高中数学必修5数列的递推公式

合集下载

高中数学必修5《数列的递推公式》PPT

高中数学必修5《数列的递推公式》PPT

3n1
3n2
...
32
31
3n 1 2
(n 2),此式对n 1也成立.
探究与归纳
{ { a1=1 an+1= an+3n
累加法
an
3n 1 2
构造法
a1=1 an+1=3an+1
令an+1+m=3(an+m),则m=
1 2
.
即{an+
12}是以a1+
1 2
为首项,3为公比的等比数列.
总结提升
情境探究一
按这种规律,第100个图中三角形总个数为多少?
(1)
(2)
(3)
(4)
1
4
13
40
记第n个图中三角形的个数为an,则 an+1与an有什么 样的等量关系?
an+1=3an+1
你能否尝试着给出数列{an }的一个通项公式呢?
情境探究二
能否换个角度想一想an+1与an有怎样的等量关系?
(1)
课后阅读与探究
1. 汉诺塔问题 目的:所有圆盘移到另一根针上; 要求:一次移一个圆盘,小盘始终在上; 关注:移动64个圆盘到另一针上,最少搬几次 圆盘?
2. 铺路问题 一条路宽2米长n米,用1m*2m 的砖来铺,有多少种不同铺法?
备用(拔高)
试由递推公式
,求数列{a } a1 1, a2 4
an1 4an 3an1(n 2)
n
的通项公式.
你能在sierpinski三角形中找到它的几何背景吗?
●谢谢
一般地,对于数列{an}:
{ (一)
a1=a
( f (n)可求和)

高中数学必修5优质课件:数列的通项公式与递推公式

高中数学必修5优质课件:数列的通项公式与递推公式
第七页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).

高中数学必修5数列的递推公式

高中数学必修5数列的递推公式

典型例题解析
例题1
已知等差数列{an}中, a1=2,d=3,求a10。
解析
根据等差数列的通项公 式an=a1+(n-1)d,代 入n=10,a1=2,d=3 ,可得a10=2+(101)×3=29。
例题2
已知等差数列{an}中, a3=7,a7=15,求a5 。
解析
根据等差数列的性质, a5=(a3+a7)/2=(7+15 )/2=11。
递推关系性质
递推关系具有确定性,即对于给 定的初始条件和递推公式,数列 的每一项都是唯一确定的。
递推关系建立
01
等差数列递推关系
等差数列的递推关系为an=a1+(n-1)d,其中a1为首项 ,d为公差,n为项数。
02
等比数列递推关系
等比数列的递推关系为an=a1×qn-1,其中a1为首项, q为公比,n为项数。
,r是公比。
调和数列
调和数列是每一项都是其前一项 的倒数与1的和的数列。递推公 式为1/a_n = 1/a_(n-1) + 1/b,
其中a_1 = b。
05 递推公式在实际问题中应用
数学问题应用举例
等差数列求和
数列通项公式求解
利用递推公式可以快速求解等差数列 的前n项和,如求1+2+3+...+n的和 。
03
其他类型数列递推关系
对于非等差非等比数列,需要根据具体题目条件建立相 应的递推关系。
初始条件确定
初始条件定义
初始条件是数列中已知的第一项或前 几项,用于启动递推过程。
初始条件确定方法
根据题目给出的条件或已知信息,确 定数列的初始条件。例如,题目中可 能会直接给出首项a1和公差d或公比q 等参数。

高中数学 2.1.2 数列的递推公式课件 新人教A版必修5

高中数学 2.1.2 数列的递推公式课件 新人教A版必修5
不同点 通项 公式 递推 公式 可根据某项的序号,直接用代入法求出该项 可根据第 1 项或前几项的值,通过一次或多 次赋值逐项求出数列的项,直至求出所需的 项 相同点 都可确定一个数列,都 可求出数列的任何一 项
-7-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
题型一
递推公式的应用
a3=1+ a2=1+ × = , a4=1+ a3=1+ × = a5=1+ a5=1+ ×
15 8 15 , 8 31 . 16 3 2 7 4 15 8 31 16
=
∴ 这个数列的前 5 项是 a1=1,a2= ,a3= ,a4= ,a5= .
-9-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
此ppt下载后可自行编辑
高中数学课件
-
第2课时
数列的递推公式
-3-
目标引航
自主预习
课堂互动
典型考题
随堂练习
1.知道递推公式是给出数列的一种形式. 2.能够根据递推公式写出数列的前几项.
-4-
目标引航
自主预习
课堂互动
典型考题
随堂练习
递推公式 如果已知数列 {an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或 前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式. 用递推公式给出数列的方法叫做递推法.
-15-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
递推公式中往往含有 a n+m,其意义是数列中的第 n+m 项,通常与 an+m 不相等.

高一数学必修5:数列(知识点梳理)

高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

高中数学第二章数列2.1.2数列的递推公式人教A版必修5

高中数学第二章数列2.1.2数列的递推公式人教A版必修5
(1)“基础”——数列{an}的第 1 项或前几项; (2)递推关系——数列{an}的任一项 an 与它的前一项 an-1(或前几项)之 间的关系,并且这个关系可以用一个公式来表示.如果两个条件缺一个,数列 就不能确定. 2.数列递推公式的主要题型: (1)根据数列的递推公式和第 1 项(或其他项)求数列的前几项; (2)根据数列的递推公式求数列的通项公式.
第2课时 数列的递推公式
课程目标
1.理解数列的函数特性,掌握判断数列增减性 的方法. 2.知道递推公式是给出数列的一种形式. 3.能够根据递推公式写出数列的前几项.
学习脉络
递推公式 如果已知数列{an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或
前几项)间的关系可用一个公式来表示,那么这个公式叫做数列{an}的递推 公式.用递推公式给出数列的方法叫做递推法.
又 a1=1,∴an=2n-1(n≥2).当 n=1 时,a1=1 也满足上式,故数列{an}的一个
通项公式为 an=2n-1,an+1-an=2(n+1)-1-(2n-1)=2>0,∴an+1>an.
∴数列{an}是单调递增数列.
首页
J 基础知识 ICHU ZHISHI
Z S 重点难点 HONGDIAN NANDIAN
探究四
探究一 判断数列的单调性
数列的单调性一般要通过比较 an+1 与 an 的大小来判断,具体为: an+1-an>0⇔an+1>an⇔数列{an}单调递增;
an+1-an<0⇔an+1<an⇔数列{an}单调递减.
探究一
探究二
探究三
探究四

高中数学必修5《数列的递推公式》竞赛课PPT

高中数学必修5《数列的递推公式》竞赛课PPT

数列的递推公式
让我们从一个古老的传说开始…… ?
梵天塔婆罗门法则:
• “每次只能移动1个赤金盘,小圆盘只能 放在大圆盘上面”的要求,把圆盘从现在 所在的柱子上移动到另一根柱子上。首先 要问的是:移动n个圆盘,至少需要移动 几次?
n
a1 1,an 2an1 1n 2
那么
a2 2a1 1 1,
2an ,0 an
2an
1,
1 2
an
1
2 ,若a1 1
4 5
,则a2015
_____ .
例3.已知数列{an }满足a1
1,an
an1
1
nn 1
n
2,
则an ____
谈谈你的收获吧!
根 据 数 字 之 间 的 规 律 填 空 :1 ,1 ,2 ,3 ,5 ,8 ,

21,34,…。你 能 用 数学 语 言 归 纳 出 它 的规 律 吗 ?
a3 2a2 1 7,
...
像这样给出数列的方法叫做递推法,其中
an 2an1 1n 2
称为递推公式。递推公式也是数列的一种表示方法。
递推公式与数列的通项公式的区一数每个图形中所有三角形的总个数依次为多少? 你能写出它的递推公式吗?
例2.数列an 满足a n1

高中数学必修5:数列

高中数学必修5:数列

必修Ⅴ 数列一、数列的概念1、数列:数列与函数的关系: 数列的通项公式: 数列的递推公式: 数列的前n 项和=n S 通项n a 与n S 的关系:=n a2、由递推公式求通项公式的常见方法:①形如:d a a n n =--1(为常数)p a a n n =-1(为常数),用 求通项公式 ②形如:()n f a a n n =--1,()n g a a n n =-1,用 求通项公式 ③形如:q pa a n n +=-1 ()0,1,0≠≠≠q p p ,用 求通项公式 ④形如qpa a a n n n +=--11 ()0,0≠≠q p ,用 求通项公式 3、数列求和的常见方法①倒序求和:通项满足 时,用此方法求和 ②分组求和:通项满足 时,用此方法求和 ③错位相减法:通项满足 时,用此方法求和 ④裂项求和:通项满足 时,用此方法求和 ⑤并项求和:通项满足 时,用此方法求和4、判断数列单调性的方法:①利用数列的单调性:若01>-+n n a a ()*N n ∈,数列 ;若01<-+n n a a ()*N n ∈,数列 ②利用数列是一个特殊的函数,以及相应函数的单调性,确定数列的单调性。

二、等差数列1、等差数列的定义:2、等差数列的通项公式:=n a从函数角度理解等差数列的通项n a 是关于n 的3、等差数列的性质:①序号差的关系:=-m n a a ②序号和的关系:若s r n m +=+,则4、等差数列的前n 项和:=n S =从函数角度理解等差数列的前n 项和n S 是关于n 的等差数列的前n 项和n S 的性质:①一般地:k S ,k S 2,k S 3仍然成 ,公差为②n S 可以转化成最中间一项或两项的和 n a a S n n ⋅+=21 若n 为偶数()k n 2=时=n S ,若n 为奇数()12-=k n 时=n S 等差数列的前n 项和n S 最值的求法:①利用n S 是关于n 的二次型函数求最值,注意函数的定义域∈n②分析等差数列前有限项的正负,求n S 的最值:若前有限项为正数项,可以求n S 的 值,若前有限项为负数项,可以求n S 的 值5、等差中项的定义:若A 为a 与b 的等差中项,则=A三、等比数列1、等比数列的定义:2、等比数列的通项公式:=n a从函数角度理解等差数列的通项n a 是关于n 的3、等比数列的性质: ①序号差的关系:=mn a a ②序号和的关系:若s r n m +=+,则 4、等比数列的前n 项和:1≠q 时,=n S = ,1=q 时,=n S 等比数列的前n 项和n S 的性质:一般地:若0≠k S k S ,k S 2,k S 3仍然成 ,公比为5、等比中项的定义:若G 为a 与b 的等比中项,则=G。

人教课标版(B版)高中数学必修5《数列的递推公式》名师课件2

人教课标版(B版)高中数学必修5《数列的递推公式》名师课件2

二、典例分析
例3.意大利披萨饼店的伙计喜欢将饼切成形状各异的一 块块,他们发现每一个确定的刀数都可以有一个最多的
块数。例如,切一刀最多切成2块, 切2刀最多切成4块。 问:切5刀最多切成几块?
n条直线最多将一个平面分成几部分?
三、牛刀小试
四、合作探究——兔子繁殖问题
一对小兔子(一雄一雌)一个月后 长成一对成年兔,又一个月后生出一对 小兔子(一雄一雌);再过一个月小兔 子长成成年兔,同时成年兔又生出一对 小兔子(一雄一雌)。以此规律,每过 一个月小兔子长成成年兔,成年兔生出 一对小兔子。假定每次生出的小兔子都 是一雄一雌,并且排除兔子发生死亡的 情况,这样每个月兔子的对数,依次可 以排成一个数列。请写出此数列的前10 项,并写出该数列的递推公式。
数列的递推公式
这个广告的设计灵感来自于什么? 所有骨牌依次全部倒下需要具备什么条件?

通项公式 递推公式
一、递推公式的定义
如果已知数列的第1项(或前几项),且从第二项(或 某一项)开始的任一项 与它的前一项 (或前几项)间 的关系可以用一个公式来表示,那么这个公式就叫做这个
数列的递推公式。 初始条件 递推关系
四、合作探究——兔子繁殖问题
月数 小兔子数
1ห้องสมุดไป่ตู้
1
2
0
3
1
4
1
5
2
6
3
7
5
8
8
9
13
10
21

n
大兔子数 0 1 1 2 3 5 8 13 21 34
兔子总数
1 1 2 3 5 8 13 21 34 55
五、课堂小结
这节课你学到了哪些知识和思想方法?

高中数学必修5《数列的递推公式》教学设计

高中数学必修5《数列的递推公式》教学设计

普通高中课程标准实验教科书(人教A版数学必修五)§2.1 数列的概念与简单表示方法第2课时数列递推公式的教学设计一.教学内容数是刻画静态下物体的量,按一定顺序排列着的一列数称为数列。

在日常生活中,人们经常遇到需要用有关数列知识来解决的问题。

在数学中,数列是一种特殊的函数,是反映自然规律的基本数学模型。

数列的知识也是学生将来学习高等数学的基础。

由于数列这部分知识与以前所学知识具有较强的联系,特别与函数等知识有密切联系,新教材安排数列在函数之后教学,有利于用函数的观点来认识数列本质,也有利于加深巩固对函数概念的理解。

数列的递推公式这一节,是在前面学习了数列的有关概念后,介绍的另一种确定数列的办法。

本节的许多教学情境来源与生活实际,体现新课标的应用特点,加强学生对数列概念的感性认识。

本节的学习需要学生不断地观察、分析、归纳、猜想,还要综合应用前面知识解决数列中一些问题,培养学生逻辑思维、抽象思维、归纳思维等能力,有助于学生数学能力的提高。

二.教学目标本节课通过对谢宾斯基三角形的分析,让学生体会递推思想,了解从特殊到一般的归纳方法。

具体目标为:1.要求学生了解递推公式是给出数列的一种方法。

2.学生会根据数列的递推公式写出数列的前几项,利用递推思想解决一些实际问题,3.培养学生推理能力,严密的思维习惯,促进个性品质的良好发展。

通过课内外知识的介绍,开阔学生的眼界。

本节课教学重点:利用递推思想求出递推关系。

本节课教学难点:利用递推关系求出数学通项公式。

三.教学情况分析在本节之前,学生已经对函数知识有了一定程度的理解与掌握。

数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。

在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。

函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。

由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

人教新课标版数学高二B必修5课件 数列的递推公式

人教新课标版数学高二B必修5课件 数列的递推公式

1234
2.已知数列{an}满足a1=2,an+1-an+1=0(n∈N+),则此
数列的通项an等于( D )
A.n2+1
B.n+1
C.1-n
D.3-n
解析 ∵an+1-an=-1. ∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
= 2 (1) (1) (1) =2+(-1)×(n-1)=3-n. 共(n -1)个
例 1 已知数列{an}的第 1 项是 2,以后各项由公式 an=
an-1 给出,写出这个数列的前 5 项. 1-an-1 解 a1=2,a2=1-2 2=-2,a3=1---2 2=-23, a4=1---23 23=-52,a5=1---25 25=-27.
反思与感悟 递推公式反映的是相邻两项(或几项)之间的 关系.对于通项公式,已知n的值即可得到相应的项;而递 推公式则要已知首项(或前几项),才可求得其他的项.
例2
已知直线l:y=x与曲线C:y=(
1 2
)x(如
图所示),过曲线C上横坐标为1的一点P1作x
轴的平行线交l于Q2,过Q2作x轴的垂线交曲
线C于P2,再过P2作x轴的平行线交l于Q3,过Q3作x轴的垂
线交曲线C于P3,……,设点P1,P2,…,Pn,…的纵坐
标分别为a1,a2, …,an,…,试求数列{an}的递推公式.
例 3 已知数列{an},a1=1,以后各项由 an=an-1+nn1-1
(n≥2)给出. (1)写出数列{an}的前5项; 解 a1=1;a2=a1+2×1 1=32;a3=a2+3×1 2=53; a4=a3+4×1 3=74;a5=a4+5×1 4=59.
(2)求数列{an}的通项公式. 解 由 an=an-1+nn1-1得 an-an-1=nn1-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1

高中数学第二章数列2.1数列的概念与简单表示法第二课时数列的性质和递推公式课件新人教A版必修5

高中数学第二章数列2.1数列的概念与简单表示法第二课时数列的性质和递推公式课件新人教A版必修5

当 an1 >1 时,数列{an}是递减数列. an
对于任意 n(n∈N*),若 an≠0,则当 an1 =1 时,数列{an}是常数列. an
(2)利用数列的图象直观地判断.
5.周期数列的概念 对于摆动数列-1,1,-1,1,-1,1,-1,1,…,我们视察后可以发现,数列的项1,1 重 复 出 现 , 用 公 式 表 示 为 an=an+2. 若 记 f(n)=an, 则 可 以 表 示 为 f(n)= f(n+2),即数列中的项循环出现,我们称此类数列为周期数列. 周期数列的递推公式的一般情势为an+k=an(n∈N*,k∈N*,k≥2),如数列1,2, 3,1,2,3,1,2,3,…是周期为3的周期数列,满足an+3=an(n∈N*). 6.判断周期数列的方法 要判断一个数列是否具有周期性或求解一个周期数列,主要方法是通过递推 公式求出数列的若干项,视察得到规律或由递推公式直接发现规律.
解:(1)因为 an+1-an= 1 = 1 - 1 ,所以 a2-a1= 1 =1- 1 ;
n(n 1) n n 1
1 2 2
a3-a2= 1 = 1 - 1 ;a4-a3= 1 = 1 - 1 ;
23 2 3
34 3 4

an-an-1= 1 = 1 - 1 ; (n 1)n n 1 n
以上各式累加得,an-a1=1- 1 + 1 - 1 +…+ 1 - 1 =1- 1 .所以 an+1=1- 1 ,所以 an=- 1 .
②作商法:即作商 an1 (务必要确定 an 的符号)后与 1 比较对于任意 n(n∈N*),若 an>0, an
则当 an1 >1 时,数列{an}是递增数列; an

高中数学 第二章 数列 2.1.2 数列的递推公式(选学)课

高中数学 第二章 数列 2.1.2 数列的递推公式(选学)课

6
预课当解习堂导讲检学义测∵a1=0,an+1=an+栏CON(目T2EnN索T-S PA引1G)E, ∴a2=a1+(2×1-1)=0+1=1; a3=a2+(2×2-1)=1+3=4; a4=a3+(2×3-1)=4+5=9; a5=a4+(2×4-1)=9+7=16. 故该数列的一个通项公式是an=(n-1)2.
1 2
2
.
2.1.2 数列的递推公式(选学)
挑重当战点堂自难训我点练,点个体点个验落击成实破功
12
预课当(2习堂)这导讲检个学义测数列从第几项开始及其栏以目后索各引项均小于
解 ∵bn=n-21n=12(n-12)2C-ON18TE,NTS PAGE
1
010挑重当0?战点堂自难训我点练,点个体点个验落击成实破功
2.1.2 数列的递推公式(选学)
11
预课当习堂导讲检学义测

an=aan-n 1·aann- -12·…栏C·OaaN目32TE·Naa索T21S·PaA引G1E
=(12)n-1·(12)n-2·…·(12)2·(12)1·1
(n 1)n
=(12)1+2+…+(n-1)=
1 2
2

(n 1)n
∴an=
答案 数列的项与对应的序号能构成函数关系.数列的一般形式可 以写成:a1,a2,a3,…,an,….除了列举法外,数列还可以用公 式法、列表法、图象法来表示.
2.1.2 数列的递推公式(选学)
4
预课当[预习堂导讲检习学义测导引] 1.递推公式
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
2.1.2 数列的递推公式(选学)
挑战自我,点点落实 重点难点,个个击破 当堂训练,体验成功

高中数学新人教A版必修5 第二章 2.1 第二课时 数列的通项公式与递推公式

高中数学新人教A版必修5   第二章   2.1  第二课时 数列的通项公式与递推公式

第二课时数列的通项公式与递推公式预习课本P30~31,思考并完成以下问题(1)什么叫数列的递推公式?(2)由数列的递推公式能否求出数列的项?[新知初探]数列的递推公式定义:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)(n≥2)间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式.[点睛](1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式.(2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,用符合要求的正整数依次去替换n,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)根据通项公式可以求出数列的任意一项()(2)有些数列可能不存在最大项()(3)递推公式是表示数列的一种方法()(4)所有的数列都有递推公式()解析:(1)正确.只需将项数n代入即可求得任意项.(2)正确.对于无穷递增数列,是不存在最大项的.(3)正确.递推公式也是给出数列的一种重要方法.(4)错误.不是所有的数列都有递推公式.例如2精确到1,0.1,0.01,0.001,…的近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式.答案:(1)√(2)√(3)√(4)×2.符合递推关系式a n=2a n-1的数列是()A.1,2,3,4,…B.1,2,2,22,…C.2,2,2,2,… D .0,2,2,22,…解析:选B B 中从第二项起,后一项是前一项的2倍,符合递推公式a n =2a n -1. 3.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5D .19解析:选D 由a n +1=a n +2-a n ,得a n +2=a n +a n +1, 则a 3=a 1+a 2=7,a 4=a 2+a 3=12,a 5=a 3+a 4=19. 4.已知a 1=1,a n =1+1a n -1(n ≥2),则a 5=________.解析:由a 1=1,a n =1+1a n -1,得a 2=2,a 3=32,a 4=53,a 5=85.答案:85由递推公式求数列的项[典例] 数列{a n }中,a 1=1,a 2=3,a 2n +1-a n a n +2=(-1)n,求{a n }的前5项.[解] 由a 2n +1-a n a n +2=(-1)n,得a n +2=a 2n +1-(-1)na n,又∵a 1=1,a 2=3,∴a 3=a 22-(-1)1a 1=32+11=10,a 4=a 23-(-1)2a 2=102-13=33,a 5=a 24-(-1)3a 3=332+110=109.∴数列{a n }的前5项为1,3,10,33,109.由递推公式求数列的项的方法(1)根据递推公式写出数列的前几项,首先要弄清楚公式中各部分的关系,依次代入计算即可.(2)若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式.(3)若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式. [活学活用]已知数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=67,则a 2 018=________.解析:计算得a 2=2a 1-1=57,a 3=2a 2-1=37,a 4=2a 3=67.故数列{a n }是以3为周期的周期数列,又因为2 018=672×3+2,所以a 2 018=a 2=57.答案:57由递推公式求通项公式题点一:累加法求通项公式1.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,求数列的通项公式a n .解:∵a n +1-a n =1n (n +1),∴a 2-a 1=11×2;a 3-a 2=12×3;a 4-a 3=13×4;…a n -a n -1=1(n -1)n; 以上各式累加得,a n -a 1=11×2+12×3+…+1(n -1)n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n. ∴a n +1=1-1n ,∴a n =-1n (n ≥2).又∵n =1时,a 1=-1,符合上式,∴a n =-1n .题点二:累乘法求通项公式2.设数列{a n }中,a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),求数列的通项公式a n . 解:∵a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),∴an a n -1=n -1n , a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n ×n -2n -1×n -3n -2×…×23×12×1=1n . 又∵n =1时,a 1=1,符合上式,∴a n =1n .由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.数列的最大、最小项问题[典例] 已知数列{a n }的通项公式是a n =()n +1·⎝⎛⎭⎫1011n ,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.[解] 法一:a n +1-a n=(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =(9-n )⎝⎛⎭⎫1011n11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,(n >1)即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,(n >1)解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.(1)由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.(2)可以利用不等式组⎩⎪⎨⎪⎧ a n -1≤a n ,a n ≥a n +1,(n >1)找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,(n >1)找到数列的最小项.[活学活用]数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项D .第7项解析:选B a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963, 当n =143时,a n 最小,又n ∈N *, 故n =5时,a n =3n 2-28n 最小.层级一 学业水平达标1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34D.58解析:选B 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( ) A .R B .(0,+∞) C .(-∞,0)D .(-∞,0]解析:选C ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0.3.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.3115 解析:选C 由题意a 1a 2a 3=32,a 1a 2=22, a 1a 2a 3a 4a 5=52,a 1a 2a 3a 4=42,则a 3=3222=94,a 5=5242=2516.故a 3+a 5=6116.4.已知数列{a n }满足要求a 1=1,a n +1=2a n +1,则a 5等于( ) A .15 B .16 C .31D .32 解析:选C ∵数列{a n }满足a 1=1,a n +1=2a n +1,∴a 2=2×1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31.5.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =a b n -1,则b 6的值是( )A .9B .17C .33D .65解析:选C ∵b n =a b n -1,∴b 2=a b 1=a 2=3,b 3=a b 2=a 3=5,b 4=a b 3=a 5=9,b 5=a b 4=a 9=17,b 6=a b 5=a 17=33.6.已知数列{a n }满足a 1=23,a n +1=n n +1a n,得a n =________.解析:由条件知a n +1a n=nn +1,分别令n =1,2,3,…,n -1,代入上式得n -1个等式,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n .答案:23n7.数列{a n }的通项公式为a n =n 2-6n ,则它最小项的值是________. 解析:a n =n 2-6n =(n -3)2-9,∴当n =3时,a n 取得最小值-9. 答案:-98.已知数列{a n },a n =b n +m (b <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.解析:∵⎩⎪⎨⎪⎧ 2=b +m ,4=b 2+m ,∴⎩⎪⎨⎪⎧b =-1,m =3.∴a n =(-1)n +3,∴a 3=(-1)3+3=2. 答案:29.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式. (1)a 1=0,a n +1=a n +2n -1(n ∈N *); (2)a 1=1,a n +1=a n +a nn +1(n ∈N *);(3)a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *). 解:(1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2. (2)a 1=1,a 2=32,a 3=42,a 4=52.猜想a n =n +12.(3)a 1=2,a 2=3,a 3=5,a 4=9.猜想a n =2n -1+1.10.已知函数f (x )=x -1x .数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 解:∵f (x )=x -1x ,∴f (a n )=a n -1a n,∵f (a n )=-2n .∴a n -1a n=-2n ,即a 2n +2na n -1=0.∴a n =-n ±n 2+1.∵a n >0,∴a n =n 2+1-n .层级二 应试能力达标1.若数列{a n }满足a n +1=4a n +34(n ∈N *),且a 1=1,则a 17=( ) A .13 B .14 C .15D .16解析:选A 由a n +1=4a n +34⇒a n +1-a n =34,a 17=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 17-a 16)=1+34×16=13,故选A.2.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+lg n B .2+(n -1)lg n C .2+n lg nD .1+n +lg n解析:选A 由a n +1=a n +lg ⎝⎛⎭⎫1+1n ⇒a n +1-a n =lg ⎝⎛⎭⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg (2×32×43×…×n n -1)=2+lg n .3.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( ) A .(-∞,3] B .(-∞,4] C .(-∞,5)D .(-∞,6)解析:选D 依题意,a n +1-a n =-2(2n +1)+λ<0,即λ<2(2n +1)对任意的n ∈N *恒成立.注意到当n ∈N *时,2(2n +1)的最小值是6,因此λ<6,即λ的取值范围是(-∞,6).4.已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n ),n ∈N *,则a 2 017+a 2 018等于( )A .4 B.32 C.76D.116解析:选B a 2=f ⎝⎛⎭⎫73=73-1=43; a 3=f ⎝⎛⎭⎫43=43-1=13; a 4=f ⎝⎛⎭⎫13=13+12=56; a 5=f ⎝⎛⎭⎫56=2×56-1=23;a 6=f ⎝⎛⎭⎫23=2×23-1=13; 即从a 3开始数列{a n }是以3为周期的周期数列. ∴a 2 017+a 2 018=a 4+a 5=32.故选B.5.若数列{a n }满足(n -1)a n =(n +1)a n -1,且a 1=1,则a 100=________. 解析:由(n -1)a n =(n +1)a n -1⇒a n a n -1=n +1n -1,则a 100=a 1·a 2a 1·a 3a 2·…·a 100a 99=1×31×42×…×10199=5 050.答案:5 0506.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数,3a n +1,a n 为奇数.若a 6=1,则m 所有可能的取值为________.解析:若a 5为奇数,则3a 5+1=1,a 5=0(舍去). 若a 5为偶数,则a 52=1,a 5=2.若a 4为奇数,则3a 4+1=2,a 4=13(舍去).若a 4为偶数,则a 42=2,a 4=4.若a 3为奇数,则3a 3+1=4,a 3=1,则a 2=2,a 1=4. 若a 3为偶数,则a 32=4,a 3=8.若a 2为奇数,则3a 2+1=8,a 2=73(舍去).若a 2为偶数,则a 22=8,a 2=16.若a 1为奇数,则3a 1+1=16,a 1=5. 若a 1为偶数,则a 12=16,a 1=32.答案:4,5,327.已知数列{a n }的通项公式为a n =n 22n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.解:存在最大项.理由:a 1=12,a 2=2222=1,a 3=3223=98,a 4=4224=1,a 5=5225=2532,….∵当n ≥3时,a n +1a n=(n +1)22n +1×2n n 2=(n +1)22n 2=12⎝⎛⎭⎫1+1n 2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8.∴当n=3时,a3=98为这个数列的最大项.8.已知数列{a n}满足a1=12,a n a n-1=a n-1-a n(n≥2),求数列{a n}的通项公式.解:∵a n a n-1=a n-1-a n,∴1a n-1a n-1=1.∴1a n=1a1+⎝⎛⎭⎫1a2-1a1+⎝⎛⎭⎫1a3-1a2+…+⎝⎛⎭⎫1a n-1a n-1=2+1+1+…+1(n-1)个1=n+1.∴1a n=n+1,∴a n=1n+1(n≥2).又∵n=1时,a1=12,符合上式,∴a n=1n+1.。

高中数学新人教B版必修5课件:第二章数列2.1.2数列的递推公式(选学)

高中数学新人教B版必修5课件:第二章数列2.1.2数列的递推公式(选学)

1 自主学习
PART ONE
知识点一 递推公式 如果已知数列的第1项(或前几项),且从第 二 项(或某一项)开始的任一项_a_n_与 它的前一项 an-1 (或前几项)(n≥2)间的关系可以用一个公式来表示,那么这个 公式叫做这个数列的递推公式. 特别提醒:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有 递推公式. (2)递推公式也是表示数列的一种重要方法,它和通项公式一样,都是关于项数 n的恒等式. (3)递推公式可以通过赋值逐项求出数列的项,直至求出数列的任何一项和所需 的项.
第二章 §2.1 数 列
2.1.2 数列的递推公式(选学)
学习目标
XUEXIMUBIAO
1.理解数列的几种表示方法,能选择适当的方法表示数列. 2.理解递推公式的含义,能根据递推公式求出数列的前几项. 3.了解用叠加法、叠乘法由递推公式求通项公式.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测
12345
课小结
KETANGXIAOJIE
1.{an}与an是不同的两种表示,{an}表示数列a1,a2,…,an,…,是数列 的一种简记情势.而an只表示数列{an}的第n项,an与{an}是“个体”与“整 体”的从属关系. 2.数列的表示方法 (1)图象法;(2)列表法;(3)通项公式法;(4)递推公式法. 3.通项公式和递推公式的区分:通项公式直接反应an和n之间的关系,即an 是n的函数,知道任意一个具体的n值,就可以求出该项的值an;而递推公 式则是间接反应数列的式子,它是数列任意两个(或多个)相邻项之间的推 导关系,不能由n直接得出an.
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU

人教B版必修5高二数学2.1.2数列的递推公式教学课件

人教B版必修5高二数学2.1.2数列的递推公式教学课件

5.设数列{an}:a1=1,且4an+1-anan+1+2an=9。 求通项an.
解:把已知式子变形为
an+1
=
2an - 9 an - 4
,令an= bn+t
an+1
=
bn+1
+
t
=
2(bn + t) - 9 bn + t - 4
从而
bn+1
=
(2
-
t)bn - (t2 - 6t bn + t - 4
解:1= 1 ,点Qn+1与Pn的纵坐标相同,都 是an,2同时点Pn+1与Qn+1的横坐标相等,
点Pn+1在曲线c:y
=
(
1 2
)x
上,
由横坐标得它的纵坐标为 ( 1 )an 2

an+1
=
( 1 )an 2
这就是数列{an}的递推公式。
例3.已知数列{an}中,a1=1,对任意自然数n都有
a5
25 16
a3
a5
9 4
25 16
61 16
解法2:(1)因为 a1 a2 an n2
所以a1a2 4 解得a2=4,
又 a1a2a3 9
解得
a3
9 4
同理可得
a4
16 9
,
a5
25 16
a3
a5
9 4
25 16
61 16
(2) 256 225
是此数列中的项吗?
解:(2)令
256 225
知识回顾
1、数列:按一定顺序排列的一列数叫数列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)递推公式的作用 数列的递推公式是给出数列的另一种重要形 式.一般地,只要给出数列的首项或前几项以 及数列的相邻两项或几项之间的运算关系,就 可以依次求出数列的各项. 特别提醒:数列的通项公式与递推公式可以相 互转化.如数列1,3,5,…,2n-1,…的一个 通项公式为an=2n-1(n∈N+),用递推公式表 示为a1=1,an=an-1+2(n≥2,n∈N+).
都可以确定数
由递推公式求通项公式
例2 设{an}是首项为 1 的正项数列,且aan+n 1=n+n 1 求它的通项公式.
【分析】利用 an=aan-n 1·aann- -12…aa32·aa21·a1 可求得 an.
【解】 ∵aan+n 1=n+n 1, ∴aa21=12,aa32=23,aa43=34,…,aan-n 1=n-n 1, ∴an=aan-n 1·aann- -12…aa32·aa21·a1 =n-n 1·nn- -21…23·12·1
解:(1)a1=1;a2=a1+2×1 1=32;
a3=a2+3×1 2=53;
a4=a3+4×1 3=74;
a5=a4+5×1 4=95.
(2) 由
an

an

1

Hale Waihona Puke 1 nn-1得an

an

1

1 nn-1
(n≥2,n∈N),
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1 =nn1-1+n-11n-2+…+3×1 2+2×1 1+1
2.由数列的递推公式求通项公式的常用方法 (1)累加法 当 an-an-1=f(n)满足一定条件时, 常用 an=(an-an-1)+(an-1-an-2)+…+(a2- a1)+a1 累加. (2)累乘法
当aan-n 1=g(n)满足一定条件时, 常用 an=aan-n 1·aann--12·…·aa21·a1 累乘.
A.7 C.16
B.11 D.17
3.数列2,4,6,8,10…的递推公式是(C )
A.an=an-1+2(n≥2) B.an=2an-1(n≥2) C.a1=2,an=an-1+2(n≥2) D.a1=2,an=2an-1(n≥2)
通项公式与递推公式的区别与联系
区别
联系
通项公式 递推公式
项an是序号n的函 数式an=f(n) 已知a1及相邻项间 的关系式
=n1.
【点评】 此法为累乘法,当aan+n 1=f(n),且 f(1)、 f(2)…f(n)可求,可用累乘法求数列的通项 an.
2.已知a1=1,an+1=2an, (1)写出数列的前五项;
(2)求数列的一个通项公式.
解析: (1)由 a1=1,an+1=2an 得 a2=2,a3=4,a4=8,a5=16. (2)(累乘法):由已知得aan-n 1=2(n≥2), ∴aa21=2,aa32=2,aa43=2,…,aan-n 1=2, 将这些式子的两边分别相乘得 aa21·aa32·aa43·…·aan-n 1=aan1=2n-1(n≥2), 又 a1=1=20,∴通项公式为 an=2n-1.
武汉市第十四中学
学习目标 1.了解数列的递推公式的概念. 2.理解数列递推公式的应用.
课前自主学案
温故夯基
1.数列的定义:数列是按照_一__定__顺__序__排列 起来的一列数; 2.数列的通项公式:_a_n_=__f_(n_)__ .
3.下列数列{an}中,an 随 n 的变化有何规律? (1)an=3n-1; (2)an=1+n12; (3)an=2.
自我挑战1 已知数列{an}满足a1=1, an+1=2an+1,写出该数列的前五项. 解:由递推公式an+1=2an+1及a1=1,
可得a2=3,a3=7,a4=15,a5=31, ∴数列的前五项分别为1,3,7,15,31.
2.已知数列{an}中,
a1=1,an-an-1=n-1(n≥2) 则a6=(C)
例3 已知数列{an},a1=1,以后各项由
- an an-1= n-1 1-n1 (n≥2,n∈N)给出.
(1)写出数列{an}的前 5 项; (2)求数列{an}的通项公式.
自我挑战 2 已知数列{an},a1=1,以后各项由 an=an-1+ nn1-1(n≥2,n∈N)给出. (1)写出数列{an}的前 5 项; (2)求数列{an}的通项公式.
=(n-1 1-n1)+(n-1 2-n-1 1)+…+(12-13)+(1-
12)+1 =-n1+1+1=2-n1=2nn-1(n≥2,n∈N). 又∵当 n=1 时,a1=1 适合上式,
∴an=2nn-1.
方法感悟 1.数列的通项公式与递推公式的作用 (1)通项公式的作用 数列的通项公式是给出数列的主要形式.如果 已知数列{an}的通项公式an=f(n),只要用 1,2,3,…代换公式中的n,就可以求出这个数 列的各项与指定项.
课堂互动讲练
考点突破
由递推公式求前几项 例1 写出下列数的前 5 项. (1)a1=6,an=12an-1(n=2,3,4,…); (2)a1=2,an=an-1+2(n=2,3,4…). 【分析】 根据递推公式逐项写出即可.
【点评】 根据递推公式写出数列的前 几项,要弄清公式各部分间的关系,依 次代入数值计算即可.
4.考察下面的数列,它的第n+1项 与第n项有什么关系? (1)8,10,12,14,16,…. (2)1,1,2,3,5,8,…. (3)1,2,4,8,16,….
知新益能
1.数列的递推公式 如果已知数列{an}的_第__1_项__(或_前_几__项___),且从 _第__二__项__(或某__一__项___)开始的任意一项an与它的 前一项an-1 (n≥2,n∈N*) (或前几项)间的关系 可以用一个公式来表示,那么这个公式就叫做 这个数列的递推公式. 递推数列的基本问题是由递推关系求通项公 式.
相关文档
最新文档