基于MATLAB的车牌识别系统(含源文件)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的车牌识别系统
目录
2
一、车牌识别研究背景及现状分析:............................................................................ 错误!未定义书签。
二、设计原理: (3)
三、设计步骤 (4)
(一)、预处理及边缘提取 (4)
(二)、牌照的定位和分割 (7)
(三)、字符的分割与归一化 (9)
(四)、字符的识别 (10)
三、设计结果及分析 (12)
四、总结 (13)
五、参考文献 (13)
基于MATLAB的
内容摘要
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
关键词:汽车牌照车牌提取字符分割字符识别
一.车牌识别的研究背景及现状分析
(一)研究背景
随着我国经济的发展,综合实力的增强和城市化进程的加快,国内各大城市交通管理能力将面临重大考验。近年来,各主要城市都将城市智能交通系统(ITS)的建设作为改善城市交通状况的重点,以缓解城市交通管理的压力,车牌识别系统作为智能交通系统的主要技术之一也得到了很大的发展。
随着ITS在国内的大范围应用,其系统化的方向发展逐渐确立。ITS系统不再是简单的车辆处理系统,而是涵盖道路监控、车辆记录、违章处理、高/快速路管理、智能停车管理等多个方面的综合化系统。而随着各行业间边界的模糊化,跨行业项目的需求越来越多。在技术进步的过程中,“行业跨越”以及智能交通产品的“民用化”,将成为今后一段时间内ITS行业系统化的一个主要趋势。
(二)现状
目前,国内的ITS 产业仍然处于起步阶段,在产业链中,电子地图商、导航终端商、嵌入式操作系统均已经具备产业规模,而所欠缺的环节则是对实时交通信息的采集和处理系统。车牌识别系统是城市智能交通管理系统的一个重要组成部分,广泛用于是针对公路行驶的机动车辆进行实时监控的智能化交通系统,电子收费,交通违规管理,安全停车管理等重要领域。
二、系统构成
车牌识是一辆汽车独一无二的信息,因此,对车辆牌照的识别技术可以作为辨识一样车最为有效地方法。车牌识别系统包括摄取的汽车图像,车牌号码的识别,车牌图像的采集和预处理,牌照区域的定位和提取,牌照字符的分割和识别等几个部分组成,如下图所示。
图1 车牌识别系统流程图
三、设计步骤
车牌识别过程大体可以分为4个步骤:图像预处理,车牌定位和分割、车牌字符的分割和车牌字符识别。(一)、预处理及边缘提取
一般情况下,采集到的图像有由于光线过强,或者偏弱都会不理想的情况,这些都会对后续的图像处理产生影响。以及车速的不稳定等因素都会不同程度地影响图像效果,出现模糊、歪斜和缺损等严重缺陷,车牌字符边界模糊、细节不清、笔画断开、粗细不均等现象,从而影响车牌区域分割与字符识别的工作,所以识别前需要对原始图象进行预处理。
图2 预处理及边缘提取流程图
1、图象的采集与转换
现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色B 通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。因为蓝色(255,0,0)与白色(255,255,255)在B 通道中并无区分,而在G、R 通道或是灰度图象中并无此便利。同理对白底黑字的牌照可用R 通道,绿底白字的牌照可以用G 通道就可以明显呈现出牌照区域的位置,便于后续处理。原图、灰度图及其直方图见图2与图3。对于将彩色图象转换成灰度图象时,图象灰度值可由下面的公式计算:
G=0.110B+0.588G+0.302R (1)
G=
3R
G
B+
+
(2)
图3 图42、边缘提取
边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是很有必要的。增强图象对比度度的方法有:灰度线性变换、图象平滑处理等。 (1)灰度校正
由于牌照图象在拍摄时受到种种条件的限制和干扰,图象的灰度值往往与实际景物不完全匹配,这将直接影响到图象的后续处理。如果造成这种影响的原因主要是由于被摄物体的远近不同,使得图象中央区域和边缘区域的灰度失衡,或是由于摄像头在扫描时各点的灵敏度有较大的差异而产生图象灰度失真,或是由于曝光不足而使得图像的灰度变化范围很窄。这时就可以采用灰度校正的方法来处理,增强灰度的变化范围、丰富灰度层次,以达到增强图象的对比度和分辨率。我们发现车辆牌照图象的灰度取值范围大多局限在r=(50,200)之间,而且总体上灰度偏低,图象较暗。根据图象处理系统的
条件,最好将灰度范围展开到s=(0,255)之间,为此我们对灰度值作如下的变换:
s = T (r ) r=[r min,,r max ]
使得S ∈[S min, S max ],其中,T 为线性变换:
min
max min
max max
min min max min max r r r S r S r r r S S s -⨯-⨯+⨯--=
(3)
若 r(50,200)、s(0,255)则:
85r 7.1150
50
255-r 150255-≈⨯=
S (4)
图6 灰度增强后的图像
(2)平滑处理
对于受噪声干扰严重的图象,由于噪声点多在频域中映射为高频分量,因此可以在通过低 通滤波器来滤除噪声,但实际中为了简化算法, 也可以直接在空域中用求邻域平均值的方法来 削弱噪声的影响,这种方法称为图象平滑处理。 例如,某一象素点的邻域S 有两种表示方法:
8邻域和4邻域分别对应的邻域平均值为,
图7 8 -邻域、 4 -邻域模板
∑∈=
s
j i j i f M
j i g ),(),(1),( (5)