1.3光的受激辐射——激光原理课件PPT

合集下载

《现代光学基础教学课件》激光原理课件

《现代光学基础教学课件》激光原理课件
激活介质:实现粒子数反转分布的介质 (分子、原子、离子)。
一般采用三、四能级系统
精选ppt
18
1、为什么不能用二能级系统
二能级系 统不能实 现粒子数 反转分布
至少需三个能级,一般采用三、四能级系统。
精选ppt
19
为什么用三、四能级系统?
激光原理 . 第一章
原子处在激发态时间很短108s,但还有 一些亚稳态,可以停留103s,
第2章 激光产生的基本原理
精选ppt
1
光的受激辐射基本概念
激光原理 . 第一章
受激辐射概念是爱因斯坦在研究黑体辐射规 律时首先提出。 黑体辐射研究过程中:
普朗克——1900年,辐射量子化假设;
波尔——1913年,原子中电子运动状态的量子化假设;
爱因斯坦——1917年,从光量子概念出发,重新推导 了黑体辐射普朗克公式,并首次提出受激辐射概念。
n2 A21 n2B21 n1B12
A21 B21
8 h 3
c3
n h
B12 f1 B21 f2
f1 f2
B 12 B 21 W 12 W 21
A
21
8 h c3
3
B 21
f 2 , f1 E1、E2的统计权重/能级简并度
精选ppt
11
f1 f2
结论:
B 12 B 21 W 12 W 21
A
21
8 h c3
3
B 21
激光原理 . 第一章
1.能级简并度相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态,高能级上原子数少于低能级上原子数,故正常 情况下,吸收比受激辐射更频繁,其差额由自发辐射补偿。
3. 自发辐射的出现随 3而增大,故波长越短,

激光原理及应用PPT课件

激光原理及应用PPT课件

激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念

光电子技术激光原理 PPT

光电子技术激光原理 PPT

光的自发辐射、受激辐射、受激吸收
爱因斯坦在光量子理论的基础上,考虑了光和物质相互作用的模型(原 子的两个能级),引入了两个重要概念,同样得出了普朗克公式
•光的自发辐射
在没有外界作用的情况下,原子从 高能级E2向低能级E1的跃迁方式 有两种:无辐射跃迁和自发辐射跃
迁。
辐射出的光子能量:
h 21 E 2 E1
:Light Amplification by Stimulated Emission of Radiation
激光的产生
▪当光与物质相互作用时,自发辐射、受激辐射和 受激吸收这三个过程是同时出现的,如何实现大 量原子的受激辐射产生激光?
激光产生必须具备的前提条件
集居数反转分布(粒子数反转分布)
激光产生的三个前提条件
1. 有提供放大作用的增益介质作为激光工作物 质,其激活粒子(原子、分子或离子)有适合于 产生受激辐射的能级结构;
2. 有外界激励源,使激光上下能级之间产生集居 数反转;
3. 有激光谐振腔,使受激辐射的光能够在谐振腔 内维持振荡。
光学谐振腔的构成
光学谐振腔的构成
最简单的光学谐振腔是在激活介质两端恰当地放置两个镀有高反射率的反射 镜构成。
常用的基本概念: 光轴:光学谐振腔中间垂直与镜面的轴线 孔径:光学谐振腔中起着限制光束大小、形状的元件,大多数情况下,孔径是激活物质的两个端面, 但一些激光器中会另外放置元件以限制光束为理想的形状。
感谢您的聆听!
光的自激振荡和激光谐振腔
▪ 光的自激振荡:光在增益介质内传播放大,总存在各种各样的 光损耗,当增益和损耗达到平衡时光强不再增加并达到一个 稳定的极限值。
▪ 只要激光放大器的长度足够大,就估计成为一个自激振荡器, 实现稳定运转的激光振荡。

《光的受激辐射》课件

《光的受激辐射》课件

PART 02
光的受激辐射原理
光的粒子性
光的粒子性描述
光的粒子性与能量
光是由粒子组成的,这些粒子被称为 光子。
每个光子携带一定的能量,与其波长 成反比。
光的粒子性实验证明
通过光电效应实验,爱因斯坦解释了 光的粒子性,并因此获得了诺贝尔物 理学奖。
原子能级结构
原子能级的概念
原子中的电子在不同的能级上运动,这些能级由 不同的能量值表示。
原子能级的稳定性
在不受外界影响的情况下,原子能级是稳定的。
能级的跃迁
当原子受到外界能量的影响时,电子可以从一个 能级跃迁到另一个能级。
受激辐射的过程
受激辐射的描述
当高能级上的原子受到某种外界光子的影响时,它会释放出一个 与外界光子完全相同的光子。
受激辐射的实验证明
通过实验,人们观察到了受激辐射现象,并进一步发展出了激光技 术。
03
响。
受激辐射的重要性
激光技术应用
受激辐射产生的相干光为激光提 供了源源不断的能量,广泛应用 于工业、医疗、通信等领域。
通信技术革新
光纤通信利用激光的单色性好、 方向性强等特点,实现了高速、 大容量的信息传输。
医学领域突破
激光在医学领域的应用如激光治 疗、激光手术等,为疾病的诊断 和治疗提供了新的手段。
受激辐射的特点
释放的光子与原光子频率相同,方向 相同,相位相同,传播方向相反。
ห้องสมุดไป่ตู้
受激辐射的发现
01
1917年,爱因斯坦提出受激辐射理论,解释了为什么某些物质 在特定条件下能够自发地产生光。
02
1960年,梅曼发明了第一台红宝石激光器,实现了受激辐射产
生的光放大,标志着激光技术的诞生。

1.3光的受激辐射

1.3光的受激辐射

停止外部光源照射后, 从示波器上可观察到: ① 荧光强度曲线遵从指数律,即证实了自发发射光功率按指数 律衰减 A21 t
q (t ) q 0 e
② 测出荧光寿命, 则可(按 =1/A21)求出。
(i) Anm——从En 跃迁到Em的自发辐射几率
E3 E2 E1
E 2 E1 h
E2 E1

N2 h N1

(b) 受激辐射系数B21: 设外来光场单色能量密度ρv (入射光子满 足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t+dt的 时间间隔内,有 -dn2个原子由于受辐射作用,而由E2跃迁到E1, 则有 -dn2=B21ρv n2dt (1-30)
E2 E1
受激发射是产生激光的最重要机理
外来光子
受激辐射光子
③受激发射的粒子系统是相干光源(相同→相干):
受激辐射是在外界辐射场的控制下的发光过程,因而各原 子的受激发射的相位不再是无规则分布的,而应有和外界辐射 场相同的相位。量子电动力学可证明:受激辐射光子与入射光 子属于同一光子态。
受激辐射与自发辐射的重要区别——相干性
6、瑞利-金斯公式——1900年瑞利--金斯利用经典电动力学和统 计力学(将固体当作谐振子且能量按自由度均分原则及电磁辐射 理论)得到一个公式,此公式在短波区域明显与实验不符,而理 论上却找不出错误——“紫外灾难” ,像乌云遮住了物理学睛朗的 天空。
( v , T )( 10
6 5 4 3 2 1 0 1 2 3
,即
t = 0 时 n2 = n20
t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t) ∵ E2上粒子数减少的唯一去向是E1 ∴ dn2(t) = -dn2= -A21n2(t)dt (粒子只有两个能级)

《激光原理》PPT课件

《激光原理》PPT课件

2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。

《激光原理》1.3光的受激辐射(新)

《激光原理》1.3光的受激辐射(新)

可见: 高能级E2上粒子数随时间t按指数律衰减。
( e )自发发射光功率q(t) (即光强与时间)t的关系:
∵ 参予自发发射的每个粒子发射一个光子hv

q(t) h
dn2 dt
h
A21n2 (t) h
A n e A21 t 21 20
q e A21 t 0
其中 q0= h v A21n20 是 t =0 时的自发发射光功率
∴ dn2 A21n2dt 或
A21
1 n2
dn2 dt
(1-25)
关于数字下标的说明(下同):
①单下标----能级的量 [如n2为E2上粒子数(密度)] ②双下标----过程的量, 先初态后末态(如A21表示从E2跃迁 到E1的自发发射系数)
A21
1 n2
dn2 dt
从式(1-25)可知
(c) A21的物理意义:
可见: W21是单位时间内粒子因受激发射由E2跃迁到E1 的几率;且与外电磁场ρv有关。
注意: 当B21 一定时,外来光的单色能量密度ρv愈大,受 激辐射几率W21 就愈大。
(3).受激吸收:——原处于低能级E1的粒子,受到能量恰为 hv=E2-E1的光子照射而吸收该光子的能量,
跃迁到高能级E2
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
一 经典辐射理论
经典的辐射理论引用偶极子的概念,反映了光的发射和吸 收过程的规律。
偶极子强迫振动时释放能量 —— 受激发射现象 偶极子强迫振动时吸收能量 —— 受激吸收现象 偶极子阻尼振动时释放能量 —— 自发发射现象

2024版激光原理与技术PPT(很全面)

2024版激光原理与技术PPT(很全面)

•激光基本原理•激光器类型及技术•激光束特性及控制技术目录•激光与物质相互作用•激光测量与检测技术•激光通信与信息处理技术•激光安全与防护技术光的自发辐射与受激辐射自发辐射原子或分子在没有外界作用下,由于自身能级的不稳定性而自发地从高能级向低能级跃迁,同时发射出一个光子的过程。

受激辐射原子或分子在外界光子的作用下,从高能级向低能级跃迁,同时发射出一个与入射光子完全相同的光子的过程。

区别与联系自发辐射是随机的,而受激辐射是确定的;自发辐射产生的光是非相干的,而受激辐射产生的光是相干的。

光放大当外来光信号通过激光工作物质时,受激辐射产生的光子与入射光子具有相同的频率、相位、传播方向和偏振状态,从而实现光信号的放大。

粒子数反转在激光工作物质中,高能级上的粒子数多于低能级上的粒子数,形成粒子数反转分布。

实现方法通过泵浦源提供能量,使激光工作物质中的粒子被激发到高能级,形成粒子数反转分布。

粒子数反转与光放大产生条件特性应用领域030201激光的产生与特性晶体激光器玻璃激光器光纤激光器He-Ne 激光器CO2激光器以氦气和氖气作为工作气体,产生红色可见光激光,常用于精密测量和准直。

Ar+激光器染料激光器液体激光核聚变半导体激光器边发射半导体激光器面发射半导体激光器采用垂直腔面发射结构,具有低阈值电流、圆形光束和易于集成等特点,适用于光通信和光互连等领域。

激光束的传输与聚焦激光束的传输特性01激光束的聚焦原理02激光束的聚焦技术03介绍评价激光束质量的常用参数,如光束直径、发散角、光强分布等。

激光束质量评价参数阐述实验测量和数值模拟等方法在激光束质量评价中的应用。

激光束质量评价方法分析激光束质量对激光加工、光通信、激光雷达等应用的影响。

激光束质量对应用的影响激光束的质量评价激光束的控制与整形激光束控制技术激光束整形技术激光束控制与整形的应用激光与物质相互作用的基本过程激光束在物质中的传播激光与物质相互作用的机理激光与物质相互作用的特点1 2 3激光加工的基本原理激光加工的应用领域激光加工的优势激光加工原理及应用利用激光的高能量密度和生物效应,对生物组织进行照射,以达到治疗疾病的目的。

(激光原理与应用)1.3光的受激辐射

(激光原理与应用)1.3光的受激辐射

上式可改写为:
A21
dn2 n2dt
A21的物理意义为:单位时间内,发生自发辐射的粒子数密
度占处于E2能级总粒子数密度的百分比。即每一个处于E2
能级的粒子在单位时间内发生的自发跃迁几率。
上方程的解为: n2(t)n20eA2t1 , 式中n20为t=0时处
于能级E2的原子数密度
自发辐射的平均寿命:原子数密度由 起始值降至它的1/e的时间
式中k为波尔兹曼常数。➢总辐射能量密度 : 0 νdν
光与物质的相互作用有三种不同的基本 过程:自发辐射、受激辐射、受激跃迁
1. 自发辐射
➢自发辐射: 高能级的原子自发地从高能级E2向
低能级E1跃迁,同时放出能量为 hE2E1
的光子。
➢自发辐射的特点:各个原子所发的光向空间各个方向 传播,是非相干光。
对于大量原子统计平均来说,从E2经自发辐射跃迁到E1具 有一定的跃迁速率
d2nA2n 12dt
式中“-”表示E2能级的粒子数密度减少;n2 为某时刻高能级E2上的原子数密度(即单位体 积中的原子数); dn2表示在dt时间间隔内由E2自发跃迁到E1的原 子数。 A21称为爱因斯坦自发辐射系数,简称自发辐射 系数。
在此假设外来光的光场单色能量密度为 ,且低能级E1
的粒子数密度为n1,则有:
d2nB12n1dt
式中B12称为爱因斯坦受激吸收系数
(3)令 W12B12,
则有: W12B12nd1dn2t
则W12(即受激吸收几率)的物理意义为:单位时间内,在 外来单色能量密度 的光照下,由E1能级跃迁到E2能级 的粒子数密度占E1能级上总粒子数密度的百分比。
1.3 光的受激辐射
辐射能量密度公式
➢单色辐射能量密度 ν :辐射场中单位体积内,频率在 ν

激光原理与技术PPT课件

激光原理与技术PPT课件

激光手术
阐述激光手术在眼科、神 经外科等领域的应用及优 势,如精度高、创伤小等 。
05
CATALOGUE
激光测量与检测技术
激光干涉测量技术
1 2
干涉测量原理
利用激光的相干性,通过干涉条纹的变化来测量 长度、角度等物理量。
干涉测量系统组成
包括激光器、分束器、反射镜、探测器等部分。
3
干涉测量技术应用
时间特性
激光束的时间特性包括脉冲宽度、重复频率和稳定性等。其中,脉冲宽度决定 了激光的峰值功率和能量,重复频率则影响了激光的平均功率。稳定性则是确 保激光束在长时间内保持一致性的关键因素。
激光束的调制与偏转技术
调制技术
通过对激光束进行幅度、频率或相位等调制,可以实现信息 的加载和传输。常见的调制方式包括振幅调制、频率调制和 相位调制等。这些调制技术使得激光束能够携带更多的信息 ,并在通信、传感等领域得到广泛应用。
对皮肤的危害
长时间或高强度激光照射皮肤, 可能导致皮肤烧伤、色素沉着、 皮肤癌等严重后果。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国激光产品安全标准(ANSI)等制定了激光产品的 安全标准,包括激光等级分类、安全警示标识、使用说明等。
防护措施
使用激光产品时,应佩戴合适的防护眼镜或面罩,避免直接照射眼睛或皮肤;同 时,应在激光工作区域内设置明显的安全警示标识,提醒他人注意安全。
偏转技术
激光束的偏转技术主要是通过改变激光束的传播方向来实现 。常见的偏转方式包括机械偏转、电光偏转和声光偏转等。 这些偏转技术使得激光束能够灵活地指向目标,并在激光雷 达、光学扫描等领域发挥重要作用。
激光束的聚焦与整形技术

激光原理1.3光的受激辐射(2014)

激光原理1.3光的受激辐射(2014)

∫ ρ =
∞ 0
ρν

(1-24)
高福斌
20 /44
1.3 光的受激辐射
1.3.2 光和物质的相互作用
第 1. 爱因斯坦粒子模型
激光原理
ν = E2 − E1
h
章1
爱因斯坦在光量子论的基础上, 把光频电磁场
辐 与物质的相互作用划分为三种过程--自发发射, 受
射 理
激吸收和受激发射, 并把它们用三个爱因斯坦系数

( ) ρ λ, T dλ = 8πkT dλ λ4 实验值
瑞利—金斯
01
高福斌
2
3
4
5
6
7
8
9
λ(μ12m/)44
1.3 光的受激辐射
瑞利
原名:(John William Strutt) 第 尊称:瑞利男爵三世
章1
(Third Baron Rayleigh),
辐 1879年被剑桥大学任命,接替詹姆
件 等物理法则贡献,而获得诺贝尔物理
学奖。
高福斌
激光原理
/44
1.3 光的受激辐射
激光原理
6. 瑞利-金斯公式——1900年瑞利(英国)-金斯利用经 第 典电动力学和统计力学(将固体当作谐振子且能量
章1 按自由度均分原则及电磁辐射理论)得到一个公式,

射 理 论
ρ (ν , T )d ν = 8 π ⋅ ν 2 k T d ν
绝对黑体的单色能量密度 按频率分布曲线
件 注:寻求 ρ(v,T ) 的函数形式进而确定单色辐射度的
形式是当时黑体辐射研究者们的一大目标!
高福斌
7 /44
1.3 光的受激辐射

激光原理与技术完整ppt课件

激光原理与技术完整ppt课件

1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,

激光原理与技术课件课件

激光原理与技术课件课件

激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。

激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。

本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。

二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。

在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。

而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。

2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。

这个过程是激光产生的核心原理。

3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。

当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。

同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。

三、激光的特性1.单色性激光具有极高的单色性,即频率单一。

这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。

2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。

相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。

3.方向性激光具有极高的方向性,即光束的发散角很小。

这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。

4.高亮度激光具有高亮度,即单位面积上的光功率较高。

这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。

四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。

激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 经典辐射理论
经典的辐射理论引用电偶极子的概念,反映了光的发射和 吸收过程的规律。
电偶极子强迫振动时释放能量 —— 受激辐射现象 电偶极子强迫振动时吸收能量 —— 受激吸收现象 电偶极子阻尼振动时释放能量 —— 自发辐射现象
E -+
电偶极子
二.黑体热辐射
黑体:能完全吸收照射到它上面的各种频率的电磁辐射的物体称 为黑体 .(黑体是理想模型)
而受激辐射对应于电子在外加光电场作用下作强迫振荡 时的辐射,电子强迫振荡的频率、相位、振动方向显然应与 外加光电场一致。因而强迫振动电子发出的受激辐射应与辐 射场具有相同的频率、相位、传播方向和偏振状态。
*(因为不同粒子发射的光子与入射光子的频率、位相、 偏振等状态相同, 而且使相干光子数目不断增加, 所以受激 辐射使激光具备了高亮度、方向性、单色性、相干性的特 点)
t
其中 q0= h v A21n20 是 t =0 时的自发辐射光功率
可见: 自发辐射光功率随时间 t 亦按指数律衰减
(f ) A21和激发态平均寿命的关系:
设: t = 1/A21 时 n2= n20 /e
则 : t =1/A21
(1-27)
可见: ①自发辐射系数A21等于激发态平均寿命τ的倒数;
n e A21 t 20
(1-26)
可见: 高能级E2上粒子数随时间t按指数律衰减。
( e )自发辐射光功率q(t) (即光强与时间)t的关系:
∵ 参予自发辐射的每个粒子发射一个光子hv

q(t) hn dn2
dt
hn
A21n2 (t) hn
A n e A21 t 21 20
q e A21 0
(2).在这种模型中的辐射跃迁: 粒子从低能级向高能级跃迁,须吸收光子; hv=E2-E1 从高能级向低能级跃迁, 会发射光子。 hv=E2-E1 n E2 E1
h
(1).自发辐射——在无外电磁场作用时,粒子自发地从E2跃迁到 E1,发射光子hv。
自发辐射是原子在不受外界辐射场控制的情况下自发过程, 因此,大量原子的自发辐射场的相位、传播方向、偏振方向是无 规则分布的,因而是不相干的。
量子电动力学可证明:受激辐射光子与入射光子属于同一光 子态。
受激辐射是产生激光的最重要机理!
受激辐射与自发辐射的重要区别——相干性
原子发光的经典电子论可以帮助我们得到一个定性的 粗略理解。按经典电子论模型,原子的自发跃迁是原子中电 子的自发阻尼振荡,没有任何外加光电场来同步各个原子的 自发阻尼振荡,因而电子振荡发出的自发辐射是相位无关的。
(a)特点:各粒子自发、独立地发射的光子。各光子的方向、
偏振、初相等状态是无规的, 独立的,粒子体系为非 相干光源。(普通光源)
(b) 自发辐射系数A21 : 设E2上粒子数(密度)为n2 , 时间dt内、单 位体积内经自发辐射从E2跃迁到E1的粒子数为 - dn2
则因dn2∝n2 且dn2 ∝dt
∴ dn2 A21n2dt 或
A21
1 n2
dn2 dt
(1-25)
关于数字下标的说明(下同):
①单下标----能级的量 [如n2为E2上粒子数(密度)] ②双下标----过程的量, 先初态后末态(如A21表示从E2跃迁 到E1的自发辐射系数)
(c) A21的物理意义:
从式(1-25)可见, A21是单位时间、单位体积内在E2上所有n2 个粒子中会发生自发辐射的粒子所占的比例, 所以A21是自 发辐射的几率。
1.3 光的受激辐射
1900年,普朗克用辐射量子化假设成功地解释了黑 体辐射规律。1913年,玻尔提出原子中电子运动状态量 子化假设.
爱因斯坦在此基础上, 研究了关于光与物质相互作 用的问题,他明确指出,只有自发辐射和光吸收两过程, 是不足以解释普朗克黑体辐射公式的,必需引入受激吸 收过程的逆过程——受激辐射。
单色辐射能量密度:热平衡时,辐射场中单位体积内,频率在v 附近的单位频率间隔中的辐射能量。
v
dw dvdV
v
8hv 3
c3
1
hv
e kt 1
n
三.光和物质的相互作用
1. 粒子模型
(1). 模型:(参与光相互作用的)粒子只有间距为hv=E2-E1 (E2>E1)的二个能级,且它们符合辐射跃迁选择定则。
E2

N2
hn
E1

N1
(b)受激辐射系数B21: 设外来光场单色能量密度ρv (入射光子 满足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t + dt 的时间间隔内,有-dn2 个原子由于受辐射作用,而由E2 跃迁到E1,则有
E3
E2
n E2 E1
h
E1
设高能级En跃迁到Em的跃迁几率为Anm,则激发态En 的自发辐射平均寿命为:
t 1 Anm
m
(1-28)
(2).受激辐射:——原处于高能级E2的粒子, 受到能量恰为 hv=E2-E1的光子的激励, 发射出与入射 光子相同的一个光子而跃迁到低能级E1 。
(a)特点:
①受激辐射只能在频率满足hv=E2-E1的光子的激励下发生; ②不同粒子发射的光子与入射光子的频率、位相、偏振等 状态相同; 这样,光场中相同光子数目增加,光强增大,即入 射光被放大 ——光放大过程
E2

N2
外来光子
hn
E1

N1
受激幅射光子
③受激辐射的粒子系统是相干光源。
原因:受激辐射是在外界辐射场的控制下的发光过程,因而 各原子的受激辐射的相位不再是无规则分布的,而应有和外 界辐射场相同的相位。
(d)高能级上粒子数随时间的变化规律:
设 t =0 时刻 ,E2上粒子数为n20 , 即 t = 0 时 n2 = n20
t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t)
n2 n20
dn2 (t) n2 (t)
t 0
A21d t
ln n2 n20
A21t

n2
(t)
设: t =t = 1/A21 时 q= q0 /e
② τ可视为粒子系统自发辐射发光的持续时间, 即 t >τ的光功率 [q(t)<q0/e] 巳可忽略不计
(g) A21是粒子能级结构的特征量(对一种粒子的每两个 能级来说是常量), 和外电磁场ρ(v,t)(入射光场)无关.
(h)例: 荧光实验
(i) Amn——从En 跃迁到Em的自发辐射几率
相关文档
最新文档