一线三等角模型综合题解
一线三等角相似、三垂直模型--2024年中考数学压轴题专题及参考答案
一线三等角相似、三垂直模型压轴题专题一线三等角概念1“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。
“一线三等角”的两种基本类型1.三等角都在直线的同侧2.三等角分居直线的两侧3.在初三各学校的考试和中考试题中,一线三等角的相似属于压轴题的热点题型之一,本专题从中考试题和初三各名校的试题中,精选一线三等角相似模型的经典好体,并根据角度区别把一线三等角模型细分为三类题型:三垂直模型、一线三锐角、一线三钝角,适合于初三学生进行压轴题专项突破时使用。
类型一:三垂直模型1(雅礼)如图,点A是双曲线y=8xx<0上一动点,连接OA,作OB⊥OA,使OA=2OB,当点A在双曲线y=8xx<0上运动时,点B在双曲线y=kx上移动,则k的值为.2(青竹湖)如图,∠AOB=90°,反比例函数y=−4xx<0的图象过点A−1,a,反比例函数y=k xk>0,x>0的图象过点B,且AB⎳x轴,过点B作MN⎳OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点,则ΔOBC的面积为.3(广益)如图,点A,B在反比例函数y=kx(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,OA⊥AB,则k的值为.4(长沙中考2020)在矩形ABCD中,E为DC上的一点,把ΔADE沿AE翻折,使点D恰好落在BC 边上的点F.(1)求证:ΔABF∼ΔFCE(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.5(广益)矩形ABCD中,AB=8,AD=12,将矩形折叠,使点A落在点P处,折痕为DE.(1)如图1,若点P恰好在边BC上.①求证:△EBP∽△PCD;②求AE的长;(2)如图2,若E是AB的中点,EP的延长线交BC于点F,求BF的长.图1图26(长郡)如图,在平面直角坐标系中,O为原点,已知点Q是射线OC上一点,OQ=182,点P是x轴正半轴上一点,tan∠POC=1,连接PQ,⊙A经过点O且与QP相切于点P,与边OC相交于另一点D.(1)若圆心A在x轴上,求⊙A的半径;(2)若圆心A在x轴的上方,且圆心A到x轴的距离为2,求⊙A的半径;(3)在(2)的条件下,若OP<10,点M是经过点O,D,P的抛物线上的一个动点,点F为x轴上的一个动点,若满足tan∠OFM=12的点M共有4个,求点F的横坐标的取值范围.7(麓山国际)有一边是另一边的2倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)已知Rt△ABC为智慧三角形,且Rt△ABC的一边长为2,则该智慧三角形的面积为;(2)如图①,在△ABC中,∠C=105°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=kx上(x>0)的图象上,点C在点B的上方,且点B的纵坐标为2.当△ABC是直角三角形时,求k的值.类型二:一线三锐角8(师大梅溪湖)如图,在△ABC中,∠ABC=45°,AB=22,AD=AE,∠DAE=90°,CE=5,则CD的长为.(提示,作辅助线构造一线三等角的相似)9(青竹湖)如图,在△ABC中,∠B=∠ACB=45°,AB=62,点D是BC上一点,作DE⊥AD交射线AC于E,DF平分∠ADE交AC于F.(1)求证:AB•CF=BD•CD;(2)如图2,当∠AED=75°时,求CF的长;(3)若CD=3BD,求AFEF.10(广益)如图1,已知直线y=kx+2k(k为常数,k≠0)与x轴相交于点A,点B与点A关于y轴对称,点C在y轴的正半轴上,OC=3OA,连接AC,BC。
2023年中考数学重难点复习:一线三等角模型(附答案解析)
第 1 页 共 6 页
2023年中考数学重难点复习:《一线三等角模型》
破解策略
在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .
1.当点P 在线段AB 上,且∠3两边在AB 同侧时.
(1)如图,若∠1为直角,则有△ACP ∽△BP D .
321
D
B
P A C
(2)如图,若∠1为锐角,则有△ACP ∽△BP D .
3
C
D
P A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2,∴△ACP ∽△BPD
(3)如图,若∠1为钝角,则有△ACP ∽△BP D .
231
D
B P A C
2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时.
如图,则有△ACP ∽△BP D .
3
2
1C
P D
B A
证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,
∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD
3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时.
如图,则有△ACP ∽△BP D .。
专题03 一线三等角模型证全等(解析版)
专题03 一线三等角模型证全等模型感知1.【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【答案】①△BDF ;②△CFD ;③3;①根据等腰直角三角形的性质及和角关系,可得△AED ≌△BDF ; ②根据等边三角形的性质及和角关系,可得△BDE ≌△CFD ;③根据正方形的性质及和角关系,可得△ABE ≌△BCF ,由全等三角形的性质即可求得EF 的长;类型一 一线三直角证全等2.在△ABC 中,∠ACB =90°,AC =BC ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).【答案】(1)证明见详解(2)DE+BE=AD.理由见详解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由见详解.【解析】【分析】(1)根据题意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS可以证明△ADC≌△CEB,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD;(3)由题意可知DE、AD、BE具有的等量关系为:DE=BE-AD(或AD=BE-DE,BE=AD+DE 等).证明的方法与(2)相同.(1)证明:如图1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵ADC BECDAC BCE AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB;∴DC =BE ,AD =EC , ∵DE =DC +EC , ∴DE =BE +AD . (2)解:DE +BE =AD .理由如下: 如图2,∵∠ACB =90°, ∴∠ACD +∠BCE =90°. 又∵AD ⊥MN 于点D , ∴∠ACD +∠CAD =90°, ∴∠CAD =∠BCE . 在△ACD 和△CBE 中, 90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS ), ∴CD =BE ,AD =CE ,∴DE +BE =DE +CD =EC =AD ,即DE +BE =AD . (3)解:DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由如下: 如图3,易证得△ADC ≌△CEB , ∴AD =CE ,DC =BE ,∴DE =CD -CE =BE -AD ,即DE =BE -AD . 【点睛】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS 、SAS 、AAS 、ASA ;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论. 3.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =. 【答案】(1)DE ,AE ; (2)AC .证明见详解. 【解析】 【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ⊥直线l 于E ,先证△MCA ≌△AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证△NGP ≌△DEP (AAS )即可.(1) 解:∵(AAS)≌ABC DAE ,∴AC =DE ,BC =AE , 故答案为DE ,AE ; (2)证明:过D 作DE ⊥直线l 于E , ∵90MAN ∠=︒, ∴∠CAM +∠NAG =90°, ∵BM ⊥l , ∴∠MCA =90°, ∴∠M +∠CAM =90°, ∴∠M =∠NAG , ∵NG l ⊥, ∴∠AGN =90°, 在△MCA 和△AGN 中, MCA AGNM GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MCA ≌△AGN (AAS ), ∴AC =NG ,由(1)知(AAS)≌ABC DAE , ∴AC =DE ,在△NGP 和△DEP 中, 90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△NGP ≌△DEP (AAS ) ∴NP =DP , 故答案为AC .【点睛】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键.类型二 一线非直角证全等4.(1)如图1,直线m 经过等边三角形ABC 的顶点A ,在直线m 上取两点D ,E ,使得∠ADB =60°,∠AEC =60°.求证:BD +CE =DE ;(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图2的位置,并使∠ADB =120°,∠AEC =120°.若BD =3,CE =7,求DE 的长.【答案】(1)证明见解析;(2)DE =4 【解析】 【分析】(1)利用等边三角形的性质和已知角的度数,证明∠ABD =∠CAE ,利用AAS 证明△ABD ≌△CAE ,推出BD =AE ,AD =CE ,即可证明;(2)同(1)证明△ABD ≌△CAE ,推出BD =AE ,AD =CE ,则DE =AD -AE =CE -BD .(1)证明:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =60°, ∴∠DAB +∠CAE =120° 又∠ADB =∠AEC =60°, ∴∠ABD +∠DAB =120°, ∴∠ABD =∠CAE , ∴△ABD ≌△CAE (AAS ), ∴BD =AE ,AD =CE , ∴DE =AD +AE =BD +CE . (2)解:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =60°, ∴∠BAD +∠CAE =60° 又∠ADB =∠AEC =120°, ∴∠ABD +∠BAD =60°, ∴∠ABD =∠CAE , ∴△ABD ≌△CAE (AAS ), ∴BD =AE ,AD =CE , ∴DE =AD -AE =CE -BD =4. 【点睛】本题考查等边三角形的性质,全等三角形的判定和性质,读懂题意,找出图形中的全等三角形是解题的关键.5.已知:CD 是经过BCA ∠的顶点C 的一条直线,CA CB =.E 、F 是直线CD 上两点,BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,BCD ACD ∠>∠.①如图1,90BCA ∠=︒,90α∠=︒,直接写出BE ,EF ,AF 间的等量关系:__________. ②如图2,α∠与BCA ∠具有怎样的数量关系,能使①中的结论仍然成立?写出α∠与BCA ∠的数量关系,并对结论进行证明;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.【答案】(1)①EF BE AF =-;②180BCA α∠+∠=︒,证明见解析;(2)不成立,EF FA BE =+,理由见解析【解析】 【分析】(1)①根据题意,推导得ACF CBE ∠=∠,通过证明ACF CBE ∠≌△,得BE CF =,CE AF =,结合EF CF CE =-,即可得到答案;②结合题意,根据三角形内角和性质,推导得CBE ACF ∠=∠,通过证明BCE CAF ≌△△,即可完成证明;(2)根据题意,结合三角形内角和的性质,推导得CBE ACF ∠=∠,通过证明BCE CAF ≌△△,得EC FA =,BE CF =;根据EF CE CF =+,即可得到答案. 【详解】(1)①∵90BCA ∠=︒,90α∠=︒∴90ACF BCE ∠+∠=︒,90CBE BCE ∠+∠=︒ ∴ACF CBE ∠=∠ ∴BEC CFA ACF CBE CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACF CBE ∠≌△ ∴BE CF =,CE AF = ∵EF CF CE =- ∴EF BE AF =-;②满足180BCA α∠+∠=︒,理由如下:∵180CBE BCE BEC ∠+∠+∠=︒,180BCA α∠+∠=︒ ∴CBE BCE BEC BCA α∠+∠+∠=∠+∠ ∴CBE BCE BCE ACF αα∠+∠+∠=∠+∠+∠ ∴CBE ACF ∠=∠∵BEC CFA ∠=∠,CA CB =, ∴BCE CAF ≌△△∴BE CF =,CE AF = ∵EF CF CE =-, ∴EF BE AF =-(2)不成立,EF BE AF =+,理由如下:∵180CBE BCE BEC ∠+∠+∠=︒,180BCE BCA ACF ∠+∠+∠=︒,BEC CFA BCA α∠=∠=∠=∠∴CBE BCE BCE ACF αα∠+∠+∠=∠+∠+∠ ∴CBE ACF ∠=∠∵BEC CFA ∠=∠,CA CB =, ∴BCE CAF ≌△△ ∴BE CF =,CE AF = ∵EF CF CE =+, ∴EF BE AF =+ 【点睛】本题考查了三角形内角和、余角、全等三角形的知识;解题的关键是熟练掌握三角形内角和、全等三角形的性质,从而完成求解.类型三 综合运用6.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5 【解析】【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点. 【详解】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l , ∴∠BDA =∠CEA =90°, ∵∠BAC =90°, ∴∠BAD +∠CAE =90°, ∵∠BAD +∠ABD =90°, ∴∠CAE =∠ABD , 在△ADB 和△CEA 中, ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADB ≌△CEA (AAS ), ∴AE =BD ,AD =CE , ∴DE =AE +AD =BD +CE . (2)解:成立. 理由:如图2中, ∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α, ∴∠DBA =∠CAE , 在△ADB 和△CEA 中, BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADB ≌△CEA (AAS ), ∴AE =BD ,AD =CE , ∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N .∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN ∴EM =GN在△EMI 和△GNI 中, GIN EIM EM GNGNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△EMI ≌△GNI (AAS ), ∴EI =GI , ∴I 是EG 的中点. ∴S △AEI =12S △AEG =3.5. 故答案为:3.5. 【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.7.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【解析】【分析】(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=60°,FB=F A,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠F AE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°-α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF =∠F AE . ∵BF =AF ,∴△DBF ≌△EAF (ASA ). ∴DF =EF ,∠BFD =∠AFE .∴∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60°. ∴△DEF 为等边三角形. 【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定. 8.通过对下面数学模型的研究学习,解决下列问题: 【模型呈现】(1)如图,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC =__________,BC AE =.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)如图,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;【深入探究】(3)如图,已知四边形ABCD 和DEGF 为正方形,AFD ∆的面积为1S ,DCE ∆的面积为2S ,则有1S __________2S (填“>、=、<”)(4)如图,点A 、B 、C 、D 、E 都在同一条直线上,四边形ABAH 、KCMG 、DENM 都是正方形,若该图形总面积是16,正方形KCMG 的面积是4,则HKG 的面积是__________.【答案】(1)DE ;(2)见解析;(3)=;(42 【解析】 【分析】(1)根据全等三角形的性质即可得到答案;(2)分别过点D 和点E 作DM FG ⊥于点M ,EN FG ⊥于点N ,由(1)中结论可得到AF =DM ,AF =EN ,然后只需要证明DMG ENG △≌△即可得到答案;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 错EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,然后同(2)中证明AOD DMC △≌△,FOD DNE △≌△,ENP CMP △≌△即可得到答案;(4)同(3)中的方法可以证明GHK KBC CMD GMN S S S S =△△△△==,然后利用勾股定理得到ABKH MDEN KCMG S S S +=正方形正方形正方形即可得到答案.【详解】解:(1)∵ABC DAE △≌△ ∴AC DE =(2)分别过点D 和点E 作DM FG ⊥于点M ,EN FG ⊥于点N ,∴90DAM ADM ∠+∠=︒, ∵90BAD ∠=︒,∴90BAF DAM ∠+∠=︒, ∴BAF ADM ∠=∠ ∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,在ABF ∆和DAM ∆中,BAF ADN ∠=∠,BFA AMD ∠=∠,BA AD =,∴ABF DAM ∆∆≌, ∴AF DM = 同理AF EN = ∴DM EN =,∵DM FG ⊥,EN FG ⊥,∴DMG ENG ∠=∠,在DMG △和ENG △中,DGM EGN ∠=∠,DMG ENG ∠=∠,DM EN =,∴DMG ENG △≌△∴DG EG =,即点G 是DE 的中点;(3)如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ∵四边形ABCD 与四边形DEGF 都是正方形 ∴∠ADC =∠90°,AD =DC ,DF =DE ∵DO ⊥AF ,CM ⊥OD∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°, 又∵∠ODA +∠DCM =90° ∴∠A DO =∠DCM ∴AOD DMC △≌△ ∴AOD DMC S S =△△,OD =MC 同理可以证明FOD DNE △≌△ ∴FOD DNE S S =△△,OD =NE ∴MC =NE∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ∴ENP CMP △≌△ ∴ENP CMP S S △△=∵ADF AOD FOD S S S +△△△=,DCE DCM CMP DEN ENP S S S S S -++△△△△△= ∴=DCE DCM DEN AOD FOD S S S S S ++△△△△△= ∴DCE ADF S S △△=即12S S ;(4)同(3)中的方法可以证明GHK KBC CMD GMN S S S S =△△△△==,且KBC CDM △≌△ 即BC DM =由勾股定理得:222KB BC KC += ∴222KB DM KC +=∴ABKH MDEN KCMG S S S +=正方形正方形正方形∵图形总面积是16,正方形KCMG 的面积是4 ∴=4ABKH MDEN KCMG S S S +=正方形正方形正方形 ∴=8GHK KBC CMD GMN S S S S +△△△△++ ∴2GHK S △=【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定.9.(1)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(,90AB BC ABC =∠=︒)放入一个“U ”形槽中,使三角形的三个顶点A 、B 、C 分别在槽的两壁及底边上滑动,已知90D E ∠=∠=︒,在滑动过程中,你发现线段AD 与BE 有什么关系?试说明你的结论;(2)【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,若B FDE C ∠=∠=∠,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理; (3)【拓展应用】如图3,在ABC ∆中,BA BC =,45B ∠=︒,点D 、F 分别是边BC 、AB 上的动点,且2AF BD =.以DF 为腰向右作等腰DEF ∆,使得DE DF =,45EDF ∠=︒,连接CE .①试判断线段DC 、BD 、BF 之间的数量关系,并说明理由;②如图4,已知2AC =,点G 是AC 的中点,连接EA 、EG ,直接写出EA EG +的最小值. 【答案】【小问1】AD BE =,说明见解析【小问2】BED FDC ∠=∠,EDB DFC ∠=∠;说理见解析【小问3】①BD BF CD +=,理由见解析;②AE EG +【解析】 【分析】(1)【问题情境】证明()ABD BCE AAS ∆≅∆,即可求解. (2)【变式探究】利用等量代换即可求解.(3)【拓展应用】①等量代换即可求解;②在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN ,先证明()BDF MED SAS ∆≅∆,得到EM =CM ,在求出22.5ECM MEC ∠=∠=︒,即可确定E 点在射线CE 上运动,当A 、E 、N 三点共线时,EA +EG的值最小,最小值为AN ,在Rt ANC 中求出AN 即可. 【详解】 (1)【问题情境】 AD BE =,理由如下:90ABC ∠=︒, 90ABD CBE ∴∠+∠=︒, 90BAD ABD ∠+∠=︒,BAD CBE ∴∠=∠,AB BC =,()ABD BCE AAS ∴∆≅∆,AD BE ∴=;(2)【变式探究】BED FDC ∠=∠,EDB DFC ∠=∠;理由如下:B FDEC ∠=∠=∠,180EDB BED EDB FDC FDC DFC EDF ∴∠+∠=∠+∠=∠+∠=︒-∠,BED FDC ∴∠=∠,EDB DFC ∠=∠;(3)【拓展应用】 ①AB BC =,AF BF BD CD ∴+=+,2AF BD =,2BD BF BD CD ∴+=+, BD BF CD ∴+=;②在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN ,45B ∠=︒,45EDF ∠=︒,BFD EDM ∴∠=∠,DF DE =,()BDF MED SAS ∴∆≅∆,BD EM ∴=,EM BD =,45B DME ∠=∠=︒,CD BD BF =+,CM BD ∴=, EM CM ∴=,MCE MEC ∴∠=∠, 45EMD ∠=︒,22.5ECM MEC ∴∠=∠=︒,E ∴点在射线CE 上运动, G 点与N 的关于CE 对称,EG EN ∴=,EA EG EA EN AN ∴+=+,∴当A 、E 、N 三点共线时,EA EG +的值最小,最小值为AN ,45B ∠=︒,AB BC =, 67.5ACB ∴∠=︒,45ACE ∴∠=︒,由对称性可知,ACE ECN ∠=∠,90ACN ∴∠=︒,点G 是AC 的中点,2AC =,1CG ∴=, 1CN ∴=,在Rt ANC 中,AN =AE EG ∴+。
2023年中考数学常见几何模型归纳(全国通用版):一线三等角模型(从全等到相似)(解析版)
专题05一线三等角(K 型图)模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B +CE=DE证明思路:,A B C BED +任一边相等BED ACE异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED +任意一边相等证明思路:,A B C BED +任一边相等BED ACE1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ,AB AC ,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转 045 ,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转 4590 ,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE ,1DE ,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析(3)258BFC S【分析】(1)先根据得出90452ABC ACB ,根据l BC ∥,得出45DAB ABC ,45EAC ACE ,再根据90BDA CEA ,求出45ABD ,45ACE ,即可得出45DAB ABD EAC ACE ,最后根据三角函数得出1AD BD ,1AE CE ,即可求出2DE AD AE ;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt △AEC 中,根据勾股定理求出5AC ,根据DF CE ∥,得出AD AF AE CF ,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:∵90BAC ,AB AC ,∴90452ABC ACB ,∵l BC ∥,∴45DAB ABC ,45EAC ACE ,∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴904545ABD ,904545ACE ,∴45DAB ABD EAC ACE ,∴sin 12AD BD AB DAB ,sin 1AE CE AC EAC ,∴2DE AD AE .(2)①DE =CE +BD ;理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,∴314AE AD DE ,在Rt △AEC 中,根据勾股定理可得:5AC ,∵BD ⊥AE ,CE ⊥AE ,∴DF CE ∥,∴AD AF AE CF ,即345AF ,解得:154 AF ,∴155544CF AC AF ,∵AB =AC =5,∴1152552248BFC S CF AB .【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC = ,其中 为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB≌△CEA得BD=AE,∠DBA=∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=60°,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA=∠BAC= ,∴∠DBA+∠BAD=∠BAD+∠CAE=180°- .∴∠DBA=∠CAE.∵∠BDA=∠AEC= ,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF ,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l 于E ,CF l 于F .若1AE ,2CF ,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ,AC BC ,BE CE 于E ,AD ⊥CE 于D ,4cm DE ,6cm AD ,求BE 的长.∵∠EDF =45゜∴∠ADE +∠BDF =180゜−∠EDF =135゜∴∠ADE =∠BFD在△AED 和△BDF 中A B ADE BFD AE BD ∴△AED ≌△BDF (AAS )答案为:△BDF ;②∵△ABC 是等边三角形∴∠B =∠C =60゜∴∠BDE +∠BED =180゜−∠B =120゜∵∠EDF =60゜∴∠BDE +∠CDF =180゜−∠EDF =120゜∴∠BED =∠CDF在△BDE 和△CFD 中B C BED CDF BD CF∴△BDE ≌△CFD (AAS )故答案为:△CFD ;③∵四边形ABCD 是正方形∴∠ABC =90゜,AB =BC∴∠ABE +∠CBF =180゜−∠ABC =90゜∵AE ⊥l ,CF ⊥l ∴∠AEB =∠CFB =90゜∴∠ABE +∠EAB =90゜∴∠EAB =∠CBF在△ABE 和△BCF 中AEB CFB EAB CBF AB BC∴△ABE ≌△BCF (AAS )∴AE =BF =1,BE =CF =2∴EF =BE +BF =2+1=3故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示∵四边形OABC 是正方形∴∠AOC =90゜,AO =OC∴∠COE +∠AOD =180゜−∠ACO =90゜∵AD ⊥x 轴,CE ⊥x 轴∴∠CEO =∠ADO =90゜模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC ,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC .试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C .将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ .当 在许可范围内变化时, 取何值总有△ABP ∽△PCQ ?当 在许可范围内变化时, 取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有 、 的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE ;证明见解析;(2)30 ;75 ;(3)可能;30 ,30 或52.5 ,75 .【分析】(1)证明△ADB ≌△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=∠2或∠1=∠CQP ,即∠2=30°+β-α=β,解得α=30°,即可求解;由β=∠1或∠2=∠CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则∠2=∠B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,∵BDA BAC ,∴180DBA BAD BAD CAE ,∴DBA CAE ,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC,∴△ADB ≌△CEA (AAS ),∴AE BD ,AD CE ,∴DE AE AD BD CE ;(2)在△ABP 中,2230APC B ,∴1150 ,同理可得:230 ;由2 或1CQP ,即230 ,解得30 ,则△ABP ∽△PCQ ;∴当 在许可范围内变化时,30 时,总有△ABP ∽△PCQ ;由1 或2CQP ,同理可得:75 .∴当 在许可范围内变化时,75 总有△ABP ∽△QCP ;(3)可能.①当30 ,30 时,则230B ,则△ABP ∽△PCQ ∽△BCA ;②当75 ,52.5 时,同理可得:115075 ,23052.5 ,∴△ABP ∽△CQP ∽△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,∠DAE =∠BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN =,直线BD 与MN 相交所成的锐角的度数为(请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.,3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B 时,求证:AD BC AP BP .(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB ,45B ,以点A 为直角顶点作等腰Rt ADE △.点D 在BC上,点E 在AC 上,点F 在BC 上,且45EFD ,若CE CD 的长.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB ,6BC .点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM 的最小值;②当AG GM 取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE或3DE 【分析】(1)证明出DCE AEF 即可求解;(2)①连接AM .先证明132BM CM GM BC .确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB .设AF x ,则4BF x , 142MN x .再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM ,则有 21342x x ,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB,根据5AM ,可得3543GH MH ,进而求出125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC=.设DE y ,则6AE y ,即有164y y ,解得解方程即可求出DE .(1)证明:如图1,∵四边形ABCD 是矩形,∴90A D ,∴90CED DCE .∵EF CE ,∴90CED AEF ,∴DCE AEF ,∴AEF DCE ∽;(2)①解:如图2-1,连接AM .∵BG CF ⊥,∴BGC 是直角二角形.∴132BM CM GM.∴点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM ,当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM中,5AM .∴AG GM 的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,∴CMN CBF ∽△△.∴12MN CM BF CB .设AF x ,则4BF x ,∴ 11422MN BF x .∵∥MN AB ,∴AFG MNG ∽△△,∴AF AG MN GM ,由①知AG GM 的最小值为5、即5AM,又∵3GM ,∴2AG .∴ 21342x x ,解得1x ,即1AF .(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .∴MHG MBA ∽△△.∴GM GH MH AM AB MB,由①知AG GM 的最小值为5,即5AM ,又∵3GM ,∴3543GH MH .∴125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,∴GH CH FB CB ,即1293556FB ,解得3FB .∴1AF AB FB .由(1)的结论可得AF AE DE DC =.设DE y ,则6AE y ,∴164y y,解得3y或3.∵036,036 ,∴3DE或3DE 【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P ,Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ 相等的角是_____(2)问题探究直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE ,CD kCH ,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ,(2)EK LH ,证明见解析;(3)ET HT ,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ,根据余角性质得到PMR NRQ ,再证明MPR NRQ ≌△△,即可得到QN PR ,NRQ PMR ;(2)证明ABC CEK ≌△△,得到EK BC ,再证明DCB CHL ≌△△,得到BC HL ,可得到EK LH ;(3)证明ACB ECM ∽△△,得到BC kEM ,证明BCD NHC ∽△△,得到BC kHN ,得到EM HN ,证明NHT EMT ≌△△即可得到ET HT .(1)解:∵MRN △是等腰直角三角形,∴=MR RN ,90MRN ,∵MP PQ ,NQ PQ ,∴90MPR NQR ,∴90PMR MRP MRP NRQ ,∴PMR NRQ ,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR∴MPR NRQ ≌△△,∴QN PR ,NRQ PMR ,故答案为:PR ,PMR ;(2)解:∵四边形ACEF 是正方形,∴AC CE ,90ACE ,∵EK BK ∴90B EKC ,∴90BAC ACB ACB ECK ,∴BAC ECK ,∵四边形ACEF 是矩形,∴∴BAC ECM ,∴ACB △同理:BCD NHC ∽△△,∴在NHT △和EMT △中, 3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.由(1)可得:△NFO ∽△OEM ,∴NF OF NO OE ME MO∵点M (2,1),∴OE 1,∵tanα=ON OM =32,∴3NF OF ,∴NF =3,OF =33 ,3课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ,AC BC ,直线l 过点C ,过点A 作AD l ,过点B 作BE l ,垂足分别为D 、E .求证:CD BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为 4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x 与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45 后,所得的直线交x 轴于点R .求点R 的坐标.由已知得OM=ON,且∠OMN=∴由(1)得△OFM≌△MGN,∴MF=NG,OF=MG,设M(∴MF=m,OF=n,∴MG=n,,∵点N的坐标为(4,2)∴42m nn m解得13mn∴点M的坐标为(1,3);(3)如图3,过点Q作QS⊥PQ PR于S,过点S作SH⊥x轴于H,对于直线y=﹣4x+4,由x=0得∴P(0,4),∴OP=4,由y=1,∴Q(1,0),OQ=1,∵∠QPR=45°,∴∠PSQ=45°.∴PQ=SQ.∴由(1)得SH2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x 5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.当D在AB的下方时,过D作DE⊥轴于E,交BC于F,同(1)可证得△ADE≌△DPF,∴=AE=6-(2x-5)=11-2x,DE=x,3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ,AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E .(1)由图1,证明:DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE ,证明过程见解析;(3)DE BE AD ,证明过程见解析【分析】(1)先证明△ADC ≌△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,∵90ACB ,∴90ACD BCE ,∵AD MN ,∴90ACD CAD ,∴BCE ∠∠CA D ,又∵AC BC ,90ADC CEB ,∴() ≌ADC CEB AAS ,∴AD CE ,DC BE ,∵直线MN 经过点C ,∴DE CE DC AD BE ;(2)DE ,AD ,BE 的等量关系为:DE AD BE ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CE CD AD BE ;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CD CE BE AD .【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ,AC BC ,AD CE ,BE CE ,垂足分别为D ,E , 2.5cm AD , 1.7cm DE .求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN 的边AM 、AN 上,AB AC ,点E ,F 在MAN 内部的射线AD 上,且BED CFD BAC .求证:ABE CAF ≌.(3)拓展应用:如图③,在ABC 中,AB AC ,AB BC .点D 在边BC 上,2CD BD ,点E 、F 在线段AD 上,BED CFD BAC .若ABC 的面积为15,则ACF 与BDE 的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB ≌△ADC ,根据全等三角形的性质解答即可;(2)由条件可得∠BEA =∠AFC ,∠4=∠ABE ,根据AAS 可证明△ABE ≌△CAF ;(3)先证明△ABE ≌△CAF ,得到ACF 与BDE 的面积之和为△ABD 的面积,再根据2CD BD 故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,E ADC EBC DCA BC AC∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵BED CFD BAC∴∠ABE+∠BAE=∠FAC+∠BAE=∠FAC+∠ACF∴∠ABE=∠CAF,∠BAE=∠ACF又AB AC∴△ABE≌△CAF,∴ABE CAFS S∴ACF与BDE的面积之和等于ABE与BDE的面积之和,即为△ABD的面积,∵2CD BD,△ABD与△ACD的高相同则13ABD ABCS S△△=5故ACF与BDE的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC=(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC= ,证法见详解,(3)180º- ,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在 ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在 ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在 ABC中,沿 ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.∠CAE=90°∵∠BAD+∠ABD=∴线段BC 与AI 之间的数量关系为【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角形,列出比例式求解.7.(2022·湖北武汉·模拟预测)[问题背景](1)如图1,ABC 是等腰直角三角形,AC BC ,直线l 过点C ,AM l ,BN l ,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC ,90ACB ,N ,B ,E 三点共线,CN NE ,45E ,1CN ,2BN .求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ,点A ,B 分别在DE ,CE 上,AC BC ,90ACB ,若1tan 2DCA ,直接写出AE AD 的值为.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD 于点B ,CD BD 于点D ,P 是BD 上一点,AP PC ,AP PC ,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c ________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ,2AB ,4CD ,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ,且DM交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB 3AF ,则FG ________.9.(2022•郑州一模)如图,在平面直角坐标系xOy中.边长为4的等边△OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE∥AB,连接CD、CE,当点E坐标为时,△CDE与△ACE相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC =∠ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD ,∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a ,∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC 三边BC 、AB 、AC 上的点,且B C EDF ,BDE 与CFD 相似吗?请说明理由.(2)模型应用:ABC 为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF 沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD .①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求BDE 与CFD 的周长之比.【答案】(1)~ BDE CFD ,见解析;(2)①57AE AF ;②BDE 与CFD 的周长之比为13.【分析】(1)根据三角形的内角和得到BED CDF ,即可证明;(2)①设AE x ,AF y ,根据等边三角形的性质与折叠可知DE AE x ,DF AF y ,60EDF A ,根据三角形的内角和定理得BED CDF ,即可证明~ BDE CFD ,故BD BE DE CF CD FD ,再根据比例关系求出AE AF的值;②同理可证~ BDE CFD ,得BD BE DE CF CD FD,得28810x x y y ,再得到13x y ,再根据相似三角形的性质即可求解.【详解】解(1)~ BDE CFD ,理由:B C EDF ,在BDE 中,180B BDE BED ,180180BDE BED B ,180BDE EDF CDF ∵,180180BDE CDF EDF ,BED CDF ,B C ∵,~BDE CFD ;(2)①设AE x ,AF y ,ABC ∵是等边三角形,60A B C ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180B BDE BED ,180120BDE BED B ,180120BDE BED B ∵,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60B C ∵,~BDE CFD ,BD BE DE CF CD FD,8BE AB AE x ∵,8CF AC AF y ,6CD BC BD 2886x x y y , 2868y x y x y x ,105147x y ,57AE AF ;②设AE x ,AF y ,ABC ∵是等边三角形,60A ABC ACB ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180ABC BDE BED ,180120BDE BED ABC ,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60ABC ACB ∵,120DBE DCF ,~BDE CFD ,BD BE DE CF CD FD8BE AB AE x ∵,8CF AF AC y ,10CD BC BD ,28810x x y y ,2(8)10(8)y x y x y x ,13x y .~BDE CFD ∵.BDE 与CFD 的周长之比为13DE x DF y .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ,AC BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x与直线CD 交于点 2,1M ,且两直线夹角为 ,且3tan 2,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,3AB ,5BC ,点E 为BC 边上—个动点,连接AE ,将线段AE 绕点E 顺时针旋转90 ,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若DPC △为直角三角形时,请你探究并直接写出BE 的长.由(1)得NFO OEM △∽△∵M 坐标 2,1∴2OE ,ME ∵3tan 2 ∴32ON OM 解得:12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF⊥AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE 于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF⊥AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;DE=CF;③S△AEM=S△MCF;④BE=DE BF;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB 延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则∠FMN和∠NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO上截取BE,使BE=OA,连接CE.若∠OBA+∠OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.。
2023年中考数学压轴题培优教案专题04 一线三等角模型(含答案解析)
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题4一线三等角模型在直线AB 上有一点P,以A,B,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C,D . 1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BPD .(2)如图,若∠1为锐角,则有△ACP ∽△BPD .2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BPD .3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BPD . 【例1】.(2022·全国·八年级课时练习)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE =BD +CE .321DBPAC 3CDBP A321CPDBA321CDBAP(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.【例2】.(2022·全国·八年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB= AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,CE之间的数量关系是____________;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【例3】.(2022·浙江绍兴·模拟预测)如图,△ABC中∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求CQBP 的值.一、解答题1.(2022·全国·八年级课时练习)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时.①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请写出等量关系,并予以证明.(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:________.2.(2022·江苏·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.3.(2022·全国·九年级专题练习)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1==______.我们把这个模型称为“一线三∠D;又因为ACB=∠AED=90°,可得△ABC∽△DAE,进而得到BCAC等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,AB=AC=10,BC=12,点P是BC边上的一个动点(不与B、C,点D是AC边上的一个动点,且∠APD=∠B.①求证:△ABP∽△PCD;②当点P为BC中点时,求CD的长;拓展:(3)在(2)的条件下如图2,当△APD为等腰三角形时,请直接写出BP的长.4.(2022·山东烟台·七年级期末)问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,易证:DE=______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(−2,0),点A的坐标为(−6,3),请直接写出B点的坐标.5.(2021·浙江·义乌市绣湖中学教育集团八年级阶段练习)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过①已知直线y=34点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若△APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.6.(2022·江苏·八年级专题练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)7.(2022·全国·八年级课时练习)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC =AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,则有S1S2(填“>、=、<”)8.(2021·北京·东北师范大学附属中学朝阳学校八年级期中)如图,在△ABC中,∠ACB=90°,AC=BC,直线l 经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,①求证:∠EAC=∠BCF.②猜想EF、AE、BF的数量关系并证明.(2)将直线l绕点C顺时针旋转,使l与底边AB交于点D(D不与AB点重合),请你探究直线l,EF、AE、BF之间的关系.(直接写出)9.(2021·四川达州·九年级期中)模型探究:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:BE=CD;模型应用:(2)已知直线l1:y=2x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,如图2,求直线l2的函数表达式;x+4上,且AB=4√2.若直线与y轴的交点为M,M为AB中点.试判断(3)如图3,已知点A、B在直线y=12在x轴上是否存在一点C,使得△ABC是以AB为斜边的等腰直角三角形.10.(2022·全国·八年级课时练习)如图,线段AB=6,射线BG⊥AB,P为射线BG上一点,以AP为边做正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使得∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合),(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)△AEF的周长是否为定值,若是,请求出这个定值,若不是,请说明理由.11.(2022·全国·八年级课时练习)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDE=115°时,∠BAD=°,点D从B向C运动时,∠BAD逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BAD等于多少时,△ADE是等腰三角形.12.(2022·重庆江北·,在平面直角坐标系中,已知A(a,0)、B(0,b)分别在坐标轴的正半轴上.(1)如图1,若a、b满足(a−4)2+√b−3=0,以B为直角顶点,AB为直角边在第一象限内作等腰直角△ABC,则点C的坐标是(________);(2)如图2,若a=b,点D是OA的延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰直角△BDE,连接AE,求证:∠ABD=∠AED;(3)如图3,设AB=c,∠ABO的平分线过点D(2,−2),直接写出a−b+c的值.13.(2021·湖北·咸宁市第三初级中学八年级期中)如图,在等腰Rt△ABC中,∠ABC=90°,点A、B分别在x 轴、y轴上.(1)如图①,若点C的横坐标为5,求点B的坐标;的值;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CDAM(3)如图③,若点A的坐标为(−4,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限中作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴上移动时,PB的长度是否发生改变?若不变求PB的值;若变化,求PB的取值范围.14.(2022·江西·丰城九中七年级期末)综合与探究:在平面直角坐标系中,已知A(0,a),B(b,0)且a,b满足(a﹣3)2+|a﹣2b﹣1|=0(1)求A,B两点的坐标(2)已知△ABC中AB=CB,∠ABC=90°,求C点的坐标(3)已知AB=√10,试探究在x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.15.(2022·全国·八年级课时练习)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠EDC=°,∠DEC=°;点D从点B向点C运动时,∠BDA逐渐变.(填“大”或“小”)(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.16.(2021·北京·北师大实验中学九年级开学考试)在正方形ABCD中,点E在射线CB上(不与点B,C重合),连接DB,DE,过点E作EF⊥DE,并截取EF=DE(点D,F在BC同侧),连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②用等式表示线段BD,BE,BF之间的数量关系,并证明;(2)如图2,点E在CB边的延长线上,其他条件均不变,直接写出线段BD,BE,BF之间的数量关系.17.(2022·全国·八年级课时练习)在综合实践课上,李老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰△ABC纸片中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当∠BPC=100°时,α=______°;(2)当AP等于何值时,△APD≌△BCP?请说明理由;(3)在点P的滑动过程中,存在△PCD是等腰三角形吗?若存在,请求出夹角α的大小;若不存在,请说明理由.18.(2021·河南·舞阳县教研室八年级期中)如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中,点B坐标为(0,2),点C坐标为(6,0).(1)过点A作AD⊥x轴,求OD的长及点A的坐标;(2)连接OA,若Р为坐标平面内不同于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标;(3)已知OA=10,试探究在x轴上是否存在点Q,使△OAQ是以OA为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.19.(2021·山东·肥城市汶阳镇初级中学七年级阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB.E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,直接写出BE,EF,AF间的等量关系:__________.②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系,并对结论进行证明;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.20.(2022·全国·八年级课时练习)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.【例1】.(2022·全国·八年级课时练习)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC ∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.S△AEG=3.5.∴S△AEI=12故答案为:3.5.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.【例2】.(2022·全国·八年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB= AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是____________;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△12,求△FBD与△ACE的面积之和.【答案】(1)DE=BD+CE(2)DE=BD+CE仍然成立,理由见解析(3)△FBD与△ACE的面积之和为4【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,由AAS证得△ADB≌△CAE,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ABF即可得出结果.(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,{∠ABD =∠CAE ∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD与△ACE的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【例3】.(2022·浙江绍兴·模拟预测)如图,△ABC中∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求CQ的值.BP②BE²=BP·CQ,理由如下∶∵△BPE∽△CEQ∴BE CQ=BPCE∴BE·CE=BP·CQ∵点E为边BC的中点,∴BE=CE,∴BE²=BP·CQ;(2)解:①当点Q在线段AC上时,∵∠A=180°-∠B-∠C=120°,为钝角,∴△APQ为等腰三角形时有AP=AQ,∵∠B=∠C,∴AB=AC,∴BP=CQ,∴CQBP=1②当点Q在线段CA的延长线上时,如图:连接PQ∵∠BAC=120°,∴∠BAQ=60°,当△APQ为等腰三角形时,有△APQ为等边三角形设AB=AC=2a,则BC=2√3a,BE=CE=√3a,设AQ=AP=x,则CQ=2a+x,BP=2a-x,由(1)得∶BE²=BP·CQ∴(√3a)²=(2a+x)(2a-x),解得∶x=a,∴BP=a,CQ=3a,∴CQBP=3综上CQBP的值为1或3.【点睛】本题考查三角形相似综合问题,熟练掌握一线三等角的相似三角形模型是解题关键.一、解答题1.(2022·全国·八年级课时练习)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时.①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请写出等量关系,并予以证明.(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)①理由见解析;②理由见解析(2)DE=AD−BE,证明见解析(3)DE=BE−AD【分析】本题“一线三垂直”模型即可证明全等,根据全等三角形的性质即可分别在三个图形中证明AD、EB、DE之间的关系.(1)解:①∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中{∠ADC=∠BEC ∠DAC=∠BCEAC=BC,∴△ADC≌△CEB,②∵△ADC≌△CEB,∴AD=EC,CD=BE,∵DC+CE=DE,∴AD+EB=DE,(2)结论:DE=AD−BE,∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACE+∠BCE=90°,∴∠ACD=∠EBC,∴△ADC≌△CEB,∴AD=EC,CD=BE,∴DE=EC−CD=AD−EB, (3)结论:DE=BE−AD,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵BE⊥MN,AD⊥MN,∴∠ADC=∠DEC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中{∠ADC=∠BEC ∠DAC=∠BCE AC=BC∴△ADC≌△CEB,∴AD=EC,CD=BE,∴DE=CD−EC=EB−AD.【点睛】本题考查全等三角形的判断和性质,灵活运用“一线三垂直”模型是解题的关键.2.(2022·江苏·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中αABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断ΔADB≌ΔCEA;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,然后问题可求证;(3)由题意易得BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,由(1)(2)易证ΔADB≌ΔCEA,则有AE=BD,然后可得∠FBD=∠FAE,进而可证ΔDBF≌ΔEAF,最后问题可得证.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在ΔADB和ΔCEA中,{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴ΔADB≌ΔCEA(AAS);解:(2)成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α, ∴∠CAE=∠ABD,∵在ΔADB和ΔCEA中,{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴ΔADB≌ΔCEA(AAS);(3)证明:∵△ABF和△ACF均为等边三角形,∴BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,∴∠BDA=∠AEC=∠BAC=120°,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−120°,∴∠CAE=∠ABD,∴ΔADB≌ΔCEA(AAS),∴AE=BD,∵∠FBD=∠FBA+∠ABD,∠FAE=∠FAC+∠CAE,∴∠FBD=∠FAE,∴ΔDBF≌ΔEAF(SAS),∴FD=FE,∠BFD=∠AFE,∴∠BFA=∠BFD+∠DFA=∠AFE+∠DFA=∠DFE=60°,∴△DFE是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.3.(2022·全国·九年级专题练习)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为ACB=∠AED=90°,可得△ABC∽△DAE,进而得到BCAC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,AB=AC=10,BC=12,点P是BC边上的一个动点(不与B、C重合),点D是AC边上的一个动点,且∠APD=∠B.①求证:△ABP∽△PCD;②当点P为BC中点时,求CD拓展:(3)在(2)的条件下如图2,当△APD为等腰三角形时,请直接写出BP的长.【答案】感知:(1)AEDE ;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解..综上所述,当△APD为等腰三角形时, BP的长为2或113【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.4.(2022·山东烟台·七年级期末)问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,易证:DE=______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(−2,0),点A的坐标为(−6,3),请直接写出B点的坐标.∴△ADB≌△CEA,∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE,即:DE=BD+CE,故答案为:BD;CE;(2)解:数量关系:DE=BD+CE,证明:在△ABD中,∠ABD=180°−∠ADB−∠BAD,∵∠CAE=180°−∠BAC−∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,{∠ABD=∠CAE∠BDA=∠AECAB=CA∴△ABD≌△CAE,∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE−OC=4,∴OF=CF−OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2021·浙江·义乌市绣湖中学教育集团八年级阶段练习)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过①已知直线y=34点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若△APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.综上可知满足条件的点D的坐标分别为(3,1)或(9,13)或(193,233).【点睛】本题为一次函数的综合应用,涉及全等三角形的判定与性质、等腰直角三角形的性质、旋转的性质、分类讨论及数形结合的思想,解题的关键是熟练掌握并灵活运用相关性质进行求解.6.(2022·江苏·八年级专题练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm;(2)见解析(3)5【分析】(1)利用AAS定理证明△CEB≌△ADC,根据全等三角形的性质解答即可;(2)由条件可得∠BEA=∠AFC,∠4=∠ABE,根据AAS可证明△ABE≌△CAF;(3)先证明△ABE≌△CAF,得到ΔACF与ΔBDE的面积之和为△ABD的面积,再根据CD=2BD故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC∠EBC=∠DCABC=AC∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵∠BED=∠CFD=∠BAC7.(2022·全国·八年级课时练习)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC =AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,则有S1S2(填“>、=、<”)【答案】(1)DE;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,进而可得∠BAF=∠ADH,然后可证△ABF≌△DAH,则有AF=DH,进而可得DH=EQ,通过证明△DHG≌△EQG可求解问题;(3)过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M,由题意易得∠ADC=∠90°,AD=DC,DF=DE,然后可得∠ADO=∠DCM,则有△AOD≌△DMC,△FOD≌△DNE,进而可得OD=NE,通过证明△ENP≌△CMP及等积法可进行求解问题.【详解】解:(1)∵△ABC≌△DAE,∴AC=DE;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,如图所示:∴∠DAH+∠ADH=90°,∵∠BAD=90°,∴∠BAF+∠DAH=90°,∴∠BAF=∠ADH,∵BC⊥AF,∴∠BFA=∠AHD=90°,∵AB=DA,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴∠DHG=∠EQG=90°,∵∠DGH=∠EGQ∴△DHG≌△EQG,∴DG=EG,即点G是DE的中点;(3)S1=S2,理由如下:如图所示,过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M∵四边形ABCD与四边形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴S△AOD=S△DMC,OD=MC,同理可以证明△FOD≌△DNE,∴S△FOD=S△DNE,OD=NE,∴MC =NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴S△ENP=S△CMP,∵S△ADF=S△AOD+S△FOD,S△DCE=S△DCM−S△CMP+S△DEN+S△ENP,∴S△DCE=S△DCM+S△DEN=S△AOD+S△FOD,∴S△DCE=S△ADF即S1=S2.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的两个锐角互余及等积法,熟练掌握全等三角形的判定条件是解题的关键.8.(2021·北京·东北师范大学附属中学朝阳学校八年级期中)如图,在△ABC中,∠ACB=90°,AC=BC,直线l 经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,①求证:∠EAC=∠BCF.②猜想EF、AE、BF的数量关系并证明.(2)将直线l绕点C顺时针旋转,使l与底边AB交于点D(D不与AB点重合),请你探究直线l,EF、AE、BF之间的关系.(直接写出)【答案】(1)①证明见解析,②EF=AE+BF;证明见解析;(2)AE=BF+EF或BF=AE+EF.【分析】(1)①根据∠AEC=∠BFC=90°,利用同角的余角相等证明∠EAC=∠FCB即可;②根据AAS证△EAC≌△FCB,推出CE=BF,AE=CF即可;(2)类比(1)证得对应的两个三角形全等,求出线段之间的关系即可.【详解】(1)证明:①∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,②EF=AE+BF;证明:在△EAC和△FCB中,{∠AEC =∠CFB ∠EAC =∠FCB AC =BC,∴△EAC ≌△FCB (AAS ),∴CE =BF ,AE =CF ,∴EF =CE +CF =AE +BF ,即EF =AE +BF ;(2)①当AD >BD 时,如图①,∵∠ACB =90°,AE ⊥l 直线,同理可证∠BCF =∠CAE (同为∠ACD 的余角),又∵AC =BC ,BF ⊥l 直线即∠BFC =∠AEC =90°,∴△ACE ≌△CBF (AAS ),∴CF =AE ,CE =BF ,∵CF =CE +EF =BF +EF ,∴AE =BF +EF ;②当AD <BD 时,如图②,∵∠ACB =90°,BF ⊥l 直线,同理可证∠CBF =∠ACE (同为∠BCD 的余角),又∵AC =BC ,BE ⊥l 直线,即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS ),∴CF =AE ,BF =CE ,∵CE =CF +EF =AE +EF ,∴BF =AE +EF .【点睛】本题考查了三角形综合题,主要涉及到了全等三角形的判定与性质,解题关键是证明△ACE≌△CBF(AAS),利用全等三角形的性质得出线段之间的关系.9.(2021·四川达州·九年级期中)模型探究:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:BE=CD;模型应用:(2)已知直线l1:y=2x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,如图2,求直线l2的函数表达式;x+4上,且AB=4√2.若直线与y轴的交点为M,M为AB中点.试判断(3)如图3,已知点A、B在直线y=12在x轴上是否存在一点C,使得△ABC是以AB为斜边的等腰直角三角形.。
专题02 全等模型-一线三等角(K字)模型(解析版)
专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
一线三等角典型例题解析
“ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东·德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.变式1 ( 2012 年烟台) ( 1) 问题探究如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK =∠ACD1.作D1M ⊥ KH,D2N ⊥ KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.( 2) 拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1= ∠BH2K2=∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.2 如图8,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形例1、在△ABC中,AB =2,∠B = 45°,以点A为直角顶点作等腰Rt△ADE,点D 在BC上,点E 在AC上,若CE=5,求CD的长。
全等之一线三等角模型(含答案)
全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌(1)(2)1.如图,正方形的顶点在直线上,,于点,于点.求证:≌.若,求点到直线的距离.2.如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .(1)(2)3.如图,在中,,,于点,于点,,.求证:.求线段的长度.4.如图,点在线段上,,,,且,,,,求的度数.5.如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则 .6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .(1)(2)7.如图,,,,,垂足分别为,.证明:≌.若,,求的长.(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .A. B. C. D.10.如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)(3)12.如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:A. B. C. D.13.如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).14.如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 15.如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图图图图(1)(2)(3)17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)(1)(2)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:①如图①,若,,则;(填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌【备注】【教法指导】通过例1.1可以详细给学生示范一下三垂直模型的书写过程,其中倒角用的是“同角的余角相等”,提醒书生注意1.如图,正方形的顶点在直线上,,于点,于点.(1)(2)(1)(2)【解析】【标注】求证:≌.若,求点到直线的距离.【答案】(1)(2)证明见解析..∵四边形是正方形,,,∴,,,∴,,∴,∴在与中,,∴≌.过作,∵四边形是正方形,,∴,,,,∴,,,∴在与中,,∴≌,∴,∴在中,,,,∴点到直线的距离.【知识点】正方形与全等综合2.【解析】【标注】如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .【答案】∵四边形是正方形,∴,,∵则是直角三角形,∴,,又∵,∴,在和中,,∴≌,∴,∴.【知识点】三垂直模型3.如图,在中,,,于点,于点,,.(1)(2)(1)(2)【解析】【标注】求证:.求线段的长度.【答案】(1)(2)证明见解析..∵,,,∴,,∴,在和中,,∴≌,∴.∵≌,∴,,∴.【知识点】三垂直模型4.【解析】如图,点在线段上,,,,且,,,,求的度数.【答案】.连接、.∵,,.∴.【标注】在和中,∴≌∴,,∴.∴为等腰三角形.同理可得为等腰三角形.∴..【能力】分析和解决问题能力【知识点】SAS【知识点】全等三角形的性质5.【解析】【标注】如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则.【答案】由三垂直模型易证≌,∴.【知识点】坐标与距离;三垂直模型6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .【解析】【标注】【答案】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【知识点】根据坐标描点、根据点写坐标;三垂直模型(1)(2)7.(1)【解析】如图,,,,,垂足分别为,.证明:≌.若,,求的长.【答案】(1)(2)证明见解析..∵,,,∴,∴,,∴,在和中,(2)【标注】,∴≌.∵≌,∴,,∴().【知识点】一线三等角模型(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图【答案】(1)(2)(3)证明见解析.证明见解析..(1)(2)(3)【解析】【标注】∵中,,∴,又直线经过点,且于,于,∴,∴,∴,在和中,,∴≌(),∴,,∴.∵中,,直线经过点,且于,于,∴,,而,∴≌,∴,,∴.∵中,,直线经过点,且于,于,∴,,∴,∵,∴≌,∴,,∴;、、之间的关系为.【能力】推理论证能力【能力】运算能力【知识点】AAS【知识点】全等三角形的对应边与角9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .【解析】【标注】【答案】由题意可得:,,,在和中,,∴(),故,,则两条凳子的高度之和为:.故答案为:.【知识点】全等三角形实际生活中的应用A. B. C. D.10.方法一:【解析】如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).【答案】A ∵,,∴,∵在和中,,方法二:【标注】∴≌(),同理 ≌(),∴,,,,∵梯形的面积,,,∴图中实线所围成的图形的面积.∵且,,,,,∴,,≌,∴,.同理证得≌得,.故,故.故选:.【知识点】三垂直模型(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)【解析】【标注】【答案】(1)(2)证明见解析...∵,,,∴,∴,∴.∵,在和中,,∴≌,∴,,∴.∵,∴.成立.∵,,,∴.∵,,∴.∵,在和中,,∴≌,∴,.∵,∴.【能力】推理论证能力【能力】分析和解决问题能力【知识点】全等三角形的性质【知识点】AAS(1)(2)(3)12.(1)【解析】如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.【答案】(1)(2)(3)证明见解析...∵四边形和为正方形,(2)(3)∴,,,∴,∵,∴,∴,∵,∴≌(),∴.,理由如下:过点作于,∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.,理由如下:过点作于,【标注】∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.【知识点】正方形与全等综合2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:【备注】【教法指导】注意三个相等的角度可以在直线同侧,也可以在直线异侧.A. B. C. D.13.【解析】如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).【答案】B如图所示∵,,∴,∵为等边三角形,∴,∵线段绕点逆时针旋转得到线段,【标注】要使点恰好落在上,∴,,∵,,∴,在和中,∵,∴≌,∴.故选.【知识点】等边三角形的性质14.【解析】【标注】如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 【答案】∵,,∴,在和中,,∴≌,∴,∵,,∴.【知识点】一线三等角模型15.【解析】【标注】如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .【答案】∵,∴与等高,底边比值为,∴与面积比为,又的面积为,∴与面积分别为和.∵,∴.∵,,∴.在和中,,∴≌.∴,∴.【知识点】三角形的周长与面积问题16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.【解析】【标注】应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图【答案】见解析拓展:证明:∵,∴.∵,,又,∴.在和中,,∴≌.应用:解:∵,∴.∵,,,∴.在和中,,∴≌.∴.∵在中,,∴.∵,∴.∴.【知识点】全等三角形实际生活中的应用17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.图图图(1)(2)(3)图(1)【解析】如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)【答案】(1)(2)(3)证明见解析.证明见解析.如图,∵直线,直线,∴,∵,∴,∵,∴,在与中,,∴≌,∴,,∴,∴.图(2)图(3)【标注】.如图,证明如下:∵,∴,∴,在和中,,∴≌,∴,,∴,∴.∵≌,∴,,∵和均为等边三角形,∴,,∴,即,在和中,,∴≌,∴且,∵,∴,∴,∴是等边三角形,∴.【知识点】多解或多种判定混合(1)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:21(2)【标注】①如图①,若,,则 ; (填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图【答案】(1)(2)();.,先证明,再证明≌..【知识点】全等三角形的性质。
人教版八年级数学上册《一线三等角模型》专项练习-附含答案
人教版八年级数学上册《一线三等角模型》专项练习-附含答案【模型说明】 C D E BA应用:通过证明全等实现边角关系的转化 便于解决对应的几何问题;【例题精讲】例1.(基本“K ”型)如图 一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°) 若OA =50cm OB =28cm 则点C 离地面的距离是____ cm .【答案】28【详解】解:过点C 作CD ∠OB 于点D 如图∠90CDB AOB ∠=∠=︒∠ABC ∆是等腰直角三角形∠AB =CB 90ABC ∠=︒∠90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∠ABO BCD ∠=∠在ABO ∆和BCD ∆中AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABO BCD AAS ∆≅∆∠28cm CD BO ==故答案为:28.例2.(特殊“K ”型)在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC =,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和. 【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立 理由见解析(3)△FBD 与△ACE 的面积之和为4【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90° ∴∠BAD +∠EAC =∠BAD +∠DBA =90° ∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE ∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE ∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC ∴∠CAE =∠ABD在△ABD 和△CAE 中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ) ∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.例3.(“K ”型培优)已知:ABC 中 90ACB ∠=︒ AC CB = D 为直线BC 上一动点 连接AD 在直线AC 右侧作AE AD ⊥ 且AE AD =.(1)如图1 当点D 在线段BC 上时 过点E 作EH AC ⊥于H 连接DE .求证:EH AC =; (2)如图2 当点D 在线段BC 的延长线上时 连接BE 交CA 的延长线于点M .求证:BM EM =;(3)当点D 在直线CB 上时 连接BE 交直线AC 于M 若25AC CM = 请求出ADB AEMS S △△的值. 【答案】(1)见解析;(2)见解析;(3)43或47【详解】证明(1)∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAH CAD 90∠=︒-∠ADC CAD EAH ADC ∴∠=∠在AHE 与DCA △中 90AHE ACB EAH ADCAE AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AHE DCA AAS ∴△≌△ EH AC ∴=; (2)如图2 过点E 作EN AC ⊥ 交CA 延长线于N∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS 则BM EM =; (3)如图 当点D 在线段BC 上时∠25AC CM = ∠可设5AC a = 2CM a =由(1)得:AHE DCA △≌△ 则AH CD = 5===EH AC BC a由∠90EHM BCM ∠=∠=︒ BMC EMH ∠=∠ ∠MHE MCB △≌△(AAS ) ∠CM HM = 即2HM CM a == ∠522AH AC CM HM a a a a =--=--= ∠3AM AH HM a CD AH a ==5EH AC a == 4BD BC CD a =-= 11454221133522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EH a a ; 如图 点D 在CB 延长线上时 过点E 作EN AC ⊥ 交AC 延长线于N∠25AC CM = ∠可设5AC a = 2CM a =∠EN AC ⊥ AE AD ⊥ ∠90ANE EAD ACB ∠=∠=∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= AN CD = 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS ∠2==CM NM a 5NE BC AC a === ∠9AN AC CM MN a =++=7AM AC CM a =+= 9AN CD a == ∠4BD a = 11454221177522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EN a a 点D 在BC 延长线上 由图2得:AC CM < ∠25AC CM =不可能 故舍去综上:ADB AEM S S △△的值为43或47 【变式训练1】如图 90,ABC FA AB ∠=⊥于点A 点D 在直线AB 上,AD BC AF BD ==.(1)如图1 若点D 在线段AB 上 判断DF 与DC 的数量关系和位置关系 并说明理由;(2)如图2 若点D 在线段AB 的延长线上 其他条件不变 试判断(1)中结论是否成立 并说明理由.【答案】(1)DF =DC DF ∠DC ;理由见解析;(2)成立 理由见解析【解析】(1)解:∠90,ABC FA AB ∠=⊥∠90ABC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .(2)∠90,ABC FA AB ∠=⊥∠90DBC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .【变式训练2】在ABC 中 90ACB ∠=︒ AC BC = 直线MN 经过点C 且AD MN ⊥于D BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时.∠请说明ADC CEB △≌△的理由;∠请说明DE AD BE =+的理由;(2)当直线MN 绕点C 旋转到图2的位置时 DE 、AD 、BE 具有怎样的等量关系?请写出等量关系 并予以证明.(3)当直线MN 绕点C 旋转到图3的位置时 DE 、AD 、BE 具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)∠理由见解析;∠理由见解析(2)DE AD BE =- 证明见解析(3)DE BE AD =-【解析】(1)解:∠∠AD MN ⊥于D BE MN ⊥于E∠90ADC BEC ∠=∠=︒∠90ACB ∠=︒ ∠90ACD BCE ∠+∠=︒90ACD DAC ∠+∠=︒ ∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠∠ADC CEB △≌△ ∠AD EC = CD BE =∠DC CE DE += ∠AD EB DE +=(2)结论:DE AD BE =-∠BE EC ⊥ AD CE ⊥∠90ADC BEC ∠=∠=︒∠90EBC BCE ∠+∠=︒∠90ACB ∠=︒∠90ACE BCE ∠+∠=︒∠ACD EBC ∠=∠∠ADC CEB △≌△∠AD EC = CD BE =∠DE EC CD AD EB =-=-(3)结论:DE BE AD =-∠90ACB ∠=︒∠90ACD BCE ∠+∠=︒∠BE MN ⊥ AD MN ⊥∠90ADC DEC ∠=∠=︒∠90ACD DAC ∠+∠=︒∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠AD EC = CD BE =∠DE CD EC EB AD =-=-.【变式训练3】(1)如图1 在∠ABC 中 ∠BAC =90° AB =AC 直线m 经过点A BD ∠直线m CE ∠直线m 垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2 将(1)中的条件改为:在∠ABC 中 AB =AC D 、A 、E 三点都在直线m 上 并且有∠BDA =∠AEC =∠BAC =α 其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立 请给出证明;若不成立 请说明理由.(3)拓展应用:如图3 D E 是D A E 三点所在直线m 上的两动点(D A E 三点互不重合) 点F 为∠BAC 平分线上的一点 且∠ABF 和∠ACF 均为等边三角形 连接BD CE 若∠BDA =∠AEC =∠BAC 求证:∠DEF 是等边三角形.【答案】(1)见详解;(2)成立 理由见详解;(3)见详解【详解】(1)证明:BD ⊥直线m CE ⊥直线m 90BDA CEA ∴∠=∠=︒90BAC ∠=︒ 90BAD CAE ∴∠+∠=︒90BAD ABD ∠+∠=︒ CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;解:(2)成立 理由如下:α∠=∠=BDA BAC180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;(3)证明:∠∠ABF 和∠ACF 均为等边三角形∠,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒ ∠∠BDA =∠AEC =∠BAC =120°∠180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒ ∠CAE ABD ∠=∠∠()ADB CEA AAS ∆∆≌ ∠AE BD =∠,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠ ∠FBD FAE ∠=∠∠DBF EAF ∆∆≌(SAS ) ∠,FD FE BFD AFE =∠=∠∠60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒ ∠∠DFE 是等边三角形.【课后作业】1.如图是高空秋千的示意图 小明从起始位置点A 处绕着点O 经过最低点B 最终荡到最高点C 处 若90AOC ∠=︒ 点A 与点B 的高度差AD =1米 水平距离BD =4米 则点C 与点B 的高度差CE 为( )A.4米B.4.5米C.5米D.5.5米【答案】B【详解】解:作AF∠BO于F CG∠BO于G∠∠AOC=∠AOF+∠COG=90° ∠AOF+∠OAF=90° ∠∠COG=∠OAF在∠AOF与∠OCG中AFO OGCOAF COGAO OC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠AOF∠∠OCG(AAS) ∠OG=AF=BD=4米设AO=x米在Rt∠AFO中 AF2+OF2=AO2即42+(x-1)2=x2解得x=8.5.则CE=GB=OB-OG=8.5-4=4.5(米).故选:B.2.如图 ∠ABC=∠ACD=90° BC=2 AC=CD则△BCD的面积为_________.【答案】2【详解】解:如图作DE垂直于BC的延长线垂足为E∠90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒ ∠BAC DCE ∠=∠在ABC 和CED 中 ∠90BAC DCE ABC CED AC CD ∠=∠⎧⎪∠==︒⎨⎪=⎩∠()ABC CED AAS ≌ ∠2BC DE == ∠122BCD S BC DE =⨯⨯= 故答案为:2.3.如图 ABC 为等边三角形 D 是BC 边上一点 在AC 上取一点F 使=CF BD 在AB 边上取一点E 使BE DC = 则EDF ∠的度数为( )A .30B .45C .60D .70【答案】C 【详解】∠ABC 是等边三角形 ∠∠B=∠C=60°在∠EDB 和∠DFC 中 60BD CF B C BE CD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠EDB ∠∠DFC ∠∠BED=∠CDF ∠∠B=60° ∠∠BED+∠BDE= 120° ∠∠CDF+∠BDE= 120°∠∠EDF=180°-(∠CDF+∠BDE )=180°-120°=60°.故选C.4.已知∠ABC 中 ∠ACB =90° AC =BC .BE 、AD 分别与过点C 的直线垂直 且垂足分别为D E .学习完第十二章后 张老师首先让同学们完成问题1:如图1 若AD =2.5cm DE =1.7cm 求BE 的长;然后 张老师又提出问题2:将图1中的直线CE 绕点C 旋转到∠ABC 的外部 BE 、AD 与直线CE 的垂直关系不变 如图2 猜想AD 、DE 、BE 三者的数量关系 并给予证明.【答案】BE 的长为0.8cm ;DE =AD +BE .【详解】解:如图1 ∠∠ACB =∠BEC =∠ADC =90°∠∠ACD +∠BCE =90°=∠ACD +∠CAD ∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE =2.5cm BE =CD∠DE =1.7cm ∠BE =CD =CE -DE =2.5-1.7=0.8cm ∠BE 的长为0.8cm ;如图2 DE =AD +BE 理由如下:∠∠ACB =∠BEC =∠ADC =90° ∠∠ACD +∠BCE =90°=∠ACD +∠CAD∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE BE =CD ∠DE =AD +BE .5.如图 在ABC 中 AB BC =.(1)如图∠所示 直线NM 过点B AM MN ⊥于点M ⊥CN MN 于点N 且90ABC ∠=︒.求证:MN AM CN =+.(2)如图∠所示 直线MN 过点B AM 交MN 于点M CN 交MN 于点N 且AMB ABC BNC ∠=∠=∠ 则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立 理由见解析【详解】证明:(1)∠AM MN ⊥ ⊥CN MN∠90AMB BNC ∠=∠=︒ ∠90ABM BAM ∠+∠=︒∠90ABC ∠=︒ ∠90ABM CBN ∠+∠=︒ ∠BAM CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = BM CN = ∠BN MB MN += ∠MN AM CN =+;(2)MN AM CN =+仍然成立 理由如下:∠180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒∠AMB ABC ∠=∠ ∠MAB CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = NC MB =∠MN MB BN =+ ∠MN AM CN =+.6.如图 在∠ABC 中 ∠ACB =90° AC =BC 直线l 经过顶点C 过A 、B 两点分别作l 的垂线AE 、BF E 、F 为垂足.(1)当直线l 不与底边AB 相交时∠求证:∠EAC =∠BCF .∠猜想EF 、AE 、BF 的数量关系并证明.(2)将直线l 绕点C 顺时针旋转 使l 与底边AB 交于点D (D 不与AB 点重合) 请你探究直线l EF 、AE 、BF 之间的关系.(直接写出)【答案】(1)∠证明见解析 ∠EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【详解】(1)证明:∠∵AE ⊥EF BF ⊥EF ∠ACB =90°∴∠AEC =∠BFC =∠ACB =90°∴∠EAC +∠ECA =90° ∠ECA +∠FCB =90° ∴∠EAC =∠FCB∠EF =AE +BF ;证明:在△EAC 和△FCB 中 AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△FCB (AAS )∴CE =BF AE =CF∴EF =CE +CF =AE +BF即EF =AE +BF ;(2)∠当AD >BD 时 如图①∵∠ACB =90° AE ⊥l 直线同理可证∠BCF =∠CAE (同为∠ACD 的余角)又∵AC =BC BF ⊥l 直线即∠BFC =∠AEC =90°∴△ACE ≌△CBF (AAS )∴CF =AE CE =BF∵CF =CE +EF =BF +EF∴AE =BF +EF ;∠当AD <BD 时 如图②∵∠ACB =90° BF ⊥l 直线同理可证∠CBF =∠ACE (同为∠BCD 的余角)又∵AC =BC BE ⊥l 直线 即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS )∴CF =AE BF =CE∵CE =CF +EF =AE +EF ∴BF =AE +EF .7.(1)某学习小组在探究三角形全等时 发现了下面这种典型的基本图形.如图1 已知:在ABC 中 90BAC ∠=︒ AB AC = 直线l 经过点A BD ⊥直线l CE ⊥直线l 垂足分别为点D E .求证:DE BD CE =+.(2)组员小明想 如果三个角不是直角 那结论是否会成立呢?如图2 将(1)中的条件改为:在ABC 中 AB AC = D A E 三点都在直线l 上 并且有BDA AEC BAC α∠=∠=∠= 其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立 请你给出证明;若不成立 请说明理由.(3)数学老师赞赏了他们的探索精神 并鼓励他们运用这个知识来解决问题:如图3 过ABC 的边AB AC 向外作正方形ABDE 和正方形ACFG AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△ 则AEI S =△______. 【答案】(1)见解析;(2)结论成立 理由见解析;(3)3.5【详解】解:(1)证明:如图1中 ∠BD ∠直线l CE ∠直线l∠∠BDA =∠CEA =90°∠∠BAC =90°∠∠BAD +∠CAE =90°∠∠BAD +∠ABD =90°∠∠CAE =∠ABD在∠ADB 和∠CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中∠∠BDA =∠BAC =α∠∠DBA +∠BAD =∠BAD +∠CAE =180°-α∠∠DBA =∠CAE在∠ADB 和∠CEA 中BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(3)如图3 过E 作EM ∠HI 于M GN ∠HI 的延长线于N .∠∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∠EM =GN在∠EMI 和∠GNI 中GIN EIM EM GNGNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠EMI ∠∠GNI (AAS )∠EI =GI∠I 是EG 的中点.∠S △AEI =12S △AEG =3.5.故答案为:3.5.8.如图 在∠ABC 中 AB =AC =2 ∠B =∠C =40° 点D 在线段BC 上运动(点D 不与点B 、C 重合) 连接AD 作∠ADE =40° DE 交线段AC 于点E .(1)当∠BDA =105°时 ∠EDC = ° ∠DEC = °;点D 从点B 向点C 运动时 ∠BDA 逐渐变 .(填“大”或“小”)(2)当DC 等于多少时 ∠ABD ∠∠DCE ?请说明理由.(3)在点D 的运动过程中 ∠ADE 的形状可以是等腰三角形吗?若可以 请直接写出∠BDA 的度数;若不可以 请说明理由.【答案】(1)35105︒︒, 小;(2)2 理由见解析;(3)110︒或80°【详解】(1)40B C ∠=∠=︒ 40ADE ∠=︒1801804040100BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒180140ADB EDC ADE ∠+∠=︒-∠=︒180140ADB BAD B ∠+∠=︒-∠=︒180140DEC EDC C ∠+∠=︒-∠=︒BAD EDC ∴∠=∠ ADB DEC ∠=∠∴当∠BDA =105°时∴∠EDC =1801801054035BAD ADB B ∠=︒-∠-∠=︒-︒-︒=︒∠DEC =ADB ∠105=︒;当点D 从点B 向点C 运动时 BAD ∠逐渐变大 180140BDA B BAD BAD ∠=︒-∠-∠=︒-∠ 则∠BDA 逐渐变小故答案为:35105︒︒,小; (2)BAD EDC ∠=∠ ADB DEC ∠=∠当DC AB =2=时 ABD DCE ∴≌(AAS ) 2DC ∴=(3)∠ADE 的形状可以是等腰三角形 BDA ∠=110︒或80︒40B C ∠=∠=︒ 1804040100BAC ∴∠=︒-︒-︒=︒∠当DA DE =时 ()118040702DAE DEA ∠=∠=︒-︒=︒ 1007030BAD BAC DAC ∴∠=∠-∠=︒-︒=︒1801804030110BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒;∠当EA ED =时 ADE ∠=40,1804040100DAE DEA ∠=︒∠=︒-︒-︒=︒1004060BAD BAC DAE ∴∠=∠-∠=︒-︒=︒180180406080BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒∠当AE AD =时 ADE ∠=40,1804040100DEA DAE ∠=︒∠=︒-︒-︒=︒100BAC ∠=︒∴此时D 点与B 点重合由题意可知点D 不与点B 、C 重合∴此种情况不存在综上所述当∠ADE是等腰三角形时BDA∠=110︒或80︒.9.如图线段AB=6 射线BG∠AB P为射线BG上一点以AP为边做正方形APCD且点C、D与点B在AP两侧在线段DP上取一点E使得∠EAP=∠BAP直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:△AEP∠∠CEP;(2)判断CF与AB的位置关系并说明理由;(3)△AEF的周长是否为定值若是请求出这个定值若不是请说明理由.【答案】(1)证明见解析;(2)CF∠AB理由见解析;(3)是为16.【详解】解:(1)证明:∠四边形APCD 正方形 ∠DP平分∠APC PC=P A ∠APC=90°∠∠APE=∠CPE=45°在∠AEP与∠CEP中AP CPAPE CPEPE PE=⎧⎪∠=∠⎨⎪=⎩∠∠AEP∠∠CEP(SAS);(2)CF∠AB理由如下:∠∠AEP∠∠CEP ∠∠EAP=∠ECP∠∠EAP=∠BAP ∠∠BAP=∠FCP ∠∠APC=90° ∠∠FCP+∠CMP=90° ∠∠AMF=∠CMP ∠∠AMF+∠P AB=90° ∠∠AFM=90° ∠CF∠AB;(3)过点C作CN∠PB.∠CF∠AB BG∠AB ∠∠PNC=∠B=90° FC∠BN∠∠CPN=∠PCF=∠EAP=∠P AB又AP=CP ∠∠PCN∠∠APB(AAS) ∠CN=PB=BF PN=AB∠∠AEP∠∠CEP ∠AE=CE∠∠AEF的周长=AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=16.故∠AEF的周长是否为定值为16.。
部编数学九年级下册专题13一线三等角模型证相似(解析版)含答案
专题13 一线三等角模型证相似1.如图,在边长为9cm的等边ABCD中,D为BC上一点,且3BD cm=,E在AC上,60ADEÐ=°,则AE的长为( )cm.A.B.C.7D.6【解答】解:ABCDQ是等边三角形,9AB BC AC cm\===,60B CÐ=Ð=°,180120BAD ADB B\Ð+Ð=°-Ð=°,60ADEÐ=°Q,180120ADB EDC ADE\Ð+Ð=°-Ð=°,BAD EDC\Ð=Ð,ABD DCE\D D∽,\AB BD DC CE=,\9393CE=-,2CE\=,7()AE AC CE cm\===,故选:C.2.如图,边长为8cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若2BF cm=,则小正方形的面积等于2 .【解答】解:Q正方形ABCD的边长为8cm,2BF cm=,6CF cm\=Q 四边形ABCD 和EFGH 均为正方形90B C EFG \Ð=Ð=Ð=°90BEF BFE \Ð+Ð=°,90CFD BFE Ð+Ð=°BEF CFD\Ð=ÐBEF CFD\D D ∽\BE CF BF CD =\628BE =32BE \=\小正方形的面积等于:222EF BE BF =+944=+225()4cm =故答案为:2254cm .三.解答题(共15小题)3.已知等边ABC D ,E ,F 分别在边AB 、AC 上,将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.(1)求证:BED CDF D D ∽;(2)若2CD BD =时,求ED DF.【解答】解:(1)证明:Q 等边ABCD 60A B C \Ð=Ð=Ð=°Q 将AEF D 沿EF 折叠,A 点落在BC 边上的D 处.60EDF A \Ð=Ð=°180********BED BDE B Ð+Ð=°-Ð=°-°=°Q 180********BDE CDF EDF Ð+Ð=°-Ð=°-°=°BED CDF\Ð=Ð又B CÐ=ÐQ BED CDF \D D ∽;(2)2CD BD=Q \设1BD =,则2CD =,Q 翻折,\设ED AE x ==,DF AF y==3AB BC AC \===,3BE x =-,3CF y=-BED CDFD D Q ∽\ED BD BE DF CF DC ==\1332x x y y -==-由13x y y=-得:31x y x =+①由32x x y -=得:23x y x=-②由①②解得:75x =,74y =\45x y =\45ED DF =.4.如图有一块三角尺,Rt ABC D ,90C Ð=°,30A Ð=°,6BC =,用一张面积最小的正方形纸片将这个三角尺完全覆盖.求出这个正方形的面积.【解答】解:90C Ð=°Q ,30A Ð=°,6BC =,212AB BC \==,AC \=,Q 四边形AFED 是正方形,90F E \Ð=Ð=°,AF FE =,90FAC FCA \Ð+Ð=°,90C Ð=°Q ,90FCA BCE \Ð+Ð=°,FAC BCE \Ð=Ð,AFC CEB \D D ∽,\AFACCE CB =,\AFCE =,设AF x =,则CE x =,FC \=,222AF AC Q ,222)x x \+=,2268237x \=+,答:这个正方形的面积为:226837.5.已知:如图,ABC D 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE Ð=°.(1)求证:ABD DCE D D ∽;(2)如果3AB =,23EC =,求DC 的长.【解答】(1)证明:ABC D Q 是等边三角形,60B C \Ð=Ð=°,AB AC =,B BAD ADE CDE Ð+Ð=Ð+ÐQ ,60B ADE Ð=Ð=°,BAD CDE \Ð=ÐABD DCE \D D ∽;(2)解:由(1)证得ABD DCE D D ∽,\BD CE AB DC=,设CD x =,则3BD x =-,\2333x x-=,1x \=或2x =,1DC \=或2DC =.6.如图,在矩形ABCD 中,3AB =,5AD =,P 是边BC 上的任意一点(P 与B 、C 不重合),作PE AP ^,交CD 于点E .(1)判断ABP D 与PCE D 是否相似,并说明理由.(2)连接BD ,若//PE BD ,试求出此时BP 的长.【解答】解:(1)ABP D 与PCE D 相似,理由如下:Q 四边形ABCD 是矩形,90B C \Ð=Ð=°,90BAP BPA \Ð+Ð=°,PE AP ^Q ,90CPE BPA \Ð+Ð=°,BAP CPE \Ð=Ð,ABP PCE \D D ∽;(2)连接BD,如图所示:由(1)知ABP PCE D D ∽,\AB BP PC CE =,\AB PC BP CE=,//PE BD Q ,\CP CE CB CD =,\PC CB CE CD =,\AB CB BP CD=,Q 在矩形ABCD 中,3AB =,5AD =,3CD AB \==,5CB AD ==,95AB CD BP CB ×\==.7.如图1,在ABC D 中,AB AC ==,cos B =,点D 在BC 边上从C 向B 运动.以D 为顶点作ADE B Ð=Ð,射线DE 交AB 边于点E ,过点A 作AF AD ^交射线DE 于点F ,连接CF .(1)求证:ACD DBE D D ∽.(2)当AD CD =时(如图2),求AD 和EF 的长.(3)设点D 在BC 边上从C 向B 运动的过程中,直接写出点F 运动的路径长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,又ADE B Ð=ÐQ ,ADE B C \Ð=Ð=Ð,180B BDE BED Ð+Ð+Ð=°Q ,180ADC ADE BDE Ð+Ð+Ð=°,BED ADC \Ð=Ð,ACD DBE \D D ∽;(2)解:如图,过点D 作DH AC ^交AC 于点H ,AD CD =Q,AB AC ==,12CH AH AC \===,cos B =Q ,B C Ð=Ð,cos CH B CD\=,6cos CH CD B \===,6AD =,AF AD ^Q ,90FAD \Ð=°,ADE B Ð=ÐQ,6cos ADE DF \Ð==,DF \=,由(1)得ACD DBE D D ∽,\DE BD AD AC =,\6DE DE \=,过点A 作AM BC ^于点M ,cos BM B AB\=,\4BM \=,28BC BM \==,862BD BC CD \=-=-=,DE \==,EF DF DE \=-==,6AD \=,EF =(3)解:F Q 点随着D 点的运动而运动,D 在线段BC 上,F \点的轨迹也是一条线段,如图,当D 与C 点重合时,F 点在1F 的位置,190CAF Ð=°,当D 点与B 点重合时,F 点在2F 的位置,290BAF Ð=°,12F F 为F 点的运动路径,12F AF CAB \Ð=Ð,AC =Q,cos B =,ABC C Ð=Ð,1cos AC C CF \===,112CF \=,在1Rt ACF D中,1AF ==,ADF B Ð=ÐQ,2cos cos ABF B \Ð==22cos ABABF BF Ð==,=,212BF \=,2AF ==,21AF AF \=,△12AF F 是等腰三角形,12F AF CAB Ð=ÐQ ,△12AF F 与CAB D 都是等腰三角形,\△12AF F ACB D ∽,\121F F AF BC AC =,由(2)得8BC =,\128F F,12F F \=\点F运动的路径长为.8.在ABC D 中,点E 、F 在边BC 上,点D 在边AC 上,连接ED 、DF ,AB m AC =,120A EDF Ð=Ð=°(1)如图1,点E 、B 重合,1m =时①若BD 平分ABC Ð,求证:2CD CF CB =×;②若213CFBF =,则ADCD =(2)如图2,点E 、B 不重合.若BE CF =,ABDFm AC DE ==,37BEEF =,求m 的值.【解答】解:(1)①Q 1ABm AC ==,AB AC \=,BD Q 平分ABC Ð,ABD DBF \Ð=Ð,BDC A ABD BDF CDF Ð=Ð+Ð=Ð+ÐQ ,且120A BDF Ð=Ð=°,ABD CDF DBF \Ð=Ð=Ð,且C C Ð=Ð,CDF CBD \D D ∽,\CD CF BC CD=,2CD BC CF \=×;②如图1,过A 作AG BC ^于G ,过F 作FH BC ^,交AC 于H ,30C Ð=°Q ,2CH FH \=,设2FH a =,4CH a =,则CF =,Q 213CF BF =,BC \=,CG =Q ,152AG a \=,15AC a =,11AH a \=,120BAD BDF DHF Ð=Ð=Ð=°Q ,18012060ADB FDH ADB ABD \Ð+Ð=Ð+Ð=°-°=°,ABD FDH \Ð=Ð,ABD HDF \D D ∽,\AB AD HD FH =,即152a AD DH a=,设AD x =,则11DH a x =-,230(11)a x a x \=-,2211300x ax a -+=,(5)(6)0x a x a --=,5x a =或6a ,\51102AD a CD a ==或6293AD a CD a ==,故答案为:12或23;(2)如图2,过E 作//EH AB ,交AC 于H ,过D 作DM EH ^于M ,过F 作//FG ED ,交AC 于G ,BE CF =Q ,37BE EF =,\37CF EF =,//FG ED Q ,\37CF CG EF DG ==,\设3CG a =,7DG a =,Q AB DF m AC DE==,120A EDF Ð=Ð=°,ABC DFE \D D ∽,DEC C \Ð=Ð,10DE DC a \==,//FG DE Q ,GFC DEF C \Ð=Ð=Ð,3FG CG a \==,同理由(1)得:EHD DFG D D ∽,\ED DH DG FG =,即1073a DH a a=,307a DH =,Rt DHM D 中,60DHM Ð=°,30HDM \Ð=°,11527a HM DH \==,DM =,657EM a \===,651550777EH a a a \=-=,5017302107a AB EH m AC CH a a \====+.9.已知:在EFG D 中,90EFG Ð=°,EF FG =,且点E ,F 分别在矩形ABCD 的边AB ,AD 上.(1)如图1,填空:当点G 在CD 上,且1DG =,2AE =,则EG =(2)如图2,若F 是AD 的中点,FG 与CD 相交于点N ,连接EN ,求证:AEF FEN Ð=Ð;(3)如图3,若AE AD =,EG ,FG 分别交CD 于点M ,N ,求证:2MG MN MD =×.【解答】(1)解:90EFG Ð=°Q ,90AFE DFG \Ð+Ð=°,90AEF AFE Ð+Ð=°Q ,AEF DFG \Ð=Ð,又90A D Ð=Ð=°Q ,EF FG =,()AEF DFG AAS \D @D ,2AE FD \==,FG \==EG \==,;(2)证明:延长EA、NF 交于点M ,Q点F为AD的中点,\=,AF DFQ,AM CD//Ð=Ð,\Ð=Ð,MAD DM DNF\D@D,MAF NDF AAS()\=,MF FN^Q,EF MG\=,ME GE\Ð=Ð;MEF FEN(3)证明:如图,过点G作GP AD^交AD的延长线于P,\Ð=°,P90D@D,AEF PFG AAS同(1)同理得,()=,\=,PF AEAF PGQ,=AE AD\=,PF AD\=,AF PD\=,PG PDQ,Ð=°P9045PDG \Ð=°,45MDG \Ð=°,在Rt EFG D 中,EF FG =,45FGE \Ð=°,FGE GDM \Ð=Ð,GMN DMG Ð=ÐQ ,MGN MDG \D D ∽,\MG MN DM MG=,2MG MN MD \=×.10.在ABC D 中,BA BC =,(0180)ABC a a Ð=°<<°,点P 为直线BC 上一动点(不与点B 、C 重合),连接AP ,将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,直线PM 与直线CN 相交于点Q .(1)当点P 在线段BC 上,当60a =°时,如图1,直接判断BP CQ 的大小;(2)当点P 在线段BC 上,当BC k AC=时,如图2,试判断线段BP CQ 的大小,并说明理由;(3)当点P 在直线BC 上,当90a =°,AC =17AP =时,请利用备用图探究PCQ D 面积的大小(直接写出结果即可).【解答】解:(1)如图1,连接AQ ,BA BC =Q ,60ABC a Ð==°,ABC \D 是等边三角形,60BAC ACB ABC \Ð=Ð=Ð=°,Q 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,60APQ ACQ \Ð=Ð=°,\点A ,点P ,点C ,点Q 四点共圆,60AQP ACB \Ð=Ð=°,APQ \D 是等边三角形,AP AQ \=,60PAQ Ð=°,BAC PAQ \Ð=Ð,BAP CAQ \Ð=Ð,()BAP CAQ SAS \D @D ,BP CQ \=,\1BP CQ=;(2)BP k CQ =,理由如下:如图2,连接AQ ,BA BC =Q ,ABC a Ð=,1802ACB BAC a °-\Ð=Ð=,QQ 将线段AP 所在的直线绕点P 顺时针旋转a 得到直线PM ,再将线段AC 所在的直线绕点C 顺时针旋转a 得到直线CN ,APQ ACQ a \Ð=Ð=,\点A ,点P ,点C ,点Q 四点共圆,1802AQP ACB a °-\Ð=Ð=,1802PAQ BAC a °-\Ð==Ð,BAP CAQ \Ð=Ð,又ABC ACQ a Ð=Ð=Q ,ABP ACQ \D D ∽,\AB BC BP k AC AC CQ===;(3)17AC AP =<=Q ,\点P 不在线段BC 上,当点P 在点C 的右侧时,如图3,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,7CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,11105715222CPQ S CP QH D \=´´=´´=;当点P 在点B 的左侧时,如图4,过点Q 作QH BC ^于H ,AB BC =Q ,90ABC Ð=°,AC =8AB BC \==,45ACB Ð=°,15BP \===,23CP \=,90ACQ Ð=°Q ,45ACB Ð=°,45QCH \Ð=°,由(2)可知AB BP AC CQ =,\15CQ=,CQ \=,45QCH Ð=°Q ,QH BH ^,15CH QH \==,113452315222CPQ S CP QH D \=´´=´´=;综上所述:PCQ D 面积为1052或3452.11.如图,在ABC D 中,已知5AB AC ==,6BC =,且ABC DEF D @D ,将DEF D 与ABC D 重合在一起,ABC D 不动,DEF D 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点.(1)求证:ABE ECM D D ∽;(2)当DE BC ^时,①求CM 的长;②直接写出重叠部分的面积;(3)在DEF D 运动过程中,当重叠部分构成等腰三角形时,求BE 的长.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,ABC DEF D @D Q ,AEF B \Ð=Ð,AEF CEM AEC B BAE Ð+Ð=Ð=Ð+ÐQ ,CEM BAE \Ð=Ð,ABE ECM \D D ∽;(2)①当DE BC ^时,AB AC =Q ,BAE EAM \Ð=Ð,ABC DEF D @D Q ,B DEF \Ð=Ð,ABE AEM \D D ∽,\AB AE AE AM=,90AME AEB Ð=Ð=°,5AB AC ==Q ,DE BC ^,6BC =,132BE EC BC \===,在Rt ABE D 中,4AE ===,\544AM=,165AM \=,169555CM AC AM \=-=-=;②在Rt AEM D 中,125EM ===,11161296225525AEM S AM EM D \=×=´´=,\重叠部分的面积为9625;(3)①当AE EM =时,ABE ECM D @D ,5CE AB ==Q ,651BE BC EC \=-=-=,②当AM EM =时,则MAE MEA Ð=Ð,MAE BAE MEC MEA \Ð+Ð=Ð+Ð,即CAB CEA Ð=Ð,C C Ð=ÐQ ,CAE CBA \D D ∽,\CE AC AC CB=,\2256AC CE CB ==,\2511666BE BC EC =-=-=;③当AE AM =时,点E 与点B 重合,即0BE =,此时重叠部分图形不能构成三角形;1BE \=或116.12.如图,直线y =+0)y x =>的交点为A ,与x 轴的交点为B .(1)求ABO Ð的度数;(2)求AB 的长;(3)已知点C 为双曲线0)y x =>上的一点,当60AOC Ð=°时,求点C 的坐标.【解答】解:(1)设直线y =+y 轴交于点D ,如图所示:当0x =时,y =.即点D .当0y =时,1x =-,即点(1,0)B -.\1OD BO ==.\tan DO ABO BOÐ==.60ABO \Ð=°.(2)过点A 作AE x ^轴,垂足为E ,如图所示.设点A 坐标为:(m .且0m >.OE m \=,AE =//DO AE Q .BDO BAE \D D ∽.\BO DOBE AE=.即:11m =+1m \=或2m =-(舍).\A .\4AB ==.即:4AB =.(3)过C 作60CFO Ð=°,点F 在x 轴上,再过点C 作CH OF ^于H 点,如图所示.设(C a,0a >.\OH \4CF a ==.\2HF a =.\2OF a a=+.AOF AOC COF Ð=Ð+ÐQ ,且AOF Ð是ABO D 一内角的外角.BAO COF \Ð=Ð.ABO OFC \D D ∽.\AB BOOF CF =即:4124a a a=+.\a=.Q.a>\a\C.^交BC 13.【感知】如图①,在正方形ABCD中,E为AB边上一点,连结DE,过点E作EF DE∽.(不需要证明)于点F.易证:AED BFED D^交BC于点【探究】如图②,在矩形ABCD中,E为AB边上一点,连结DE,过点E作EF DEF.D D∽.(1)求证:AED BFE(2)若10AD=,E为AB的中点,求BF的长.AB=,6AB=.E为AB边上一点(点E不与【应用】如图③,在ABCACB=,4D中,90Ð=°,AC BC点A、B重合),连结CE,过点E作45D为等腰三角形时,BECEFÐ=°交BC于点F.当CEF的长为 【解答】【探究】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,90A B\Ð+Ð=°,ADE AED90^Q,DE EF\Ð=°,DEF90\Ð+Ð=°,BEF AED90\Ð=Ð,ADE BEFQ,又A BÐ=Ð\D D∽;AED BFEQ为AB的中点,(2)解:E\==,AE BE5∽,由(1)知AED BFED D\AD AEBE BF =,即655BF=,256BF \=;【应用】解:如果CE CF =,则45CEF CFE Ð=Ð=°,90ECF Ð=°,则点E 与点A 重合,点F 与点B 重合,不符合题意,②如果CE EF =,则1804567.52ECF EFC °-°Ð=Ð==°,EFC ÐQ 为BEF D 的外角,EFC B BEF \Ð=Ð+Ð,90ACB Ð=°Q ,AC BC =,45A B \Ð=Ð=°,67.54522.5BEF EFC B \Ð=Ð-Ð=°-°=°,909067.522.5ACE ECF Ð=°-Ð=°-°=°,ACF BEF \Ð=Ð,又A B Ð=ÐQ ,CE EF =,()AEC BFE AAS \D @D ,BE AC \=,90ACB Ð=°Q ,AC BC =,4AB =,AC \==,BE \=;如果CF EF =,则45CEF ECF Ð=Ð=°,90CFE \Ð=°,在BEC D 中,45B BCE Ð=Ð=°,90BEC \Ð=°,CE AB \^,又AC BC =Q ,\点E 为AB 的中点,122BE AB \==,综上,BE 的长为2,故答案为:2.14.如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接FC ,观察并猜测tan FCN Ð的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB m =,(BC n m =,n 为常数),E 是射线BC 上一动点(不含端点)B ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan FCN Ð的值.【解答】解:(1)tan 1FCN Ð=,理由是:如图1,作FH MN ^于H ,90AEF ABE Ð=Ð=°Q ,90BAE AEB \Ð+Ð=°,90FEH AEB Ð+Ð=°,FEH BAE \Ð=Ð,在EHF D 和ABE D 中EHF ABE FEH BAE EF AE Ð=ÐìïÐ=Ðíï=î,()EHF ABE AAS \D @D ,FH BE \=,EH AB BC ==,CH BE FH \==,90FHC Ð=°Q ,tan 1FHFCH CH\Ð==;(2)如图(2)作FH MN ^于H .由已知可得90EAG BAD AEF Ð=Ð=Ð=°,结合(1)易得FEH BAE DAG Ð=Ð=Ð,又G Q 在射线CD 上,90GDA EHF EBA Ð=Ð=Ð=°,在EFH D 和AGD D 中FHE GDA FEH DAG EF AG Ð=ÐìïÐ=Ðíï=î,()EFH AGD AAS \D @D ,BAE FEH Ð=ÐQ ,ABE FHE Ð=Ð,EFH AEB \D D ∽,EH AD BC n \===,CH BE \=,\EH FH FHAB BE CH==,\在Rt FEH D 中,tan FH EH nFCN CH AB mÐ===,\当点E 沿射线CN 运动时,tan n FCN mÐ=.15.如图1,在矩形ABCD 中,8AB =,10BC =,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,N 是CD 边上一动点,在运动过程中,始终保持AM MN ^,设BM x =,CN y =.(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围 010x …… ;(2)先完善表格,然后在平面直角坐标系中(如图2)利用描点法画出此抛物线,直接写出m = ;x¼2345678¼y¼22183m32182¼(3)结合图象,指出M 、N 在运动过程中,当CN 达到最大值时,BM 的值是 ;并写出在整个运动过程中,点N 运动的总路程 .【解答】解:(1)Q 四边形ABCD 是矩形,908B C AB CD \Ð=Ð=°==,90BAM AMB \Ð+Ð=°,AM MN ^Q ,90AMN \Ð=°,90AMB CMN \Ð+Ð=°,BAM CMN \Ð=Ð,ABM MCN \D D ∽,\AB MCBM CN=,\810x x y-=,21584y x x \=-+,10BC =Q ,点M 是BC 边上的动点,点M 从点B 出发,运动到点C 停止,010x \……,故答案为:010x ……;(2)当5x =时,代入21584y x x =-+中得:2152555848y =-´+´=,故答案为:258,画出的抛物线如图所示:(3)21584y x x =-+Q ,2215125(5)8488y x x x \=-+=--+,108a =-<Q ,\当5x =时,y 最大258=,\当CN 达到最大值时,BM 的值是5;Q2525284´=,\在整个运动过程中,点N 运动的总路程为254,故答案为:5,254.16.【基础巩固】(1)如图1,在ABC D 中,90ACB Ð=°,直线l 过点C ,分别过A 、B 两点作AE l ^,BD l ^,垂足分别为E 、D .求证:BDC CEA D D ∽.【尝试应用】(2)如图2,在ABC D 中,90ACB Ð=°,D 是BC 上一点,过D 作AD 的垂线交AB 于点E .若BE DE =,4tan 5BAD Ð=,20AC =,求BD 的长.【拓展提高】(3)如图3,在平行四边形ABCD 中,在BC 上取点E ,使得90AED Ð=°,若AE AB =,43BE EC =,CD =ABCD 的面积.【解答】(1)证明:90ACB Ð=°Q ,90BCD ACE \Ð+Ð=°,AE CE ^Q ,90AEC \Ð=°,90ACE CAE \+Ð=°.BCD CAE \Ð=Ð.BD DE ^Q ,90BDC \Ð=°,BDC AEC \Ð=Ð.BDC CEA \D D ∽.(2)解:过点E 作EF BC ^于点F .由(1)得EDF DACD D∽.\DE DF DA AC=.AD DE^Q,4tan5BADÐ=,20AC=,\4520DF =,16 DF\=.BE DE=Q,BF DF\=.232BD DF\==.(3)解:过点A作AM BC^于点M,过点D作DN BC^的延长线于点N.90AMB DNC\Ð=Ð=°.Q四边形ABCD是平行四边形,//AB CD\,AB CD=.B DCN\Ð=Ð.()ABM DCN AAS\D@D.BM CN\=,AM DN=.AB AE=Q,AM BC^,BM ME\=,Q43 BEEC=,设AM b=,4BE a=,3EC a=.2BM ME CN a\===,5EN a=.90AEDÐ=°Q,由(1)得AEM EDN D D ∽.\AM ENME DN =,\25b aa b=,\b =,Q CD =22(2)14a b \+=,1a \=,b =.\平行四边形ABCD 的面积172BC DN a b =´´=´=.17.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED Ð=Ð=Ð=°,由12180BAD Ð+Ð+Ð=°,2180D AED Ð+Ð+Ð=°,可得1D Ð=Ð;又因为90ACB AED Ð=Ð=°,可得ABC DAE D D ∽,进而得到BC AC =我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,如图,在ABC D 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B Ð=Ð.①求证:ABP PCD D D ∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下,如图2,当APD D 为等腰三角形时,请直接写出BP 的长.【解答】(1)解:ABC DAE D D Q ∽,\BC ACAE DE =,\BC AEAC DE=,故答案为:AEDE;(2)①证明:AB AC=Q,B C\Ð=Ð,APC B BAPÐ=Ð+ÐQ,APC APD CPDÐ=Ð+Ð,APD BÐ=Ð,BAP CPD\Ð=Ð,B CÐ=ÐQ,ABP PCD\D D∽;②解:12BC=Q,点P为BC中点,6BP PC\==,ABP PCDD DQ∽,\AB BPPC CD=,即1066CD=,解得: 3.6CD=;(3)解:当PA PD=时,ABP PCDD@D,10PC AB\==,12102BP BC PC\=-=-=;当AP AD=时,ADP APDÐ=Ð,ADP B CÐ=Ð=ÐQ,ADP C\Ð=Ð,不合题意,AP AD\¹;当DA DP=时,DAP APD BÐ=Ð=Ð,C CÐ=ÐQ,BCA ACP\D D∽,\BC ACAC CP=,即121010CP=,解得:253CP=,25111233BP BC CP\=-=-=,综上所述:当APDD为等腰三角形时,BP的长为2或113.。
一线三等角模型综合题解
【例 1 】已知正方形 AB CD 和等腰R t△BEF, BE=EF,∠ B E F =90°,按图① 放置,使点 F 在B C 上,取 DF 的中点 G,连接 E G、 CG.( 1 ) 探索 E G、 CG 的数量关系和位置关系并证明;(2) 将图① 中△ BEF 绕 B 点顺时针旋转45°,再连接 DF,取 DF 中点 G (如图② ),问 1 ) 中的结论是否仍然成立.证明你的结论;((3) 将图① 中△ BEF 绕 B 点转动任意角度 (旋转角在0°到90° 之间) ,再连接 DF,取DF 的中点 G ( 如图③ ) ,问 ( 1 ) 中的结论是否仍然成立,证明你的结论.【例 2】如图,在梯形 ABCD 中,AD∥BC,AB=CD=BC=6,AD=3.点 M 为边 BC 的中点,以 M 为顶点作∠EMF=∠B,射线 ME 交腰 AB 于点 E,射线 MF 交腰 CD 于点 F,连接 EF.(1)求证:△MEF∽△BEM;(2)若△BEM 是以 BM 为腰的等腰三角形,求 EF 的长;(3)若 EF⊥CD,求 BE 的长.【例 3】如图,在梯形 ABCD 中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点 P 由 B 出发沿BD 方向匀速运动,速度为 1cm/s;同时,线段 EF 由DC 出发沿 DA 方向匀速运动,速度为 1cm/s,交 BD 于 Q,连接 PE.若设运动时间为 t(s)(0<t<5).解答下列问题:(1)当 t 为何值时,PE∥AB;(2)设△PEQ 的面积为 y(cm2),求 y 与 t 之间的函数关系式;2(3)是否存在某一时刻 t,使 S△PEQ= S△BCD?若存在,求出此时 t 的值;若不存在,说明理由;25(4)连接 PF,在上述运动过程中,五边形 PFCDE 的面积是否发生变化?说明理由.【例 4】在直角梯形 OABC 中,CB ∥OA,∠COA=90°,CB=3, OA=6, BA= 3 5 .分别以 OA、OC 边所在直线为 x 轴、y 轴建立如图所示的平面直角坐标系.(1)求点 B 的坐标;(2)已知 D、E 分别为线段 OC、OB 上的点,OD=5,OE=2EB,直线 DE 交 x 轴于点 F,求直线 DE 的解析式;(3)点 M 是(2)中直线 DE 上的一个动点,在 x 轴上方的平面内是否存在另一个点 N,使以 O、D、M、N 为顶点的四边形是菱形?若存在,请求出点 N 的坐标;若不存在,请说明理由.【问题情境】如图 1,四边形 ABCD 是正方形,M 是 BC 边上的一点,E 是 CD 边的中点,AE 平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形 ABCD 是长与宽不相等的矩形,其他条件不变,如图 2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.阅读理解:如图 1,在四边形 ABCD 的边 AB 上任取一点 E(点 E 不与点 A、点 B 重合),分别连接 ED,EC,可以把四边形 ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把 E 叫做四边形 ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把 E 叫做四边形 ABCD 的边 AB 上的强相似点.解决问题:(1)如图 1,∠A=∠B=∠DEC=55°,试判断点 E 是否是四边形 ABCD 的边 AB 上的相似点,并说明理由;(2)如图 2,在矩形 ABCD 中,AB=5,BC=2,且 A,B,C,D 四点均在正方形网格(网格中每个小正方形的边长为 1)的格点(即每个小正方形的顶点)上,试在图 2 中画出矩形 ABCD 的边 AB 上的一个强相似点 E;拓展探究:(3)如图 3,将矩形 ABCD 沿 CM 折叠,使点 D 落在 AB 边上的点 E 处.若点 E 恰好是四边形 ABCM 的边 AB 上的一个强相似点,试探究 AB 和 BC 的数量关系.。
“一线三等角”全等模型
“一线三等角”全等模型基本模型例题展示例 (1)如图①,在△ABC 中,∠BAC=90°,AB=AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D ,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC 中,AB=AC ,D ,A ,E 三点都在直线 l 上,且∠BDA=∠AEC= ∠BAC=α,其中α为任意钝角.请问:结论DE=BD+CE 是否成立?若成立,请给出证明;若不成立,请证明. (3)拓展与应用:如图③,D ,A ,E 是直线 l 上的动点(D ,A ,E 三点互不重合),△ABF 和△ACF 如图放置,且AB=AC ,∠ABF=∠CAF ,FB=FA ,连接BD ,CE.若∠BDA=∠AEC=∠BAC ,求证:DF=EF.解析:(1)因为BD ⊥l ,CE ⊥l ,所以∠BDA=∠AEC=90°.所以∠BAD+∠ABD=90°. 因为∠BAC=90°,所以∠BAD+∠CAE=90°. 所以∠CAE=∠ABD.在△ABD 和△CAE 中,因为∠ABD=∠CAE ,∠ADB=∠CEA ,AB=CA ,所以△ABD ≌△CAE (A.A.S.). 所以BD=AE ,AD=CE.因为DE=AE+AD ,所以DE=BD+CE. (2)成立.证明如下:因为∠BDA=∠AEC=∠BAC=α,∠BAE=∠ABD+∠BDA=∠BAC+∠CAE. 所以∠CAE=∠ABD.在△ADB 和△CEA 中,因为∠ABD=∠CAE ,∠ADB=∠CEA,AB=CA ,所以△ADB ≌△CEA (A.A.S.).所以BD=AE,AD=CE.因为DE=AE+AD,所以DE=BD+CE.(3)同(2)可证得△ADB≌△CEA.所以BD=AE,∠DBA=∠EAC.因为∠ABF=∠CAF,所以∠DBA+∠ABF=∠EAC+∠CAF.所以∠FBD=∠FAE.在△DBF和△EAF中,因为FB=FA,∠FBD=∠FAE,BD=AE,所以△DBF≌△EAF(S.A.S.).所以DF=EF.小试牛刀1. 如图1,在△ABC 中,点D 在边BC 上,点E 在边AC 上,连接AD,DE.若∠B=∠ADE=∠C,AD=DE,CE=3,BC=8,则AB的长为____________.图1 图22. 如图2,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,AD=9,DE=6,则△CDB的面积等。
部编数学九年级下册专项33相似三角形一线三等角模型综合应用(解析版)含答案
专项33 相似三角形-一线三等角模型综合应用1.如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2.一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【类型1:标准“K ”型图】【典例1】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:=;(2)若OP 与PA 的比为1:2,求边AB 的长.【解答】(1)证明:由折叠的性质可知,∠APO =∠B =90°,∴∠APD +∠OPC =90°,CB BC A A∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.【变式1-1】如图,正方形ABCD中,点E在BC边上,且AE⊥EF,若BE=2,CF=,求正方形ABCD的边长.【解答】解:∵∠AEB+∠CEF=90°,∠BAE+∠AEB=90°,∴∠BAE=∠CEF,又∵∠B=∠C=90°,∴△BAE∽△CEF,∴=,∵AB=BC,∴,∴,∴CE=4,∴BC=CE+BE=4+2=6,∴正方形ABCD的边长为6.【变式1-2】如图,在正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于F,交AD的延长线于点E.(1)求证:△ABM∽△MCF;(2)若AB=4,BM=2,求△DEF的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD,∠B=∠C=90°,BC∥AD,∴∠BAM+∠AMB=90°,∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠FMC=90°,∴∠BAM=∠FMC,∴△ABM∽△MCF;(2)解:∵AB=4,∴AB=BC=CD=4,∵BM=2,∴MC=BC﹣BM=4﹣2=2,由(1)得:△ABM∽△MCF,∴=,∴=,∴CF=1,∴DF=CD﹣CF=4﹣1=3,∵BC∥AD,∴∠EDF=∠MCF,∠E=∠EMC,∴△DEF∽△CMF,∴=,∴=,∴DE=6,∴△DEF的面积=DE•DF=×6×3=9,答:△DEF的面积为9【类型2:做辅助线构造“K”型图】【典例2】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,填空:当点G在CD上,且DG=1,AE=2,则EG= ;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:∠AEF=∠FEN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.【解答】(1)解:∵∠EFG=90°,∴∠AFE+∠DFG=90°,∵∠AEF+∠AFE=90°,∴∠AEF=∠DFG,又∵∠A=∠D=90°,EF=FG,∴△AEF≌△DFG(AAS),∴AE=FD=2,∴FG=,∴EG=FG=,故答案为:;(2)证明:延长EA、NF交于点M,∵点F为AD的中点,∴AF=DF,∵AM∥CD,∴∠M=∠DNF,∠MAD=∠D,∴△MAF≌△NDF(AAS),∴MF=FN,∵EF⊥MG,∴ME=GE,∴∠MEF=∠FEN;(3)证明:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)同理得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,∴MG2=MN•MD.【变式2-1】(2021春•永川区期末)如图,在边长为6的正方形ABCD中,E为BC上一点,CE=2BE,将△ABE沿AE折叠得到△AFE,连接DF,则线段DF的长为 .【解答】解:过点F作FN⊥BC,垂足为N,延长NF交AD于点M,∵四边形ABCD是正方形,∴AB=BC=AD=6,∠B=90°,AD∥BC,∴FM⊥AD,∴∠AMF=∠FNE=∠DMF=90°,∴四边形ABNM是矩形,∴AM=BN,∵CE=2BE,∴BE=BC=2,由折叠得:BE=FE=2,AB=AF=6,∠B=∠AFE=90°,∴∠AFM+∠EFN=90°,∵∠FEN+∠EFN=90°,∴∠FEN=∠AFM,∴△ENF∽△FMA,∴===,设EN=x,则FM=3x,∴AM=BN=BE+EN=2+x,在Rt△AFM中,AM2+FM2=AF2,∴(2+x)2+(3x)2=36,∴x=或x=﹣2(舍去),∴AM=2+x=,FM=3x=,∴DM=AD﹣AM=,在Rt△DMF中,DF===,故答案为:.【变式2-2】(2022秋•皇姑区校级月考)已知,如图,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD沿直线AE翻折,点B落在点F处.(1)若点F恰好落在CD边上,如图1,求线段BE的长;(2)若BE=1,如图2,直接写出点F到BC边的距离;(3)若△CEF为直角三角形,直接写出CE所有值.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=5,BC=AD=3,∠B=∠C=∠D=90°,由折叠的性质得:BE=FE,AF=AB=5,∴DF===4,∴CF=CD﹣DF=5﹣4=1,设BE=FE=x,则CE=BC﹣BE=3﹣x,在Rt△CEF中,由勾股定理得:CF2+CE2=FE2,即12+(3﹣x)2=x2,解得:x=,即线段BE的长为;(2)如图2,过F作FG⊥BC于G,延长GF交AD于H,则∠FGE=90°,四边形ABGH是矩形,∴HG=AB=5,BG=AH,∠AHF=90°=∠FGE,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,FE=BE=1,∴∠AFH+∠EFG=90°,∵∠AFH+∠FAH=90°,∴∠EFG=∠FAH,∴△EFG∽△FAH,∴==,∴AH=5FG,设FG=x,则BG=AH=5x,∴EG=BG﹣BE=5x﹣1,在Rt△EFG中,由勾股定理得:x2+(5x﹣1)2=12,解得:x=或x=0(不符合题意舍去),∴FG=,即点F到BC边的距离为;(3)分三种情况:①∠CFE=90°时,如图3,∵∠AFE=90°,∴∠AFE+∠CFE=180°,∴A、F、C三点共线,∵四边形ABCD是矩形,∴CD=AB=5,∠B=∠D=90°,AD∥BC,∴∠ECF=∠CAD,AC===,由折叠的性质得:AF=AB=5,FE=BE,∠AFE=∠B=90°,∴∠CFE=90°=∠D,CF=AC﹣AF=﹣5,∴△CEF∽△ACD,∴=,即=,解得:CE=;②点F在CD上,∠ECF=90°时,如图4,由(1)可知,BE=,∴CE=BC﹣BE=3﹣=;③∠CEF=90°时,如图5,由折叠的性质得:∠AEB=∠AEF=45°,∴△ABE是等腰直角三角形,∴BE=AB=5,∴CE=BE﹣BC=5﹣3=2;④点F在CD延长线上,∠ECF=90°时,如图6,由折叠的性质得:AF=AB=5,∠AFE=∠B=90°,∵∠ADF=180°﹣∠ADC=90°,∴DF===4,∴CF=CD+DF=5+4=9,∵∠CFE+∠CEF=90°,∠CFE+∠DFA=90°,∴∠CEF=∠DFA,∵∠ECF=∠ADF=90°,∴△CEF∽△DFA,∴===3,∴CE=3DF=12;综上所述,若△CEF为直角三角形,则CE的值为或或2或12.【类型2:特殊“K”型图】【典例3】(2021秋•通许县期中)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为∠ACB=∠AED =90°,可得△ABC∽△DAE,进而得到= .我们把这个数学模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,点D在边BC上,并且DA=DE,∠B=∠ADE=∠C.若BC=a,AB=b,求CE的长度(用含a,b的代数式表示).拓展:(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B.求证:AB•FE=BE•DE.【解答】(1)解:∵△ABC∽△DAE,∴,故答案为:;(2)解:∵∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠EDC=∠BAD,∵DA=DE,在△ADB与△DEC中,,∴△ADB≌△DEC(AAS),∴EC=BD,AB=DC=b,∴BD=BC﹣DC=a﹣b,即CE=a﹣b;(3)解:∵∠DEF=∠B,∴∠BFE+∠BEF=∠BEF+∠DEC,∴∠BFE=∠DEC,作CG∥FE交DE于点G,如图:∴∠DEF=∠EGC,∴∠B=∠EGC,∴△FBE∽△EGC,∴,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠EGC+∠DGC=180°,∵∠B=∠EGC,∴∠DGC=∠BCD,∵∠EDC=∠CDG,∴△DGC∽△DCE,∴,∴,∴DC•FE=BE•DE,∵四边形ABCD是平行四边形,∴AB=DC,∴AB•FE=•BE•DE.解法二:延长BC到M,使得DC=DM.∵DC=DM,∵DC∥AB,∴∠DCM=∠B,∴∠B=∠M,∵∠BFE=∠DEM,∴△BFE∽△MED.∴=,∵AB=CD=DM,∴AB•FE=•BE•DE.【变式3-1】如图,AB=9,AC=8,P为AB上一点,∠A=∠CPD=∠B,连接CD.(1)若AP=3,求BD的长;(2)若CP平分∠ACD,求证:PD2=CD•BD.【解答】(1)解:∵AB=9,AC=3,∴BP=AB﹣AP=9﹣3=6,∵∠A=∠CPD,∠ACP+∠APC=180°﹣∠A,∠APC+∠BPD=180°﹣∠CPD,∴∠ACP=∠BPD,∵∠A=∠B,∴△ACP∽△BPD,∴=,∴=,∴BD=,∴BD的长为;(2)证明:∵CP平分∠ACD,∴∠PCD=∠ACP,∴∠PCD=∠DPB,∵∠CPD=∠B,∴△CPD∽△PBD,∴=,∴PD2=CD•BD.【变式3-2】(2022春•定海区校级月考)【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.【解答】(1)证明:∵∠ACB=90°,∴∠BCD+∠ACE=90°,∵AE⊥CE,∴∠AEC=90°,∴ACE+∠CAE=90°.∴∠BCD=∠CAE.∵BD⊥DE,∴∠BDC=90°,∴∠BDC=∠AEC.∴△BDC∽△CEA.(2)解:过点E作EF⊥BC于点F.由(1)得△EDF∽△DAC.∴.∵AD⊥DE,,AC=20,∴,∴DF=16.∵BE=DE,∴BF=DF.∴BD=2DF=32.(3)解:过点A作AM⊥BC于点M,过点D作DN⊥BC的延长线于点N.∴∠AMB=∠DNC=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠B=∠DCN.∴△ABM≌△DCN(AAS).∴BM=CN,AM=DN.∵AB=AE,AM⊥BC,∴BM=ME,∵,设AM=b,BE=4a,EC=3a.∴BM=ME=CN=2a,EN=5a.∵∠AED=90°,由(1)得△AEM∽△EDN.∴,∴,∴,∵,∴(2a)2+b2=14,∴a=1,.∴平行四边形ABCD的面积=.1.(2021秋•南京期末)如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE ⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是( )A.4B.C.D.5【答案】B【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.2.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD 的长为 .【答案】6【解答】解:∵AB=AC,∴∠C=∠B,∴∠C+∠B+∠BAC=2∠C+∠BAC=180°,又∵2∠ADE+∠BAC=180°,∴∠C=∠ADE,又∵∠BDE+∠ADC=180°﹣∠ADE,∠CAD+∠ADC=180°﹣∠C,∴∠BDE=∠CAD,∴△BDE∽△CAD,∴=,即=,解得CD=6.故答案为:6.3.(2022•杭州模拟)如图,点E是矩形ABCD边BC上一点,沿AE折叠,点B恰好落在CD边上的点F处.设=x(x>1),(1)若点F恰为CD边的中点,则x= .(2)设=y,则y关于x的函数表达式是 .【解答】解:(1)∵点F为CD边的中点,∴DC=2DF,∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=∠D=90°,∴∠FEC+∠EFC=90°,由折叠得:BE=EF,AB=AF,∠B=∠AFE=90°,∴AB=AF=DC=2DF,∵∠EFC+∠AFD=90°,∴∠AFD=∠FEC,∴△AFD∽△FEC,∴==2,∴=2,∴x=2,故答案为:2;(2)由(1)可得AB=AF=DC=DF+CF,∵△AFD∽△FEC,∴=,∴=,∴x=,∴x=1+,∴x=1+,∴y=,故答案为:y=.4.(2021•海州区校级二模)如图,△DEF的三个顶点分别在等边△ABC的三条边上,BC =4,∠EDF=90°,=,则DF长度的最小值是 .【答案】【解答】解:过点F作FH⊥BC,垂足为H,∵∠EDF=90°,tan∠EFD==,∴∠EFD=60°,∴∠AFE+∠DFC=120°,∵△ABC是等边三角形,∴∠C=∠A=60°,AC=BC=4,∴∠AFE+∠AEF=120°,∴∠AEF=∠DFC,∴△AEF∽△CFD,∴=,∵∠EDF=90°,∠EFD=60°,∴cos∠EFD==,∴=2,∴设CD=a,则AF=2a,∴CF=AC﹣AF=4﹣2a,在Rt△CFH中,∠C=60°,∴CH=CF=2﹣a,∴FH=CH=2﹣a,∴DH=CD﹣CH=a﹣(2﹣a)=2a﹣2,在Rt△DFH中,DF2=DH2+FH2=(2a﹣2)2+(2﹣a)2=7a2﹣20a+16=7(a﹣)2+,∴DF2的最小值为,∴DF的最小值为:.5.如图,在等边三角形ABC中,点E,D分别在BC,AB上,且∠AED=60°,求证:△AEC∽△EDB.【解答】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠EDB+∠BED=120°,∠CAE+∠AEC=120°∵∠AED=60°,∴∠BED+∠AEC=180°﹣60°=120°,∴∠BED=∠CAE,∴△AEC∽△EDB.6.如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,点D、E分别在边BC、AC上,连接AD、DE,有∠ADE=45°.(1)证明:△BDA∽△CED.(2)若BC=6,当AE=ED时,求BD的长.【解答】(1)证明:∵∠AED=∠C+∠EDC=45°+∠EDC,而∠ADC=∠ADE+∠EDC.∵∠ADE=45°,∴∠ADC=45°+∠EDC,∴∠AED=∠ADC.∴∠DEC=∠ADB(等角的补角相等).而∠B=∠C=45°,∴△ABD∽△DCE.故△ABD∽△DCE得证.(2)解:当AE=DE时,∴∠ADE=∠DAE,∵∠ADE=45°,∴∠ADE=∠DAE=45°,∵∠BAC=90°,∠BAD=∠EAD=45°,∴AD平分BAC,∴AD垂直平分BC,∴BD=3.7.(2022•安徽三模)如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.【解答】(1)证明:连接OE,∵半⊙O与边AD相切于点E,∴∠OEA=90°,∵∠D=90°,∴∠D=∠OEA=90°,∴OE∥CD,∴∠ECD=∠OEC,∵OE=OC,∴∠OEC=∠OCE,∴∠BCE=∠DCE;(2)解:连接BE,∵BA⊥AD,OE⊥AD,CD⊥AD,∴AB∥CD∥OE,∵OB=OC,∴AE=DE,设DE=AE=x,则AD=AB=2x,∵BC为⊙O的直径,∴∠BEC=90°,∴∠DEC+∠AEB=180°﹣∠BEC=90°,∵∠A=∠D=90°,∴∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∴△ABE∽△DEC,∴,∴,解得:,∴DE的长为.8.(2022•钦州一模)已知下列各图中,△ABC是直角三角形,∠ABC=90°.【基本模型感知】如图1,分别过A,C两点作经过点B的直线的垂线,垂足分别为M、N.求证:△ABM∽△BCN;【基本模型应用】如图2,点P是边BC上一点,∠BAP=∠C,,求tan C的值;【灵活运用】如图3,点D是边CA延长线上一点,AE=AB,∠DEB=90°,,,请直接写出tan∠BEC的值.【解答】(1)证明:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°.∴∠BAM+∠ABM=90°.∵∠ABC=90°,∴∠ABM+∠CBN=90°.∴∠BAM=∠CBN.又∵∠AMB=∠CNB,∴△ABM∽△BCN.(2)解:如图2,过点P作PF⊥AP交AC于点F,过点F作FQ⊥BC交BC于点Q,在Rt△AFP中,tan∠PAC===,与(1)同理得,△ABP∽△PQF.∴===.设AB=a,PQ=2a(a>0),∵∠BAP=∠C=∠FPQ,∴PF=CF,且FQ⊥BC.∴PQ=CQ=2a.∴BC=BP+PQ+CQ=BP+2a+2a=4a+BP.∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA.∴=.∴BP⋅BC=AB2,即BP⋅(4a+BP)=.∴BP=a,BC=5a,在Rt△ABC中,tan C==.(3)解:在Rt△ABC中,sin∠BAC==,如图3,过点A作AG⊥BE于点G,过点C作CH⊥BE交EB的延长线于点H,∵∠DEB =90°,∴CH ∥AG ∥DE .∴==.与(1)同理得,△ABG ∽△BCH∴===.设BG =4m ,CH =3m ,AG =4n ,BH =3n ,∵AB =AE ,AG ⊥BE ,∴EG =BG =4m .∴GH =BG +BH =4m +3n .∴=.∴n =2m .∴EH =EG +GH =4m +4m +3n =8m +3n =8m +6m =14m .在Rt △CEH 中,tan ∠BEC ==.9.(2021•坪山区一模)如图,抛物线y =x 2+bx +c 与x 轴交于点A (﹣3,0)、B ,与y 轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)在抛物线上求点P ,使S △BCP =2S △BCO ,求点P 的坐标;(3)如图2,直线y =x +3交抛物线于第一象限的点M ,若N 是抛物线y =x 2+bx +c 上一点,且∠MAN =∠OCB ,求点N 的坐标.【解答】解:(1)将C (0,﹣3)代入到抛物线解析式中得,c =﹣3,将B (﹣3,0)代入到抛物线解析式中得,9﹣3b ﹣3=0,∴b =2,∴抛物线解析式为:y =x 2+2x ﹣3;(2)令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴B (1,0),∴,∵S △BCP =2S △BCO ,∴S △BCP =3,如图1,过P 作PM ∥BC 交x 轴于M ,连接MC ,则S △MBC =S △BCP =3,∴,∴MB =2,∴M (﹣1,0),设直线BC 为y =k 1x ﹣3,代入点B (1,0)得,k 1=3,∴直线BC 为:y =3x ﹣3,则直线PM 设为:y =3x +b ,代入点M (﹣1,0)得,b =3,∴直线PM 为:y =3x +3,联立,解得,,∴P(3,12)或(﹣2,﹣3);(3)∵直线y=x+3交抛物线于第一象限的点M,∴联立,解得,,∴A(﹣3,0),M(2,5),在Rt△OBC中,tan∠OCB=,∴,①如图2,当N在AM下方时,过A作y轴平行线,过M作x轴平行线,两线交于点G过M作MQ⊥AM交AN于Q,过Q作y轴平行线交GM于H,∴∠AGM=∠MHQ=90°,∴∠AMG+∠GAM=90°,又AM⊥MQ,∴∠AMQ=90°,∴∠AMG+∠HMQ=90°,∴∠GAM=∠HMQ,又∠AGM=∠MHQ=90°,∴△AGM∽△MHQ,∴=,∵A(﹣3,0),M(2,5),∴AG=5,GM=5,∴MH=HQ=,∴Q(),设直线AQ为:y=k2(x+3),代入点Q,得,∴直线AQ为,联立,化简得,2x2+3x﹣9=0,解得x=或﹣3,当x=时,y=,∴N(),②当N在AM上方时,同理可得,N(3,12),∴N()或(3,12).。
专项05一线三等角模型的综合应用(原卷版)
专项05 一线三等角模型的综合应用模型一 一线三垂直全等模型如图一,∠D=∠BCA=∠E=90°,BC=AC 。
结论:Rt △BDC ≌Rt △CEA模型二 一线三等角全等模型如图二,∠D=∠BCA=∠E ,BC=AC 。
结论:△BEC ≌△CDA图一 图二 应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题; ②与函数综合应用中有利于点的坐标的求解。
【类型一:标准“K ”型图】【典例1】在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图(1)的位置时, 求证:①△ADC ≌△CEB ; ②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE =AD ﹣BE ;CDEBA(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【变式11】如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.【变式12】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l 的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE 的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【类型二:做辅助线构造“K”型图】【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.(1)若∠CAE=20°,求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a,BE=b,CE=c.则△ABC的面积为.(用含a,b,c 的式子表示)【类型三:“K”型图与平面直角坐标综合】【典例3】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a >0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式3】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC =α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式4】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)试探究线段AD,DE,BE之间有什么样的数量关系,请说明理由.2.如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的长.3.如图,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在△ABC中,∠C =90°,AC=BC,试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,∠2=45度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若AM=6,BN=2,求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.4.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5.已知△ABC在平面直角坐标系中,在△ABC中,AB=BC,∠ABC=90°.(1)如图①,已知点A(0,﹣4),B(1,0),求点C的坐标;(2)如图②,已知点A(0,0),B(3,1),求点C的坐标.6.如图1,在平面直角坐标系中,点A(0,m),B(m,0),C(0,﹣m),其中m>0,点P为线段OA上任意一点,连接BP,CE⊥BP于E,AD⊥BP于D.(1)求证:AD=BE;(2)当m=3时,若点N(﹣3,0),请你在图1中连接CD,EN交于点Q.求证:EN ⊥CD;(3)若将“点P为线段OA上任意一点,”改为“点P为线段OA延长线上任意一点”,其他条件不变,连接CD,EN⊥CD,垂足为F,交y轴于点H,交x轴于点N,请在图2中补全图形,求点N的坐标(用含m的代数式表示).7.如图1,在平面直角坐标系内,A(﹣6,0),B(0,9),C(0,4),连接AB、AC,点D为x轴正半轴上一点,且S△ACD=S△ABC.(1)求点D的坐标;(2)如图2,延长DC交AB于点E,AE=AC,求点E的坐标;(3)如图3,在(2)的条件下,点P在第三象限,连接AP、BP、CP,若∠CAP=90°,∠BAC=2∠PCO,BP交x轴于点K,求点K的坐标.8.从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标(2+a,a)(用含a的代数式表示);(2)基本经验有利有弊,当基本经验有利于新问题解决的时候,这是基本经验的正迁移;当基本经验所形成的思维定势局限了新问题的思考,让新问题解决不出来的时候,这是基本经验的负迁移.例如,如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM 的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.。
专题29 一线三等角模型-2023年中考数学总复习真题探究与变式训练(全国通用,含解析)(解析版)
模块二常见模型专练专题29 一线三等角模型例1(2020·江苏苏州·统考中考真题)问题1:如图①,在四边形中,,是上一点,,.求证:.问题2:如图②,在四边形中,,是上一点,,.求的值.【答案】问题1:见解析;问题2:【分析】问题1:先根据AAS证明,可得,,由此即可证得结论;问题2:分别过点、作的垂线,垂足为、,由(1)可知,利用45°的三角函数值可得,,由此即可计算得到答案.【详解】问题1:证明:∵,∴.∵,∴.∴.在和中,,∴.∴,,∴.问题2:如图,分别过点、作的垂线,垂足为、.)可知,在和中,,∴,,,.∴,.∴.【点睛】本题考查了全等三角形的判定及性质、解直角三角形,作出正确的辅助线并能利用解直角三角形的相关知识是解决本题的关键.例2(2021年·吉林长春·中考真题)在,直线经过点C,且于D,于E.(1)当直线绕点C旋转到图1的位置时,求证:①;②.(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线绕点C旋转到图3的位置时,试问具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)①见解析;②见解析(2)见解析(3),证明见解析【分析】(1)①由垂直关系可得,则由即可证明;②由的性质及线段和的关系即可证得结论;(2)由垂直可得,则由可证明,由全等三角形的性质及线段差的关系即可证得结论;(3)由垂直可得,则由可证得,由全等三角形的性质及线段的和差关系即可得到三线段间的关系.【详解】(1)解:如图①∵,∴,∴.又∵,,∴.②∵,∴,,∴.(2)∵,∴,∴.又∵,∴,∴,∴.)当旋转到图的位置时,所满足的等量关系是(或等).∵,∴,∴,又∵,∴,∴,∴.【点睛】本题考查了全等三角形的判定与性质,互余的性质等知识,证明两个三角形全等是中,AB = AC,AF是过点A的一条直线,且B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E,则图中与线段AD相等的线段是;DE与BD、CE的数量关系为.(2)类比延伸:如图②,,BA=BC,点A,B的坐标分别是(-2,0),(0,3),求点C的坐标.(3)拓展迁移:在(2)的条件下,在坐标平面内找一点P(不与点C重合),使与△ABC 全等.直接写出点P的坐标.【答案】(1)CE,DE=BD+CE;(2)(−3,5);(3)存在,P点坐标分别为(-5,2),(3,1),(1,-2).【分析】(1)由BD⊥AE,∠BAC=90°,推进而得到即可求解;(2)作轴于点E,得出(AAS)即可求解;(3)分两种情况,①当时,;②当时,,讨论并构造全等三角形即可求解.【详解】解:(1)∵BD⊥AE,,CE⊥AE∴,,∴.在和中,,∴,∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE.故答案为:CE,DE=BD+CE;(2)作轴于点E,∵轴,OA⊥OB,,∴,,,∴∠ABO=∠BCE.又∵,∴(AAS),∴,∵点A,B的坐标分别是(-2,0),(0,3),∴,∴,∴(-3,5);(3)分类讨论:①当∠PAB=90°时,,∴,.∵B(0,3),A(−2,0),C(−3,5),∴,,设P(x,y),∴,,∴,解得:,,∴(−5,2),(1,−2),如图;②当∠ABP=90°时,,∴AP=AC,BP=AB,∵B(0,3),A(−2,0),C(−3,5),∴,,设P(x,y),∴,,∴,解得:,,∵点P与点C不重合,∴(−3,5)舍去,∴(3,1),如图.综上,存在这样的P点,坐标分别为(-5,2),(3,1),(1,-2).【点睛】本题主要考查三角形全等的判定和性质,两点间距离公式,坐标与图形性质,勾股定理等知识.利用数形结合的思想是解题关键.一线三等角是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。
专题11 全等三角形中的一线三等角模型(解析版)
专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。
【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。
【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。
【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.
(1)探索EG、CG的数量关系和位置关系并证明;
(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;
(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.
【例2】如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.
(1)求证:△MEF∽△BEM;
(2)若△BEM是以BM为腰的等腰三角形,求EF的长;
(3)若EF⊥CD,求BE的长.
【例3】如图,在梯形ABCD 中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P 由B 出发沿
BD 方向匀速运动,速度为1cm/s;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s,交BD 于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t 为何值时,PE∥AB;
(2)设△PEQ 的面积为y(cm 2),求y 与t 之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=25
2S△BCD?若存在,求出此时t 的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.
3.分别以OA、【例4】在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5 OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE 的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.。