣∠BAC=90°.∴∠ECA=∠BAD.又∵AC=AB,∴△CEA≌△ADB(AAS),∴CE=AD,AE=BD.∴DE=AE+AD=BD+CE.(2)用等式表示DE,BD,CE之间的数量关系为DE=BD+CE,理由如下:∵∠BAE是△ABD的一个外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE.故答案为:DE=BD+CE.【点评】本题是三角形综合题,考查了三角形全等的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.18.(2021秋•海淀区期末)如图,在△ABC中,∠B=∠C,点D,E在BC边上,AD=AE.求证:CD=BE.【分析】根据AAS证明△ACE与△ABD全等,进而利用全等三角形的性质解答即可.【解答】证明:∵AD=AE,∴∠AED=∠ADE,∴∠CEA=∠BDA,在△ACE与△ABD中,,∴△ACE≌△ABD(AAS),∴CE=BD,∴CE+ED=DB+ED,即CD=BE.【点评】此题考查全等三角形的判定和性质,关键是根据AAS证明△ACE与△ABD全等.19.(2021秋•番禺区期末)如图,在△ABC中,AB=AC,点D在AB上,点E在AC上,AD=AE.求证:CD=BE.【分析】根据AB=AC得出∠DBC=∠ECB,利用SAS证明△BDC≌△CEB,进而利用全等三角形的性质解答即可.【解答】证明:∵AB=AC,∴∠DBC=∠ECB,∵AD=AE,∴AB﹣AD=AC﹣AE,即DB=EC,在△DBC和△ECB中,,∴△BDC≌△CEB(SAS),∴CD=BE.【点评】本题考查全等三角形的判定和性质,解题的关键是利用SAS证明△BDC≌△CEB解答.20.(2021秋•南关区期末)如图,CD∥AB,CD=CB,点E在BC上,∠D=∠ACB.(1)求证:CE=AB.(2)若∠A=125°,则∠BED的度数是 55° .【分析】(1)根据ASA证明△DEC与△CAB全等,进而利用全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵CD∥AB,∴∠B=∠DCE,在△DEC与△CAB中,,∴△DEC≌△CAB(ASA),∴CE=AB;解:(2)∵△DEC≌△CAB,∴∠CED=∠A=125°,∴∠BED=180°﹣125°=55°,故答案为:55°.【点评】本题主要考查了全等三角形的判定与性质,根据ASA证明△DEC与△CAB全等是解题的关键.21.(2021秋•永吉县期末)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)图中有 6 个三角形(包括△ABC),有 2 对全等三角形.(2)求证:BD=CE.【分析】(1)根据等边对等角的性质可得∠B=∠C,∠ADE=∠AED,再根据等角的补角相等可得∠ADB=∠AEC,然后根据“角角边”即可得到全等三角形.(2)根据AAS证明△ABE和△ACD全等,进而利用全等三角形的性质解答即可.【解答】解:(1)图中有△ABD,△ADE,△AEC,△ABE,△ADC,△ABC,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,即∠ADB=∠AEC,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),在△ABE和△ACD中,,∴△ABE≌△ACD(AAS).故答案为:6;2;(2)证明:∵AB=AC,∴∠B=∠C.∵AD=AE,∴∠1=∠2.在△ABE和△ACD中,∴△ABE≌△ACD(AAS).∴BE=CD.∴BE—DE=CD—DE.∴BD=CE.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,根据等边对等角的性质得到相等的角是解题的关键.22.(2021秋•莱阳市期末)如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=3,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△ABD与△DCE中,,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=3,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣3=2.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.23.(2021秋•涡阳县期末)如图,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在△ABC 中,∠C=90°,AC=BC,试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,∠2= 45 度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若AM =6,BN=2,求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.【分析】(1)先求出∠B=45°,再用平行线的性质,即可求出答案;(2)先用同角的余角相等判断出∠2=∠CAM,同理:∠1=∠CBN,进而判断出△AMC≌△CNB (ASA),得出AM=CN,MC=BN,即可求出答案;(3)同(2)的方法,即可得出结论.【解答】解:(1)在△ABC中,AB=AC,∠ACB=90°,∴∠B=∠A=45°,∵AB∥MB,∴∠2=∠B=45°,故答案为45;(2)∵AM⊥MN于M,BN⊥MN于N,∴∠AMC=90°,∠BNC=90°.∴∠1+∠CAM=90°,又∵∠1+∠2=90°,∴∠2=∠CAM,同理:∠1=∠CBN,在△AMC和△CNB中,,∴△AMC≌△CNB(ASA),∴AM=CN,MC=BN,∴MN=MC+CN=AM+BN=2+6=8;(3)MN=BN﹣AM,理由:同(2)的方法得,△AMC ≌△CNB (ASA ),∴AM =CN ,MC =BN ,∴MN =MC ﹣CN =BN ﹣AM .【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,同角的余角相等,判断出△AMC ≌△CNB 是解本题的关键.24.(2021秋•青山区期末)如图,△ABC 为等腰直角三角形,∠ABC =90°,△ABD 为等腰三角形,AD =AB =BC ,E 为DB 延长线上一点,∠BAD =2∠CAE .(1)若∠CAE =20°,求∠CBE 的度数;(2)求证:∠BEC =135°;(3)若AE =a ,BE =b ,CE =c .则△ABC 的面积为 .(用含a ,b ,c 的式子表示)【分析】(1)由等腰三角形的性质求出∠D =∠DBA =70°,由三角形内角和定理可得出答案;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG (AAS ),由全等三角形的性质得出AF =BG ,BF =CG ,得出AF =EF =BG ,BF =CG ,由等腰直角三角形的性质可得出结论;(3)根据S △ABC =S △AEB +S △AEC ﹣S △BEC 可得出结论.【解答】(1)解:∵∠CAE =20°,∠BAD =2∠CAE ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =70°,又∵∠ABC =90°,∴∠CBE =180°﹣70°﹣90°=20°;(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =BC =AB ,∴∠BAC =∠ACB =45°,∠FAB ∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,在△BAF 和△CBG 中,,∴△BAF ≌△CBG (AAS ),∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴∠BEC =135°;(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF ﹣BE =AF ﹣BE ,∵S △ABC =S △AEB +S △AEC ﹣S △BEC ,∴S △ABC BE •CGBE •(AF ﹣BE ).故答案为:.【点评】本题属于三角形综合题,考查了三角形内角和定理,等腰直角三角形的性质,等腰三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确作出辅助线,证明△BAF≌△CBG.25.(2021秋•岳阳期末)直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【分析】(1)由直角三角形的性质证出∠ABD=∠CAE,可证明△ABD≌△CAE(AAS);(2)证明△ABD≌△CAE(AAS),由全等三角形的性质得出BD=AE,DA=EC,则可得出结论;(3)分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,得出AF=CM,AF=EN,证明△CMG≌△ENG(AAS),由全等三角形的性质得出CG=EG,则可得出结论.【解答】(1)证明:∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=90°,∵∠BAC=90°,∴∠CAE+∠DAB=90°,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS);(2)解:猜想:DE=BD+CE,∵∠BDA=∠BAC=α,∴∠ABD+∠DAB=180°﹣∠BDA=180°﹣α,∠CAE+∠DAB=180°﹣∠BAC=180°﹣α,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,DA=EC,∴DE=AE+DA=BD+CE;(3)证明:分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,∴AF=CM,AF=EN,∴CM=EN,∵CM⊥l,EN⊥l,∴∠CMG=∠ENG=90°,在△CMG与△ENG中,,∴△CMG≌△ENG(AAS),∴CG=EG,∴G为CE的中点.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PD DH CD CH PD AD CD CH DH AD
BC 4
PD PC AD PD PC 13 BC
2
一线三等角压轴题(共同探讨解题方法和注意事项)
一线三等角压轴题(共同探讨解题方法和注意事项)
“一线三等角”模型 教学目标及重、难点
教学目标:
用“一线三等角”基本模型解决相似三角形中的相 关问题;
重点:掌握“一线三等角”基本模型;
难点: “一线三等角”基本图形的提炼、变式和运用。
2020/3/6
特别是“一线三直角”辅助线的构造
“一线三等角”模型按照角度的分类
锐角形一线三等角

线

直角形一线三等角
9
a
2
9 2
2020/3/6
a9 2
2
9 2a 1
a 27 10
A'( 27 , 36) 55
一线三直角在几何综合题中的应用
2012年奉贤二模25题
构造一线三直角可以解决所有问题
(1)
2 45
2 45 2 2
3 45
32
26 1
5
3 45
2020/3/6
(2)
3x
2
2
x
x2 4
a
1
2a
2
2 2a 1 a
2 1
方法一: 一线三直角
注意:点坐标的正负号问题!
一线三等角在直角坐标系中的应用
2014年宝山一模18题
67
9 2
(9,9 3) 22
93
9
2
思考:若把 tan BAO
3 3
样?
改t为an BAO 1 2
,解法是否一
2020/3/6
2a
9 a9
2
9 2a
3
3 x2 4 2
3 x
y 1 x2 4 3 x2 4 3 x2 3 (0 x 3)
2
2
4
2020/3/6
(2)
3x
2
2


x

x2 4
3 x2 4
3
2
3 x 2 3x 2
2

3
13

13 2
2020/3/6
方法一:勾股定理; 方法二:证明D是AH中点。
再次提醒:对应边和对应角千万不要找错!
一线三直角在直角坐标系中的应用
2012年上海中考24题
1t 24Fra bibliotek22
1t
t
2
4
一线三直角巧求点坐标
尝试用上题中你总结的方法解答下题: 2011年宝山一模18题
方法二:两点 距离公式;
方法三:利用 互相垂直的一 次函数(针对 优等生,且此 法适用于任意 三角形翻折)
一线三等角模型
通俗地讲,一条直线上有三个相等的角一般就会存在相似的三角形!
什么是一线三等角?
如图,等腰△ABC中,AB=AC,∠EDF=∠B,请问图中是 否有相似三角形?
相似三角形判定 定理一: 两角对应相等, 两三角形相似。
2020/3/6
注意:对应边千万不要找错,相同的角 标记同一个符号会比较清晰!


钝角形一线三等角
最特殊 考到概 率最大
总结解题规律 一线三角两相似:
60° 60° 60°
60°
60° 60°
“一线三等角”基本模型 以等腰三角形(含等边三角形)或等腰梯形为背景的一线三等角
注意:压轴题中出现射线、 直线要分类讨论!
中点型“一线三等角”模型
中点型:
至少有三
对相似三
β
角形
2020/3/6
相关文档
最新文档