推荐-基于FPGA的DDS仿真与设计报告 精品

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yibin University

电子信息科学与技术专业

本科生EDA设计报告

题目基于FPGA的DDS仿真与设计

专业电子信息科学与技术

班级

学生姓名

学号

20XX 年 12月 18日

基于FPGA的DDS仿真与设计

(宜宾学院物理与电子工程学院20XX级2班段艳婷110302034)摘要:本文论述了直接数字频率合成技术(DDS)的信号发生器的设计与实现。本设计是以DDS芯片Cyclone Ⅱ:EP2C5T144C8为频率合成器的函数信号发生器。本文分析了DDS的设计原理,基于VHDL语言进行系统建模等,同时利用Quartus Ⅱ编译平台完成一个具体DDS 芯片的设计,详细阐述了基于VHDL编程的DDS设计方法步骤。利用Altera公司的Quartus Ⅱ开发软件,完成DDS核心部分即相位累加器和R A M查找表的设计,可得到相位连续、频率可变的信号,并通过单片机配置FPGA的E^2 PROM完成对DDS硬件的下载,最后完成每个模块与系统的时序仿真。由于FPGA的可编程性,使得修改和优化DDS的功能非常快捷。

关键字:DDS,Quartus Ⅱ,FPGA

中图分类号:TN

引言:随着现代电子技术的不断发展,在通信系统中往往需要在一定频率范围内提供一系列稳定和准确的频率信号,一般的振荡器己不能满足要求,这就需要频率合成技术。直接数字频率合成(Direct Digital Frequen2cy Synthesis ,DDS)是把一系列数据量形式的信号通过D/ A 转换器转换成模拟量形式的信号合成技术。目前在高频领域中,利用FPGA 来设计符合自己需要的DDS 系统就是一个很好的解决方法。

正文:

目录

第一章绪论

1.1、DDS引言

频率合成技术是将一个(或多个)基准频率变换成另一个(或多个)合乎质量要求的所需频率的技术。在通信、雷达、导航、电子侦察、干扰等众多领域都有应用。

1971年3月美国学者J.Tierncy,C.M.Rader和B.Gold首次提出了直接数字频率合成(DDS—Direct Digital Synthesis)技术。这是一种从相位概念出发直接合成所需要的波形的新的全数字频率合成技术。同传统的频率合成技术相比,DDS技术具有极高的频率分辨率、极快的变频速度,变频相位连续、相位噪声低,易于功能扩展和全数字化便于集成,容易实现对输出信号的多种调制等优点,满足了现代电子系统的许多要求,因此得到了迅速的发展。

1.2、直接数字合成器的概念及其发展

随着通信、数字电视、卫星定位、航空航天和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率个数的要求越来越高。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术—DDS即Direct Digital Synthesizer,中文名称是直接数字合成器,是一种新型的频率合成技术,具有较高的频率分辨率,可以

实现快速的频率切换,并且在改变时能够保持相位的连续,很容易实现频率、相位和幅度的数控调制,以其使用方便和品路分辨率高等优点,在现代通信领域得到越来越广泛的应用。用VHDL语言对DDS 进行功能描述,方便在不同的实现方式下移植和修改参数,因而逐步成为DDS设计主流,而且在Alter公司开发的Maxplus2中,不仅提供了方便的VHDL编译和综合平台,还集成了可供程序对应下载的FPGA器件等大量芯片,大大缩短了DDS的设计和开发周期。它是现代通信系统必不可少的关键电路,广泛应用于数字通信、卫星通信、雷达、导航、航天航空、遥控遥测以及高速仪器仪表灯领域。

1.3、DDS技术在国内研究状况及其发展趋势

频率合成器的技术复杂度很高,经过了直接合成模拟频率综合器、锁相式频率综合器、直接数字式频率综合器(DDS)三个发展阶段。目前,在我国,各种无限系统中使用的品路合成器普遍采用锁相式频率综合器,通过CPU控制,课获得不同的频点。锁相式频率综合器含有参考振荡器与分频器、可控分频器、压控振荡器及鉴相器、前置分频器等功能单元。频率合成器的最终发展方向是锁相式频率综合器、双环或多环锁相式频率合成器、DDS频率合成器,以及PPL 加DDS混合式频率合成器。因此,锁相式频率综合器和直接数字式频率综合器收到了国内各界关注,并得到了迅猛发展。

基于DDS波形产生的应用现阶段主要在两个方面:

1.设计通讯系统需要灵活的和极好的相噪,极低的失真性能的频

率源,它通常选用DDS综合它的光谱性能和频率调谐方案。

2.作为选择地,许多工业和医学应用DDS作为可编程波形发生器。因为DDS是数字可编程,它的相位和频率在不改变外围成分的情况下能很容易地改变,而传统的基于模拟编程产生波形的情况下要改变外围成分。DDS允许频率的实时调整去定位参考频率或者补偿温度漂移。

1.4、频率合成器种类与技术发展趋势

种类:直接模拟合成法、锁相环合成法、直接数字合成法

发展:直接模拟合成法利用倍频、分频、混频及滤波,从单一或几个参数频率中产生多个所需的频率。锁相环合成法通过锁相环完

成频率的加、减、乘、除运算。

1.5、DDS优势

如今在价格方面有竞争力的,高性能,功能集成的DDS芯片在通讯系统和传感应用方面已经变得非常常见了。它吸引工程师的优势主要包括:

数字控制微调频率调谐和轻微程度相位调制能力。

极快速度调谐输出频率(相位)

DDS的数字体系结构取消了像传统模拟合成方案那样的手动调谐和温度补偿的不方便,DDS的数字控制结构外围使系统的远程控制更为方便,在处理器控制下达到最优化。

1.6、课题主要研究内容和设计要求

本课题设计研究的主要内容就是基于FPGA的DDS仿真设计,在Quartus Ⅱ的基础上,运用VHDL的编程来实现各大模块,并对其进行实现和仿真。

第一章是简单的介绍了一下DDS的概念、现状、内容和发展前景;第二章是对DDS所采用的辅助工具的介绍;第三章是对DDS工作原理和主要特点的介绍;第四章是用VHDL来编程实现和仿真,第五章是最后的总结心得及附录。

第二章超大规模集成电路设计介绍

2.1、引言

随着大规模集成电路技术和计算机技术的不断发展,在涉及通信、国防、航天、医学、工业自动化、计算机应用、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升;电子类的高新技术项目的开发也逾益依赖于EDA技术的应用,即使是普通的电子产品的开发,EDA技术也常常使产品的开发周期大为缩减、性能价格比大幅提高。不言而喻,EDA技术将迅速成为电子设计领域中的及其重要的组成部分。

相关文档
最新文档