SATWE荷载组合公式

合集下载

四层框架综合楼基础计算书

四层框架综合楼基础计算书

一、概述1,概况综合楼主体采用四层混凝土框架结构,基础除地下室以外均采用柱下独立基础,地下室底板按筏基设计,地基承载力标准值为500KPa。

该工程场区的抗震设防烈度为7度,设计基本地震加速度值为0.15g,设计地震分组为第一组,建筑场地类型为Ⅱ类场地。

本工程安全等级为二级,设计使用年限为50年。

本工程计算采用中国建筑科学研究院的PKPM(2006年新规范版)程序中的SATWE模块进行结构计算。

二、计算依据的标准规程规范1,《建筑结构可靠度设计统一标准》(GB50068-2001)2,《建筑结构荷载规范》(GB50009-2006年版)3,《混凝土结构设计规范》(GB50010-2002)4,《建筑抗震设计规范》(GB50011-2001)5,《建筑地基基础设计规范》(GB50007-2002)6,《北京地区建筑地基基础勘察设计规范》(DBJ01-501-92)三、设计基本资料1,北京国电水利电力工程有限公司提供的《岩土工程勘察报告》2,北京合纵科技公司综合楼建筑图3,地面粗糙度B类,风荷载:0.45 k N/m²4,地震设防烈度7度,设计地震分组:第一组0.15g5,材料强度等级混凝土:现浇梁板柱:C30;基础:C30;基础垫层:C10钢筋:HRB400级钢筋四、计算本工程结构计算采用中国建筑科学研究院开发的PKPM软件——SATWE、JCCAD(2006版)结构计算软件计算。

独立基础在实际配筋时,在保证基础安全的前提下,对基础进行了归并。

五、计算成果可靠性验证经过对部分构件与同类工程进行对比,计算成果是可靠的。

附件1:独基计算文件+------------------------------------------------------------++ JCCAD 计算结果文件++ ++ 工程名称: 1 ++ 计算日期: 2009-10- 9 ++ 计算时间: 14:16:59.32 ++ 计算内容: ++------------------------------------------------------------+荷载代码Load 荷载组合公式368 SA TWE标准组合:1.00*恒+1.00*活369 SA TWE标准组合:1.00*恒+1.00*风x370 SA TWE标准组合:1.00*恒+1.00*风y371 SA TWE标准组合:1.00*恒-1.00*风x372 SA TWE标准组合:1.00*恒-1.00*风y377 SA TWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x378 SA TWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x379 SA TWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y380 SA TWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y381 SA TWE标准组合:1.00*恒+1.00*风x+0.70*1.00*活382 SA TWE标准组合:1.00*恒-1.00*风x+0.70*1.00*活383 SA TWE标准组合:1.00*恒+1.00*风y+0.70*1.00*活384 SA TWE标准组合:1.00*恒-1.00*风y+0.70*1.00*活441 SA TWE标准组合:1.00*(恒+0.50*活)+1.00*地x+0.38*竖地442 SA TWE标准组合:1.00*(恒+0.50*活)-1.00*地x+0.38*竖地443 SA TWE标准组合:1.00*(恒+0.50*活)+1.00*地y+0.38*竖地444 SA TWE标准组合:1.00*(恒+0.50*活)-1.00*地y+0.38*竖地445 SA TWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x+1.00*地x+0.38*竖地446 SA TWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y+1.00*地y+0.38*竖地447 SA TWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x-1.00*地x+0.38*竖地448 SA TWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y-1.00*地y+0.38*竖地481 SA TWE准永久组合:1.00*恒+0.50*活482 SA TWE基本组合:1.20*恒+1.40*活483 SA TWE基本组合:1.35*恒+0.70*1.40*活484 SA TWE基本组合:1.20*恒+1.40*风x485 SA TWE基本组合:1.20*恒+1.40*风y486 SA TWE基本组合:1.20*恒-1.40*风x487 SA TWE基本组合:1.20*恒-1.40*风y492 SA TWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x493 SA TWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x494 SA TWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y495 SA TWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y496 SA TWE基本组合:1.20*恒+1.40*风x+0.70*1.40*活497 SA TWE基本组合:1.20*恒-1.40*风x+0.70*1.40*活498 SA TWE基本组合:1.20*恒+1.40*风y+0.70*1.40*活499 SA TWE基本组合:1.20*恒-1.40*风y+0.70*1.40*活556 SA TWE基本组合:1.20*(恒+0.50*活)+1.30*地x+0.50*竖地557 SA TWE基本组合:1.20*(恒+0.50*活)-1.30*地x+0.50*竖地558 SA TWE基本组合:1.20*(恒+0.50*活)+1.30*地y+0.50*竖地559 SA TWE基本组合:1.20*(恒+0.50*活)-1.30*地y+0.50*竖地560 SA TWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x+1.30*地x+0.50*竖地561 SA TWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y+1.30*地y+0.50*竖地562 SA TWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x-1.30*地x+0.50*竖地563 SA TWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y-1.30*地y+0.50*竖地计算独基时[不考虑]独基范围内的线荷载独基底板最小配筋率:0.150%北京地区建筑地基基础勘察设计规范DBJ01-501-92 --综合法符号说明:fak:地基承载力特征值fa:修正后的承载力特征值(地震荷载组合:faE)q :用于地基承载力特征值修正的基础埋深Pt :平均覆土压强(包括基础自重)fy :计算底板钢筋时采用的抗拉设计强度Load:荷载代码Mx':相对于基础底面形心的绕x轴弯矩标准组合值My':相对于基础底面形心的绕y轴弯矩标准组合值N':相对于基础底面形心的轴力标准组合值Pmax:该组合下最大基底反力Pmin:该组合下最小基底反力S:基础底面长B:基础底面宽M1:底板x向配筋计算用弯矩设计值M2:底板y向配筋计算用弯矩设计值AGx:底板x向全截面配筋面积AGy:底板y向全截面配筋面积节点号= 1 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -31.22 -60.74 111.31 89.48 0.17 600.00 2311 2311柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 97. 118.8 122.1 270.500. 482 X- 36. 46.0 75.2 200.500. 482 Y- 36. 46.4 75.2 200.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 70.040 686.264 563 66.790 654.422x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 4 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 87.63 18.96 170.38 117.25 0.02 600.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 109. 130.5 136.9 290.500. 556 X- 66. 83.3 87.8 220.500. 559 Y+ 101. 122.7 129.4 280.500. 558 Y- 82. 101.3 107.9 250.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 78.705 771.169 563 74.896 733.845x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 5 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 172.91 2470.02 1241.70 117.73 0.08 600.00 7965 4465柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 557 X- 66. 303.3 308.3 480.4000. 558 Y+ 93. 995.2 1030.0 360.4000. 559 Y- 58. 648.5 681.5 260.基础各阶尺寸:No: S B H1 8000 4500 4002 4100 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 828.875 5847.439 561 965.667 6904.524x实配:Φ16@200(0.16%) y实配:Φ16@180(0.16%)节点号= 6 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 92.25 0.72 398.60 534.36 1.04 600.00 1278 1278柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 483 X+ 260. 81.7 87.8 220.500. 556 X- 300. 91.6 94.4 230.500. 482 Y+ 173. 57.0 75.2 200.500. 561 Y- 499. 124.8 136.9 290.600. 482 X+ 249. 71.5 86.7 200.600. 560 X- 302. 84.0 93.7 210.600. 482 Y+ 163. 46.9 86.7 200.600. 558 Y- 492. 118.0 123.3 250.基础各阶尺寸:No: S B H1 1400 1400 3002 600 600 2003 600 600 100柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 26.586 319.700 561 41.412 497.985x实配:Φ12@150(0.16%) y实配:Φ12@150(0.16%)节点号= 9 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 -69.20 1.19 527.36 479.28 141.37 400.00 1357 1357柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 483 X+ 345. 99.3 107.9 250.500. 560 X- 376. 104.6 114.9 260.500. 559 Y+ 625. 143.7 152.3 310.500. 558 Y- 271. 85.1 87.8 220.600. 483 X+ 345. 92.9 100.9 220.600. 560 X- 376. 97.5 108.2 230.600. 563 Y+ 635. 132.8 147.2 280.600. 482 Y- 222. 63.8 86.7 200.基础各阶尺寸:No: S B H1 1400 1400 3002 600 600 2003 600 600 100柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 33.329 400.777 563 52.900 636.123x实配:Φ12@150(0.16%) y实配:Φ12@150(0.16%)节点号= 17 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -25.87 -98.66 201.90 125.35 0.02 600.00 2284 2284柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 111. 133.1 136.9 290.500. 556 X- 96. 116.5 122.1 270.500. 559 Y+ 96. 116.6 122.1 270.500. 561 Y- 107. 128.8 136.9 290.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 81.763 801.124 561 78.474 768.896x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 19 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 96.14 -10.57 366.73 365.19 0.38 600.00 1519 1519柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 562 X+ 146. 167.7 176.6 340.500. 556 X- 127. 149.5 152.3 310.500. 563 Y+ 156. 177.0 185.0 350.500. 561 Y- 130. 151.5 160.3 320.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 109.216 1070.120 563 115.207 1128.814x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 21 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 32.04 376.56 766.01 269.04 0.11 600.00 2631 2631柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 176. 356.7 362.6 530.500. 557 X- 214. 416.9 420.8 580.500. 558 Y+ 217. 420.6 432.9 590.500. 559 Y- 162. 332.1 340.4 510.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 414.366 4060.023 561 426.314 4177.095x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 22 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 50.74 -341.38 527.40 156.87 0.27 600.00 3108 3108柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 176. 356.2 362.6 530.500. 562 X- 142. 298.0 308.3 480.500. 561 Y+ 133. 282.6 287.6 460.500. 563 Y- 175. 355.4 362.6 530.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 331.744 3250.483 563 328.279 3216.525x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 24 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 28.30 373.15 1057.76 539.10 0.11 600.00 2075 2075柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 596. 348.0 351.5 520.500. 557 X- 638. 354.0 374.0 540.500. 558 Y+ 586. 342.2 351.5 520.500. 563 Y- 639. 354.5 374.0 540.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 288.748 2829.199 563 287.314 2815.152x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 26 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -4.53 358.78 472.05 145.99 0.07 600.00 3102 3102柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 138. 291.9 297.9 470.500. 557 X- 176. 357.4 362.6 530.500. 561 Y+ 176. 356.5 362.6 530.500. 563 Y- 127. 271.0 277.5 450.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 329.945 3232.857 561 328.521 3218.904x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 27 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 21.17 -210.62 729.76 532.43 0.22 600.00 1735 1735柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 404. 274.8 277.5 450.500. 557 X- 370. 256.6 267.6 440.500. 558 Y+ 330. 237.3 248.2 420.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 188.013 1842.181 563 199.480 1954.541x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 29 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 377 20.25 23.83 1507.19 430.75 365.35 400.00 2007 2007柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 560 X+ 719. 377.5 397.1 560.500. 557 X- 584. 341.3 351.5 520.500. 558 Y+ 570. 332.9 351.5 520.500. 563 Y- 725. 380.7 397.1 560.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 330.155 3234.907 563 332.199 3254.936x实配:Φ16@180(0.23%) y实配:Φ16@180(0.23%)节点号= 30 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 -29.12 -324.15 528.46 173.48 0.02 600.00 2902 2902柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 560 X+ 195. 385.6 397.1 560.500. 561 Y+ 201. 395.6 408.9 570.500. 563 Y- 137. 288.7 297.9 470.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 370.543 3630.636 561 381.341 3736.442x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 35 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 64.19 3.02 1167.69 472.44 325.64 400.00 1764 1764柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 438. 286.3 297.9 470.500. 557 X- 459. 293.9 308.3 480.500. 561 Y+ 416. 277.3 287.6 460.500. 559 Y- 483. 302.8 318.8 490.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 215.025 2106.844 563 227.670 2230.743x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 37 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 368 -24.57 1.50 1841.72 412.72 384.06 400.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 235. 447.2 457.6 610.500. 557 X- 243. 458.0 470.2 620.500. 558 Y+ 244. 461.3 470.2 620.500. 559 Y- 244. 461.1 470.2 620.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 350柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 489.737 4391.866 563 496.590 4453.323x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 38 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 379 -34.43 0.68 932.81 452.49 345.16 400.00 1577 1577柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 403. 274.3 277.5 450.500. 557 X- 358. 252.6 257.8 430.500. 558 Y+ 418. 279.0 287.6 460.500. 563 Y- 371. 257.0 267.6 440.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 187.677 1838.891 561 197.236 1932.548x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 43 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 384 106.00 -39.28 1323.48 479.13 251.05 400.00 1969 1969柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 539. 322.5 340.4 510.500. 557 X- 650. 360.6 374.0 540.500. 558 Y+ 550. 328.9 340.4 510.500. 559 Y- 648. 359.7 374.0 540.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 298.027 2920.115 563 301.955 2958.602x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 45 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 32.87 -59.04 2184.94 439.17 360.49 400.00 2411 2411柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 279. 508.8 522.0 660.500. 557 X- 321. 561.6 576.2 700.500. 558 Y+ 310. 548.7 562.4 690.500. 559 Y- 321. 561.6 576.2 700.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 636.845 5264.924 563 643.302 5318.307x实配:Φ14@130(0.22%) y实配:Φ14@130(0.22%)节点号= 46 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 448 324.42 -29.31 841.21 389.52 0.48 600.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 160. 329.6 340.4 510.500. 557 X- 209. 408.4 420.8 580.500. 561 Y+ 220. 426.0 432.9 590.500. 563 Y- 175. 353.9 362.6 530.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 405.601 3974.146 561 422.726 4141.939x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 51 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 247.46 -2443.45 1522.39 144.14 0.12 600.00 7639 4139柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 556 X+ 83. 323.5 329.6 500.4000. 557 X- 130. 481.4 495.8 640.4000. 558 Y+ 73. 722.4 750.0 280.4000. 559 Y- 115. 1079.9 1101.5 380.基础各阶尺寸:No: S B H1 7700 4200 4002 4100 600 350柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 841.037 6357.042 563 978.274 7501.522x实配:Φ16@180(0.19%) y实配:Φ16@200(0.15%)节点号= 53 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 378 -31.65 40.26 1912.48 437.58 362.37 400.00 2255 2255柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 271. 498.6 508.8 650.500. 557 X- 299. 534.5 548.8 680.500. 558 Y+ 272. 499.6 508.8 650.500. 563 Y- 309. 545.5 562.4 690.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 597.122 4936.523 563 607.455 5021.952x实配:Φ16@180(0.21%) y实配:Φ16@180(0.21%)节点号= 55 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 167.20 -2331.04 1282.11 127.12 0.12 600.00 7701 4201柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 560 X+ 77. 320.2 329.6 500.4000. 557 X- 113. 447.4 457.6 610.4000. 561 Y+ 105. 1036.0 1065.7 370.4000. 559 Y- 64. 658.2 681.5 260.基础各阶尺寸:No: S B H1 7800 4300 4002 4100 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 777.571 5485.510 561 938.717 6711.835x实配:Φ16@200(0.16%) y实配:Φ16@180(0.16%)节点号= 58 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 97.42 -309.52 631.25 194.91 0.36 600.00 2927 2927柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 218. 422.2 432.9 590.500. 557 X- 145. 303.2 308.3 480.500. 556 Y+ 168. 342.8 351.5 520.500. 559 Y- 218. 421.3 432.9 590.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 423.088 4145.483 563 425.127 4165.464x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)* END *附件2:筏基计算结果采用JCCAD中的桩筏筏板有限元计算模块对地下室底板进行计算,计算结果见下图。

最全的satwe参数讲解

最全的satwe参数讲解

PKPM 软件中SATWE 重要参数设定PKPM 是目前国内应用最广的计算机辅助设计软件,而SATWE—空间组合结构有限元程序则是目前应用最多的计算模块。

SATWE 采用空间杆单元来模拟梁、柱及支撑杆件,用在壳单元基础上凝聚而成的墙元来模拟剪力墙。

所以SATWE 中的一些重要参数设定的正确与否就决定了计算模型是否接近于实际工程的受力情况。

许多工作多年实践经验丰富的结构工程师在应用PKPM 软件时在结构模型设计合理的情况下因为对软件没有进行深入分析,造成SATWE 设置参数的偏差而引起整个工程项目的配筋偏大造价提高或结构稳定性没有达到规范的要求,这种情况需要引起足够的重视,一些重要的参数应如下设置。

SATWE 分析与设计参数补充见图1“进入分析与设计参数补充”界面:设置如下:1.SATWE 总信息总信息(见图1.1)1.1 结构材料信息:按主体结构材料选择“钢筋混凝土结构”。

1.2 混凝土容重(kN/ ):=27.00,普通框架取26kN/m3,框架-剪力墙及异性柱框架取27kN/m3,剪力墙、短肢剪力墙取28kN/m3,包含饰面材料。

1.3 钢材容重(kN/ ):=78.00。

1.4 水平力夹角(Rad):ARF=0.00,一般取0,地震力、风力作用方向反时针为正。

先采用默认0,SATWE 自动计算出最不利地震作用方向角,并在WZQ.OUT 中输出,当方向角大于15 度时,应将这个角度作为地震作用的方向角返填重新进行计算,以体现最不利地震作用的影响1.5 地下室层数:MBASE=0,定义与上部结构整体分析的地下室层数,无则填0。

1.6 竖向荷载计算信息:一般多层建筑选择“一次性加载”。

模拟施工方法1 加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算(依据《高规》5.1.9条)。

但对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。

SATWE计算参数使用说明

SATWE计算参数使用说明

一、总信息
1、水平力与整体坐标的夹角
一般并不建议用户修改该参数,原因有三:①考虑该角度后, 输出结果的整个图形会旋转一个角度,会给识图带来不便; ②构件的配筋应按考虑该角度和不考虑该角度两次的计算 结果做包络设计;③旋转后的方向并不一定是用户所希望 的风荷载作用方向.综上所述,建议用户
将最不利地震作用方向角填到斜交抗侧力构件夹角栏,这样 程序可以自动按最不利工况进行包络设计.
一、总信息
11、结构材料信息
分为{钢筋混凝土结构}、{钢与砼混合结构}、{有填 充墙钢结构}和{无填充墙钢结构}共4个选项.选定结构 材料即确定结构设计的相关规范,如0.2Q砼结构或0.25Q 钢结构调整.型钢混凝土和钢管混凝土结构属于钢筋砼结构. 有填充墙钢结构}和{无填充墙钢结构}之分是为了计算 风荷载中的脉动系数ξ.根据荷规164页7.4.2-2式计算,这是 10版采用的方法.新版程序相应在风荷载信息增加了风载 作用下的阻尼比参数,其初始值由结构材料信息控制.
一、总信息
8、对所有楼层强制采用刚性楼板假定 位移比、周期比计算时选择该项
层刚度比计算,严格来说要采用刚性板假定. 对于有弹性楼板或板厚为0的工程,可计算两次, 第一次选择强制刚性楼板假定,确定薄弱层.第二次 将薄弱层号填入,按真实情况计算内力及配筋.如果 工程中无弹性楼板、无开洞、无越层错层,则默认 的楼板假定就是刚性楼板假定.
一、总信息
1、水平力与整体坐标的夹角
这个角度与结构的刚度与质量及其位置有关,对结构可能会 造成最不利的影响,在这个方向地震作用下,结构的变形及 部分结构构件内力可能会达到最大.
当用户输入一个非 0角度比如 25度后,结构沿顺时针方向 旋转相应角度即25度,但地震力、风荷载仍沿屏幕的X向和 Y向作用,竖向荷载不受影响

pkpm中SATWE详细参数讲解

pkpm中SATWE详细参数讲解

五.调整信息
• 梁端弯矩调幅系数:可在0.8~1.0范围内取值,一般取0.85。 • 梁活荷载内力增大系数:考虑活荷不利布置,应填1。否则填1.1~1.2。 • 梁扭矩折减系数:可在0.4~1.0范围内取值,一般取0.4。 • 托墙梁刚度放大系数:托墙梁刚度放大系数一般取1。 • 实配钢筋超配系数:指梁,参看抗规公式6.2.2-2 • 连梁刚度折减系数:不小于0.5,设防烈度为6,7度时可取0.7,设防烈
四.活荷信息
• 柱、墙活荷载是否折减: 按荷载规范5.1.2条执行。 • 传到基础的活荷载是否折减: 按荷载规范5.1.2条执行,注意在接力
JCCAD时,SATWE传递的内力为没有折减的标准内力,由用户在JCCAD 中另行指定折减信息。 • 考虑活荷不利布置的层数:一般考虑。 • 柱,墙,基础活荷载折减系数:按荷载规范5.1.2条执行。 • 考虑结构使用年限的活荷载调整系数:高规5.6.1 使用年限50年取1.0 , 100年取1.1。
SATWE参数设置
编写人:
一.总信息
• 水平力与整体坐标夹角:程序缺省为0,仅需改变风荷载作用方向时才采用该 参数。如不改变风荷载方向,只需考虑其它角度的地震作用时,则无需改变 “水平力与整体坐标夹角”,只增加附加地震作用方向即可。
• 混凝土容重:剪力墙结构取27,框架结构取26. • 裙房层数:裙房屋顶层在SATWE模型中的层号,模型第一层为1,无裙房为0。 • 转换层所在层号:转换层在模型第一层为1,无转换层为0。 • 地下室层数:按实际填写。 • 嵌固端所在层号:基础嵌固,所在层号为1;地下室顶板为嵌固部位,所在层
当框架-剪力墙结构中框架部分承担的地震倾覆力矩大于总和的50%时,需要 选上。
• 当边缘构件轴压比小于抗规6.4.5条规定的限值时一律设置构造边缘构件: 是 • 是否按混凝土规范B.0.4考虑柱二阶效应: 排架结构选是。 • 柱配筋计算原则: 必须点角柱和转换柱 。一般按单偏压计算,双偏压复核。 • 过渡层:依据高规7.2.14.3 条,宜在约束构造边缘构件层与构造边缘构件层之

史上最全PKPM-SATWE参数设置介绍

史上最全PKPM-SATWE参数设置介绍

总信息 (4)水平力与整体坐标夹角 (4)混凝土容重 (5)钢材容重 (5)裙房层数 (5)转换层所在层号 (5)嵌固端所在层号 (6)地下室层数 (8)墙元细分最大控制长度 (8)弹性板细分最大控制长度 (8)转换层指定为薄弱层 (8)对所有楼层强制采用刚性楼板假定 (9)地下室强制采用刚性楼板假定 (9)墙梁跨中节点作为刚性楼板从节点 (10)计算墙倾覆力矩时只考虑腹板和有效翼缘 (11)弹性板与梁变形协调 (12)采用自定义构件施工次序 (12)结构材料信息 (13)结构体系 (13)恒活荷载计算信息 (13)施工次序 (15)风荷载计算信息 (16)地震作用计算信息 (16)结构所在地区 (17)特征值求解方式 (17)“规定水平力”的确定方式 (17)墙元侧向节点信息 (18)风荷载信息 (19)地面粗糙度类别 (19)修正后的基本风压 (19)X、Y向结构基本周期 (21)风荷载作用下结构的阻尼比 (22)承载力设计时风荷载效应放大系数 (22)用于舒适度验算的风压 (23)用于舒适度验算的结构阻尼比 (23)顺风向风振 (23)横风向风振 (24)扭转风振 (25)水平风体型系数 (25)设缝多塔背风面体形系数 (26)特殊风体型系数 (27)地震信息 (27)结构规则性信息 (27)设防地震分组 (28)设防烈度 (28)砼框架、剪力墙、钢框架抗震等级 (29)抗震构造措施的抗震等级 (30)中震(或大震)设计 (31)按主振型确定地震内力符号 (31)按抗规(6.1.3-3)降低嵌固端以下抗震构造措施的抗震等级 (32)程序自动考虑最不利水平地震作用 (32)斜交抗侧力构件方向附加地震数,相应角度 (32)考虑偶然偏心 (32)考虑双向地震作用 (33)计算振型个数 (34)重力荷载代表值的活载组合值系数 (34)周期折减系数 (35)结构的阻尼比 (35)特征周期、地震影响系数最大值、用于12层以下规则砼框架结构薄弱层验算的地震影响系数最大值(罕遇地震) (36)竖向地震参与振型数 (36)竖向地震作用系数底线值 (36)自定义地震影响系数曲线 (36)活荷信息 (37)柱墙、基础设计时活荷载 (37)梁活荷不利布置最高层号 (38)柱墙基础活荷载折减系数 (38)考虑结构使用年限的活荷载调整系数 (38)梁楼面活荷载折减设置 (38)调整信息 (39)梁端负弯矩调幅系数 (39)梁活荷载内力放大系数 (39)梁扭矩折减系数 (40)托墙梁刚度放大系数 (40)连梁刚度折减系数 (41)支撑临界角 (41)柱/墙实配钢筋超配系数 (41)中梁刚度放大系数 (42)梁刚度放大系数按2010规范取值 (42)砼矩形梁转T形(自动附加楼板翼缘) (43)部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级 (43)调整与框支柱相连的梁内力 (43)框支柱调整系数上限 (44)抗规(5.2.5)调整 (44)弱/强轴方向动位移比例 (45)按刚度比判断薄弱层的方式 (45)指定薄弱层个数及相应的各薄弱层层号 (46)薄弱层地震内力放大系数、自定义调整系数 (46)全楼地震作用放大系数 (47)顶塔楼地震作用放大起算层号及放大系数 (47)设计信息 (49)结构重要性系数 (49)钢构件截面净毛面积比 (49)梁按压弯计算的最小轴压比 (49)考虑P-delta效应 (49)按高规或高钢规进行构件设计 (49)框架梁端配筋考虑受压钢筋 (49)结构中的框架部分轴压比限值按照纯框架结构的规定采用 (50)剪力墙构造边缘构件的设计执行高规7.2.16-4条的较高配筋要求 (50)当边缘构件轴压比小于抗规6.4.5条规定的限值时一律设置构造边缘构件 (51)按混凝土规范B.0.4条考虑柱二阶效应 (51)保护层厚度 (51)过渡层信息 (52)柱配筋计算原则 (52)梁柱重叠部分简化为刚域 (52)钢柱计算长度系数 (53)配筋信息 (54)墙竖向分布筋配筋率 (54)NSW层数和NSW配筋率 (55)箍筋间距 (55)结构底部需要单独指定墙竖向分布筋配筋率的层数NSW/配筋率 (55)梁抗剪配筋采用交叉斜筋方式时,箍筋与对角斜筋的配筋强度比 (55)采用冷轧带肋钢筋(需自定义) (55)荷载组合 (57)地下室信息 (57)土层水平抗力系数的比例系数(M值)/扣除地面以下几层的回填土约束 (57)外墙分布筋保护层厚度 (58)回填土容重、回填土侧压力系数 (59)室外地坪标高、地下水位标高 (59)室外地面附加荷载 (59)生成SATWE数据文件及数据检查 (60)保留用户自定义的柱、梁、支撑长度系数 (60)保留用户自定义的水平风荷载 (60)保留用户自定义的边缘构件信息 (60)剪力墙边缘构件的类型 (60)构造边缘构件尺寸 (60)生成用于定制计算书的荷载简图 (60)SATWE计算控制参数 (62)忽略数检警告信息 (62)刚心坐标、层刚度比计算 (62)形成总刚并分解 (62)结构地震作用计算 (62)结构位移计算 (62)全楼构件内力计算 (62)构件配筋及验算 (62)配筋起始/终止层 (62)层刚度比计算 (62)地震作用分析方法 (62)线性方程组解法 (62)位移输出方式 (62)总信息水平力与整体坐标夹角说明书:地震作用和风荷载的方向缺省是沿着结构建模的整体坐标系X轴和Y轴方向成对作用的。

荷载组合和内力调整的先后顺序-规范-SATWE-ETABS

荷载组合和内力调整的先后顺序-规范-SATWE-ETABS

荷载组合和内力调整的先后顺序01——规范规定(2011-09-27 20:54:54)转载▼分类:土木标签:荷载组合内力调整前后顺序分析内力设计内力组合内力杂谈规范的作用效应组合,一般建立在线弹性分析叠加原理基础上。

高规JGJ 3-2010在第5.6节《荷载组合和地震作用组合的效应》正文和条文说明中首次将线形叠加予以明确,以符合《工程结构可靠性设计统一标准》GB 50153的有关规定,区分线形分析和非线性分析的不同效应组合状况。

常规情况下,荷载效应组合仍以【线弹性分析叠加类型】为主,上述假定已成为中国绝大部分规范和教材解释荷载效应的默认前提条件。

另一方面,中国规范对结构总体地震作用工作性能、地震剪力分担及构件内力调整等内容做了详细规定,并且在结构分析之前需对【结构体系相关属性】进行定义,使荷载组合(实为“荷载效应组合”)时必须注意规范的这些内力调整,并且要关注调整的前后顺序。

一、非线性作用效应组合查《工程结构可靠性设计统一标准》GB 50153-2008第 8.2.4条:对持久设计状况和短暂设计状况,应采用作用的基本组合。

1、基本组合的效应设计值可按下式确定:注:在作用组合的效应函数S(•)中,符号“∑”和“+”均表示组合,即同时考虑所有作用对结构的共同影响,而不表示代数相加。

2、当作用与作用效应按线性关系考虑时,基本组合的效应设计值可按下式计算:注1.对持久设计状况和短暂设计状况,也可根据需要分别给出作用组合的效应设计值;2.可根据需要,从作用的分项系数中将反映作用效应模型不定性的系数γsd分离出来。

高规JGJ 3-2010条文说明:第5.6.1条和5.6.3条均适应于【作用和作用效应】呈【线性关系】的情况。

如果结构上的作用和作用效应不能以线性关系表述,则作用组合的效应应符合现行国家标准《工程结构可靠性设计统一标准》GB 50153的有关规定。

二、常规荷载组合【线形关系】2.1 规范规定以高规JGJ 3-2010为例。

pkpm桩基计算书桩反力荷载组合定义

pkpm桩基计算书桩反力荷载组合定义

荷载及桩反力信息1SATWE准永久组合:1.00*恒+0.50*活2SATWE标准组合:1.00*恒+1.00*活3SATWE标准组合:1.00*恒+1.00*风x4SATWE标准组合:1.00*恒+1.00*风x左5SATWE标准组合:1.00*恒+1.00*风x右6SATWE标准组合:1.00*恒+1.00*风y7SATWE标准组合:1.00*恒+1.00*风y左8SATWE标准组合:1.00*恒+1.00*风y右9SATWE标准组合:1.00*恒-1.00*风x10SATWE标准组合:1.00*恒-1.00*风x左11SATWE标准组合:1.00*恒-1.00*风x右12SATWE标准组合:1.00*恒-1.00*风y13SATWE标准组合:1.00*恒-1.00*风y左14SATWE标准组合:1.00*恒-1.00*风y右15SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x16SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x左17SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x右18SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x19SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x左20SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x右21SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y22SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y左23SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y右24SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y25SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y左26SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y右27SATWE标准组合:1.00*恒+1.00*风x+0.70*1.00*活28SATWE标准组合:1.00*恒+1.00*风x左+0.70*1.00*活29SATWE标准组合:1.00*恒+1.00*风x右+0.70*1.00*活30SATWE标准组合:1.00*恒-1.00*风x+0.70*1.00*活31SATWE标准组合:1.00*恒-1.00*风x左+0.70*1.00*活32SATWE标准组合:1.00*恒-1.00*风x右+0.70*1.00*活33SATWE标准组合:1.00*恒+1.00*风y+0.70*1.00*活34SATWE标准组合:1.00*恒+1.00*风y左+0.70*1.00*活35SATWE标准组合:1.00*恒+1.00*风y右+0.70*1.00*活36SATWE标准组合:1.00*恒-1.00*风y+0.70*1.00*活37SATWE标准组合:1.00*恒-1.00*风y左+0.70*1.00*活38SATWE标准组合:1.00*恒-1.00*风y右+0.70*1.00*活39SATWE标准组合:1.00*(恒+0.50*活)+1.00*地x+0.38*竖地40SATWE标准组合:1.00*(恒+0.50*活)-1.00*地x+0.38*竖地41SATWE标准组合:1.00*(恒+0.50*活)+1.00*地y+0.38*竖地42SATWE标准组合:1.00*(恒+0.50*活)-1.00*地y+0.38*竖地43SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x+1.00*地x+0.38*竖地44SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x左+1.00*地x+0.38*竖地45SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x右+1.00*地x+0.38*竖地46SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y+1.00*地y+0.38*竖地47SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y左+1.00*地y+0.38*竖地48SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y右+1.00*地y+0.38*竖地49SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x-1.00*地x+0.38*竖地50SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x左-1.00*地x+0.38*竖地51SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x右-1.00*地x+0.38*竖地52SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y-1.00*地y+0.38*竖地53SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y左-1.00*地y+0.38*竖地54SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y右-1.00*地y+0.38*竖地55SATWE基本组合:1.20*恒+1.40*活56SATWE基本组合:1.35*恒+0.70*1.40*活57SATWE基本组合:1.20*恒+1.40*风x58SATWE基本组合:1.20*恒+1.40*风x左59SATWE基本组合:1.20*恒+1.40*风x右60SATWE基本组合:1.20*恒+1.40*风y61SATWE基本组合:1.20*恒+1.40*风y左62SATWE基本组合:1.20*恒+1.40*风y右63SATWE基本组合:1.20*恒-1.40*风x64SATWE基本组合:1.20*恒-1.40*风x左65SATWE基本组合:1.20*恒-1.40*风x右66SATWE基本组合:1.20*恒-1.40*风y67SATWE基本组合:1.20*恒-1.40*风y左68SATWE基本组合:1.20*恒-1.40*风y右69SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x70SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x左71SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x右72SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x73SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x左74SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x右75SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y76SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y左77SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y右78SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y79SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y左80SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y右81SATWE基本组合:1.20*恒+1.40*风x+0.70*1.40*活82SATWE基本组合:1.20*恒+1.40*风x左+0.70*1.40*活83SATWE基本组合:1.20*恒+1.40*风x右+0.70*1.40*活84SATWE基本组合:1.20*恒-1.40*风x+0.70*1.40*活85SATWE基本组合:1.20*恒-1.40*风x左+0.70*1.40*活86SATWE基本组合:1.20*恒-1.40*风x右+0.70*1.40*活87SATWE基本组合:1.20*恒+1.40*风y+0.70*1.40*活88SATWE基本组合:1.20*恒+1.40*风y左+0.70*1.40*活89SATWE基本组合:1.20*恒+1.40*风y右+0.70*1.40*活90SATWE基本组合:1.20*恒-1.40*风y+0.70*1.40*活91SATWE基本组合:1.20*恒-1.40*风y左+0.70*1.40*活92SATWE基本组合:1.20*恒-1.40*风y右+0.70*1.40*活93SATWE基本组合:1.20*(恒+0.50*活)+1.30*地x+0.50*竖地94SATWE基本组合:1.20*(恒+0.50*活)-1.30*地x+0.50*竖地95SATWE基本组合:1.20*(恒+0.50*活)+1.30*地y+0.50*竖地96SATWE基本组合:1.20*(恒+0.50*活)-1.30*地y+0.50*竖地97SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x+1.30*地x+0.50*竖地98SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x左+1.30*地x+0.50*竖地99SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x右+1.30*地x+0.50*竖地100SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y+1.30*地y+0.50*竖地101SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y左+1.30*地y+0.50*竖地102SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y右+1.30*地y+0.50*竖地103SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x-1.30*地x+0.50*竖地104SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x左-1.30*地x+0.50*竖地105SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x右-1.30*地x+0.50*竖地106SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y-1.30*地y+0.50*竖地107SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y左-1.30*地y+0.50*竖地108SATWE基本:(恒+活)-风y右-地y+竖地109标准恒载(1.0恒)。

(整理)SATWE计算参数.

(整理)SATWE计算参数.

PKPM设计SATWE 计算参数一、总信息1.水平力与整体坐标夹角:一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。

根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。

当计算出来的角度大于15度时,应返填入此项。

2.砼容重:25结构类型框架结构框剪结构剪力墙结构重度25 26 273.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。

4.裙房层数:高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。

层数是计算层数,等同于裙房屋面层层号。

5.转换层所在层号:该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。

(层号为计算层号)6.地下室层数:程序据此信息决定底部加强区范围和内力调整。

当地下室局部层数不同时,以主楼地下室层数输入。

地下室一般与上部共同作用分析;地下室刚度大于上部层刚度的2倍,可不采用共同分析;地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。

当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。

当相对刚度为负值,地下室完全嵌固。

7.墙元细分最大控制长度:可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。

8.墙元侧向节点信息:内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。

对于多层结构,应选此项。

外部节点:按外部节点处理时,耗机时和内存资源较多。

对于高层结构,可选此项。

Satwe参数的设置--绝对很详细-史上最全

Satwe参数的设置--绝对很详细-史上最全

Satwe参数的设置--绝对很详细-史上最全最全Satwe参数设定1、总信息:1.1⽔平⼒与整体坐标系夹⾓:0根据抗规(GB50011-2001)5.1.1条规定,“⼀般情况下,应允许在建筑结构的两个主轴⽅向分别计算⽔平地震作⽤并进⾏抗震验算,各⽅向的⽔平地震作⽤应由该⽅向的抗侧⼒构件承担;有斜交抗侧⼒构件的结构,当相交⾓度⼤于15度时,应分别计算各抗侧⼒构件⽅向的⽔平地震作⽤”。

当计算地震夹⾓⼤于15度时,给出⽔平⼒与整体坐标系的夹⾓(逆时针为正),程序改变整体坐标系,但不增加⼯况数。

同时,该参数不仅对地震作⽤起作⽤,对风荷载同样起作⽤。

通常情况下,当Satwe⽂本信息“周期、振型、地震⼒”中地震作⽤最⼤⽅向与设计假定⼤于15度(包括X、Y两个⽅向)时,应将此⽅向重新输⼊到该参数进⾏计算。

1.2混凝⼟容重:26本参数⽤于程序近似考虑其没有⾃动计算的结构⾯层重量。

同时由于程序未⾃动扣除梁板重叠区域的结构荷载,因⽽该参数主要近似计算竖向构件的⾯层重量。

通常对于框架结构取25-26;框架-剪⼒墙结构取26;剪⼒墙结构,取26-27。

1.3钢容重:78⼀般情况下取78,当考虑饰⾯设计时可以适当增加。

1.4裙房层数:按实际填⼊混凝⼟⾼规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各⼀层应适当加强抗震措施。

同时抗规(GB50011-2001)6.1.10条条⽂说明要求:带有⼤底盘的⾼层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸⼀层,⼤底盘顶板以上⾄少包括⼀层。

裙房与主楼相连时,加强部位也宜⾼出裙房⼀层。

本参数必须按实际填⼊,使程序根据规范⾃动调整抗震等级,裙房层数包括地下室层数。

1.5转换层所在层号:按实际填⼊该参数为程序决定底部加强部位及转换层上下刚度⽐的计算和内⼒调整提供信息。

输⼊转换层号后,程序可以⾃动判读框⽀柱、框⽀梁及落地剪⼒墙的抗震等级和相应的内⼒调整。

承台计算书

承台计算书

承台计算书CT-1、CT-3、CT-7按构造选配。

CT-2620 SATWE基本组合:1.20*恒+1.40*活_ **************************************************NO_CD = 1 NO_JD = 131COL. BX BY CX CY ANG N MX MY QX QY1 0 0 0 0 0 4402.1 -25.4 236.9 0.0 0.00.0 0.0 0.0 0.0承台底面荷载 :竖向荷载 N= 4402.1 (KN)X 向弯矩 Mx= -25.4 (KN*m)Y 向弯矩 My= 236.9 (KN*m)X 向水平力 Hx= 0.0 (KN)Y 向水平力 Hy= 0.0 (KN)承台及土自重 G= 629.8 (KN)地面标高DE0= 25.800(m); 承台底标高DE1= 22.600(m)土中桩长PL1= 23.500(m)THE HORIZONAL FORCE : 0.0 (KN)THE PILE HORIZONAL FORCE : 0.0 (KN)桩号 X Y 桩反力Q(KN) 桩净反力QN(KN)1 1050.0 0.0 2503.85 2188.972 -1050.0 0.0 2528.02 2213.14桩总反力QP= 5031.9(kN); 桩均反力QAVE= 2515.9(kN)承台形状------矩形承台边长 XS*YS: 4100.0 * 2000.0截面净高H00= 950. (MM) Y-Y 截面积: .1900E+07 X-X 截面积: .3895E+07截面净高H00= 1000. (MM) Y-Y 截面积: .2000E+07 X-X 截面积: .4100E+07截面净高H00= 1050. (MM) Y-Y 截面积: .2100E+07 X-X 截面积: .4305E+07截面净高H00= 1100. (MM) Y-Y 截面积: .2200E+07 X-X 截面积: .4510E+07截面净高H00= 1150. (MM)X-X 截面积: .4715E+07Y-Y 截面积: .2300E+07剪切面剪跨比斜截面抗剪承载力剪切荷载左 UI01= 0.57 VCI1= 3677.28KN > VDI1= 2213.14 (* 1.00) KN抗冲切承载力QPC= 2336.75KN > 冲切荷载QPD= 2213.14 (* 1.00) KN右 UI02= 0.57 VCI2= 3677.28KN > VDI2= 2188.97 (* 1.00) KN抗冲切承载力QPC= 2336.75KN > 冲切荷载QPD= 2188.97 (* 1.00) KNDMX1= 2323.80KN*M DMX2= 2298.42KN*M ASXI= 3742.03MM*MM/MDMY1= 0.00KN*M DMY2= 0.00KN*M ASYI= 0.00MM*MM/MX向受弯筋 ASX= 3742.MM*MM/MY向受弯筋 ASY= 0.MM*MM/M阶梯不同高度组合及配筋 :组合号 ASX ASY H(1) H(2) ..1 3742.0 0.0 1200.02 3586.1 0.0 1250.03 3442.7 0.0 1300.04 3310.3 0.0 1350.05 3187.7 0.0 1400.06 3073.8 0.0 1450.07 2967.8 0.0 1500.0620 SATWE基本组合:1.35*恒+0.70*1.40*活_ **************************************************NO_CD = 1 NO_JD = 131COL. BX BY CX CY ANG N MX MY QX QY1 0 0 0 0 0 4645.4 -31.2 250.4 0.0 0.00.0 0.0 0.0 0.0承台底面荷载 :竖向荷载 N= 4645.4 (KN)X 向弯矩 Mx= -31.2 (KN*m)Y 向弯矩 My= 250.4 (KN*m)X 向水平力 Hx= 0.0 (KN)Y 向水平力 Hy= 0.0 (KN)承台及土自重 G= 629.8 (KN)地面标高DE0= 25.800(m); 承台底标高DE1= 22.600(m)土中桩长PL1= 23.500(m)THE HORIZONAL FORCE : 0.0 (KN)THE PILE HORIZONAL FORCE : 0.0 (KN)桩号 X Y 桩反力Q(KN) 桩净反力QN(KN)1 1050.0 0.0 2622.72 2307.842 -1050.0 0.0 2652.42 2337.54桩总反力QP= 5275.1(kN); 桩均反力QAVE= 2637.6(kN)承台形状------矩形承台边长 XS*YS: 4100.0 * 2000.0截面净高H00= 950. (MM) Y-Y 截面积: .1900E+07 X-X 截面积: .3895E+07截面净高H00= 1000. (MM) Y-Y 截面积: .2000E+07 X-X 截面积: .4100E+07截面净高H00= 1050. (MM) Y-Y 截面积: .2100E+07 X-X 截面积: .4305E+07截面净高H00= 1100. (MM) Y-Y 截面积: .2200E+07 X-X 截面积: .4510E+07截面净高H00= 1150. (MM) Y-Y 截面积: .2300E+07 X-X 截面积: .4715E+07截面净高H00= 1200. (MM) Y-Y 截面积: .2400E+07 X-X 截面积: .4920E+07剪切面剪跨比斜截面抗剪承载力剪切荷载左 UI01= 0.54 VCI1= 3895.78KN > VDI1= 2337.54 (* 1.00) KN 抗冲切承载力QPC= 2504.97KN > 冲切荷载QPD= 2337.54 (* 1.00) KN 右 UI02= 0.54 VCI2= 3895.78KN > VDI2= 2307.84 (* 1.00) KN 抗冲切承载力QPC= 2504.97KN > 冲切荷载QPD= 2307.84 (* 1.00) KNDMX1= 2454.41KN*M DMX2= 2423.23KN*M ASXI= 3787.68MM*MM/MDMY1= 0.00KN*M DMY2= 0.00KN*M ASYI= 0.00MM*MM/MX向受弯筋 ASX= 3788.MM*MM/MY向受弯筋 ASY= 0.MM*MM/M阶梯不同高度组合及配筋 :组合号 ASX ASY H(1) H(2) ..1 3787.7 0.0 1250.02 3636.2 0.0 1300.03 3496.3 0.0 1350.04 3366.8 0.0 1400.05 3246.6 0.0 1450.06 3134.6 0.0 1500.07 3030.1 0.0 1550.0实际选承台高1250,配筋3787.7 MM*MM/MCT-4620 SATWE基本组合:1.20*恒+1.40*活_ **************************************************NO_CD = 1 NO_JD = 89COL. BX BY CX CY ANG N MX MY QX QY1 0 0 0 0 0 8811.6 312.9 895.7 0.0 0.00.0 0.0 0.0 0.0承台底面荷载 :竖向荷载 N= 8811.6 (KN)X 向弯矩 Mx= 312.9 (KN*m)Y 向弯矩 My= 895.7 (KN*m)X 向水平力 Hx= 0.0 (KN)Y 向水平力 Hy= 0.0 (KN)承台及土自重 G= 1420.0 (KN)地面标高DE0= 25.800(m); 承台底标高DE1= 22.600(m)土中桩长PL1= 23.500(m)THE HORIZONAL FORCE : 0.0 (KN)THE PILE HORIZONAL FORCE : 0.0 (KN)桩号 X Y 桩反力Q(KN) 桩净反力QN(KN)1 1150.0 1150.0 2820.65 2465.642 1150.0 -1150.0 2431.21 2076.213 -1150.0 -1150.0 2295.19 1940.184 -1150.0 1150.0 2684.63 2329.62桩总反力QP= 10231.7(kN); 桩均反力QAVE= 2557.9(kN)承台形状------矩形承台边长 XS*YS: 4300.0 * 4300.0台阶--- 1 : H1= 1000.00MM H2= 1000.00MMNo. 1角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 1940.18 (* 1.00) KNNo. 2角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2076.21 (* 1.00) KNNo. 3角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2465.64 (* 1.00) KNNo. 4角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2329.62 (* 1.00) KN截面净高H00= 950. (MM)Y-Y 截面积: .4085E+07X-X 截面积: .4085E+07X1= -750.00 X2= 750.00Y1= -750.00 Y2= 750.00台阶--- 1 : H1= 1050.00MM H2= 1050.00MM剪切面剪跨比斜截面抗剪承载力剪切荷载左 UI01= 0.44 VCI1=12693.29KN > VDI1= 4269.80 (* 1.00) KN右 UI02= 0.44 VCI2=12693.29KN > VDI2= 4541.85 (* 1.00) KN下 UJ01= 0.44 VCJ1=12693.29KN > VDJ1= 4016.39 (* 1.00) KN上 UJ02= 0.44 VCJ2=12693.29KN > VDJ2= 4795.26 (* 1.00) KNDMX1= 4910.27KN*M DMX2= 5223.13KN*M ASXI= 2646.36MM*MM/MDMY1= 4618.84KN*M DMY2= 5514.55KN*M ASYI= 2794.02MM*MM/MX向受弯筋 ASX= 2646.MM*MM/MY向受弯筋 ASY= 2794.MM*MM/M阶梯不同高度组合及配筋 :组合号 ASX ASY H(1) H(2) ..1 2646.4 2794.0 1750.02 2570.8 2714.2 1800.03 2499.3 2638.8 1850.04 2431.8 2567.5 1900.05 2367.8 2499.9 1950.06 2307.1 2435.8 2000.07 2249.4 2374.9 2050.0620 SATWE基本组合:1.35*恒+0.70*1.40*活_ **************************************************NO_CD = 1 NO_JD = 89COL. BX BY CX CY ANG N MX MY QX QY1 0 0 0 0 0 9206.3 328.2 943.1 0.0 0.00.0 0.0 0.0 0.0承台底面荷载 :竖向荷载 N= 9206.3 (KN)X 向弯矩 Mx= 328.2 (KN*m)Y 向弯矩 My= 943.1 (KN*m)X 向水平力 Hx= 0.0 (KN)Y 向水平力 Hy= 0.0 (KN)承台及土自重 G= 1420.0 (KN)地面标高DE0= 25.800(m); 承台底标高DE1= 22.600(m)土中桩长PL1= 23.500(m)THE HORIZONAL FORCE : 0.0 (KN)THE PILE HORIZONAL FORCE : 0.0 (KN)桩号 X Y 桩反力Q(KN) 桩净反力QN(KN)1 1150.0 1150.0 2932.95 2577.942 1150.0 -1150.0 2522.89 2167.883 -1150.0 -1150.0 2380.20 2025.194 -1150.0 1150.0 2790.26 2435.25桩总反力QP= 10626.3(kN); 桩均反力QAVE= 2656.6(kN)承台形状------矩形承台边长 XS*YS: 4300.0 * 4300.0台阶--- 1 : H1= 1000.00MM H2= 1000.00MMNo. 1角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2025.19 (* 1.00) KNNo. 2角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2167.88 (* 1.00) KNNo. 3角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2577.94 (* 1.00) KNNo. 4角桩冲切抗冲切承载力QPC= 2695.31KN > 冲切荷载QPD= 2435.25 (* 1.00) KN截面净高H00= 950. (MM)Y-Y 截面积: .4085E+07X-X 截面积: .4085E+07X1= -750.00 X2= 750.00Y1= -750.00 Y2= 750.00台阶--- 1 : H1= 1050.00MM H2= 1050.00MMY-Y 截面积: .7525E+07X-X 截面积: .7525E+07X1= -750.00 X2= 750.00Y1= -750.00 Y2= 750.00柱子抗冲切承载力QCC= 9238.49KN > 冲切荷载QCD= 9206.27 (* 1.00) KN剪切面剪跨比斜截面抗剪承载力剪切荷载左 UI01= 0.43 VCI1=13181.92KN > VDI1= 4460.44 (* 1.00) KN 右 UI02= 0.43 VCI2=13181.92KN > VDI2= 4745.83 (* 1.00) KN 下 UJ01= 0.43 VCJ1=13181.92KN > VDJ1= 4193.08 (* 1.00) KN 上 UJ02= 0.43 VCJ2=13181.92KN > VDJ2= 5013.20 (* 1.00) KNDMX1= 5129.51KN*M DMX2= 5457.70KN*M ASXI= 2686.21MM*MM/MDMY1= 4822.04KN*M DMY2= 5765.18KN*M ASYI= 2837.54MM*MM/MX向受弯筋 ASX= 2686.MM*MM/MY向受弯筋 ASY= 2838.MM*MM/MCT-5荷载图:见附页按《全国民用建筑工程设计技术措施(结构)》推荐的“均布全荷载连续梁法”验算如下:一、几何数据及计算参数混凝土: C30 主筋: HRB335 箍筋: HRB335保护层厚度as(mm): 35.00 指定主筋强度:无跨中弯矩调整系数: 1.00 支座弯矩调整系数: 1.00(说明:弯矩调整系数只影响配筋)自动计算梁自重:是恒载系数: 1.20 活载系数: 1.40二、荷载数据1. 荷载工况一 (恒载)三、内力及配筋1. 内力包络图2. 截面内力及配筋0支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm21跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m负弯矩-22.50 kN*m, 荷载组合: 1 位置: 1.00m剪力45.00 kN, 荷载组合: 1 位置: 1.00m挠度 -0.00mm, 裂缝 -0.01mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2箍筋: D8@70, 实际面积: 1436.16mm2/m, 计算面积: 1428.57mm2/m1支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩-22.50 kN*m, 荷载组合: 1剪力1771.42 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm22跨中: 正弯矩1357.36 kN*m, 荷载组合: 1 位置: 1.20m 负弯矩-22.50 kN*m, 荷载组合: 1 位置: 0.00m剪力1771.42 kN, 荷载组合: 1 位置: 2.70m挠度 0.48mm, 裂缝 0.37mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D20+6D18, 实际面积: 3411.77mm2, 计算面积: 3213.77mm2箍筋: D8@30, 实际面积: 3351.03mm2/m, 计算面积: 2632.90mm2/m2支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩-22.50 kN*m, 荷载组合: 1剪力45.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm23跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m负弯矩-22.50 kN*m, 荷载组合: 1 位置: 0.00m剪力45.00 kN, 荷载组合: 1 位置: 0.00m挠度 -0.00mm, 裂缝 -0.01mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2箍筋: D8@70, 实际面积: 1436.16mm2/m, 计算面积: 1428.57mm2/m3支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2 一、几何数据及计算参数混凝土: C30 主筋: HRB335 箍筋: HRB335保护层厚度as(mm): 50.00 指定主筋强度:无跨中弯矩调整系数: 1.00 支座弯矩调整系数: 1.00(说明:弯矩调整系数只影响配筋)自动计算梁自重:是恒载系数: 1.20 活载系数: 1.40二、荷载数据1. 荷载工况一 (恒载)三、内力及配筋1. 内力包络图2. 截面内力及配筋0支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm21跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m 负弯矩-22.50 kN*m, 荷载组合: 1 位置: 1.00m剪力45.00 kN, 荷载组合: 1 位置: 1.00m挠度 -0.00mm, 裂缝 -0.01mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2箍筋: D8@70, 实际面积: 1436.16mm2/m, 计算面积: 1428.57mm2/m1支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩-22.50 kN*m, 荷载组合: 1剪力1991.79 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm22跨中: 正弯矩1321.96 kN*m, 荷载组合: 1 位置: 1.35m 负弯矩-22.50 kN*m, 荷载组合: 1 位置: 2.70m剪力1991.79 kN, 荷载组合: 1 位置: 2.70m挠度 0.47mm, 裂缝 0.36mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D20+6D18, 实际面积: 3411.77mm2, 计算面积: 3162.48mm2 箍筋: D10@100, 实际面积: 1570.80mm2/m, 计算面积: 1428.57mm2/m2支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩-22.50 kN*m, 荷载组合: 1剪力45.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm23跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m 负弯矩-22.50 kN*m, 荷载组合: 1 位置: 0.00m剪力45.00 kN, 荷载组合: 1 位置: 0.00m挠度 -0.00mm, 裂缝 -0.01mm上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2箍筋: D8@70, 实际面积: 1436.16mm2/m, 计算面积: 1428.57mm2/m3支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2下钢筋: 6D22, 实际面积: 2280.80mm2, 计算面积: 2250.00mm2 承台底设计配筋8D25@125(3927 mm2)CT-6荷载图:见附页一、几何数据及计算参数混凝土: C30 主筋: HRB335 箍筋: HRB335保护层厚度as(mm): 50.00 指定主筋强度:无跨中弯矩调整系数: 1.00 支座弯矩调整系数: 1.00(说明:弯矩调整系数只影响配筋)自动计算梁自重:否恒载系数: 1.20 活载系数: 1.40二、荷载数据1. 荷载工况一 (恒载)三、内力及配筋1. 内力包络图2. 截面内力及配筋0支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm21跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m 负弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m剪力 0.00 kN, 荷载组合: 1 位置: 0.00m挠度 0.00mm, 裂缝 0.00mm上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 箍筋: D8@30, 实际面积: 3351.03mm2/m, 计算面积: 2857.14mm2/m1支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力1365.97 kN, 荷载组合: 1上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm22跨中: 正弯矩1020.27 kN*m, 荷载组合: 1 位置: 1.49m 负弯矩-1626.74 kN*m, 荷载组合: 1 位置: 3.90m剪力2200.19 kN, 荷载组合: 1 位置: 3.90m挠度 0.80mm, 裂缝 0.39mm上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 箍筋: D8@30, 实际面积: 3351.03mm2/m, 计算面积: 2857.14mm2/m2支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩-1626.74 kN*m, 荷载组合: 1剪力2304.65 kN, 荷载组合: 1上钢筋: 6D22+6D22, 实际面积: 4561.59mm2, 计算面积: 4509.50mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm23跨中: 正弯矩791.94 kN*m, 荷载组合: 1 位置: 2.10m 负弯矩-1626.74 kN*m, 荷载组合: 1 位置: 0.00m剪力2304.65 kN, 荷载组合: 1 位置: 0.00m挠度 0.44mm, 裂缝 0.30mm上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 箍筋: D8@30, 实际面积: 3351.03mm2/m, 计算面积: 2857.14mm2/m3支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm24跨中: 正弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m负弯矩 0.00 kN*m, 荷载组合: 1 位置: 0.00m剪力 0.00 kN, 荷载组合: 1 位置: 0.00m挠度 0.00mm, 裂缝 0.00mm上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2箍筋: D8@30, 实际面积: 3351.03mm2/m, 计算面积: 2857.14mm2/m4支座: 正弯矩 0.00 kN*m, 荷载组合: 1负弯矩 0.00 kN*m, 荷载组合: 1剪力 0.00 kN, 荷载组合: 1上钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2下钢筋: 6D22+6D20, 实际面积: 4165.75mm2, 计算面积: 3900.00mm2 设计选用:上4900 mm2下3900.00mm2。

pkpm结构设计参数经典

pkpm结构设计参数经典

PKPM结构设计参数本文介绍PKPM计算软件TAT, SATWE和PMSAP的新、旧规范版本之间的变化,这同时也是新旧规范(抗震规范、高层规程、荷载规范、混凝土规范〉的条文变化。

1,.风荷载风压标准值计算公式为:WK= 3 z u s u Z肌共I21 : 3 z=l+ & v 4)z/ uz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数U E、脉动增大系数"» 影响系数u都存在减小的情况。

所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。

具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3. 2. 2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。

C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。

3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。

新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。

新增加的D类对应脉动增大系数比89规范小,约小5%到10%。

与结构的材料和形式有关。

5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0. 48、0. 53和0. 63o在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。

如C类、高度为50m、高宽比为3的建筑,u =0. 46,比89高规小28%,若为D类,则小37%o6)、结构的基本周期:脉动增大系数&与结构的基本周期有关(WoT12) o结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0. 08-1. 00)N:框剪结构、框筒结构T=(0. 06-0. 08)N:剪力墙结构、筒中筒结构T=(0. 05-0. 06)No其中N为结构层数。

SATWE参数设置总结(精)

SATWE参数设置总结(精)

1、SATWE总信息(1)结构材料信息:按主体结构材料选择“钢筋混凝土结构”,如果是底框架结构要选择“砌体结构”。

(2)混凝土容重(KN/m3): Gc=27.00,一般框架取26~27,剪力墙取27~28,在这里输入的混凝土容重包含饰面材料。

(3)钢材容重(KN/m3):Gs=78.00,当考虑饰面材料重量时,应适当增加数值。

(4)水平力的夹角(Rad):ARF=0,一般取0度,地震力、风力作用方向反时针为正。

当结构分析所得的“地震作用最大的方向”>15度时,宜按照计算角度输入进行验算。

(5)地下室层数:MBASE=1,定义与上部结构整体分析的地下室层数,无则填0 。

(6)竖向荷载计算信息:“模拟施工加载 1 ”,多层建筑选择“一次性加载”;高层建筑选择“模拟施工加载1 ”,高层框剪结构在进行上部结构计算时选择“模拟施工加载1 ”,但在计算上部结构传递给基础的力时应选择“模拟施工加载2”。

不计算竖向力:它的作用主要用于对水平荷载效应的观察和对比等。

-----一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。

因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。

-----模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。

但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。

于是就有了下一种竖向荷载加载法。

------模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算,主要适用于高层框-剪结构。

采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。

由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。

SATWE 参数设置说明

SATWE 参数设置说明

第二课 SATWE参数的设置原理[本文收集了众多资料汇编而成] 编制人QQ:11928389385 结构整体的计算分析5.1 建筑结构计算分析的步骤1 建立正确的计算模型2 合理正确设置计算参数计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。

但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。

这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。

具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。

必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。

例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。

如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。

(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。

荷载组合

荷载组合

原则上是要求采用最不利荷载情况下的组合。

对于柱这样的构件,当是小偏心构件(一般框架及框架剪力墙结构)的情况,建议你采用N;最大及其对应的M,V;当是大偏心构件的情况(排架结构),建议你采用M最大及其对应的N,V。

要点分析;1、确定基础底面积、埋深、确定桩数及裂缝时,应该采用正常使用极限状下作用的标准组合,相应的抗力应采用地基承载力特征值或单桩承载力特征值。

2、计算基础变形、筏板的偏心距e值和桩筏基础的重心校核时,应采用正常使用极限状态下的准永久组合,不应计入风荷载和地震作用,相应的限值应为地基变形允许值。

3、计算挡土墙、地基或滑坡稳定以及基础抗浮稳定时,作用效应应按承载能力极限状态下作用的基本组合,但其分项系数均为1.0。

4、在确定基础或桩基承台高度、支挡结构截面、计算基础或支挡结构内力、确定配筋和验算材料强度时,上不结构传来的作用效应和相应的基底反力、挡土墙土压力以及滑坡推力,应按承载能力极限状态下作用的基本组合,采用相应的分项系数;当需要验算基础裂缝宽度时,应按正常使用极限状态下作用的标准组合。

5、对于抗震规范所述的有些抗震建筑的基础几桩基计算,是可以不考虑地震作用的(抗震规范28页),应不考虑作用在基础上的地震组合,故应采用“恒+活”、“恒+活+风”。

首先,如果在SATWE计算选择计算地震力,在WDCNL*.OUT文件中,没有单独输出“恒+活+风”组合;其次,对于“恒+活”组合而言,在WDCNL*.OUT 也只是由可变荷载效应控制的“1.2D+1.4L”组合。

并位输出由永久荷载效应控制下的“1.35D+0.98L”组合。

而在进行基础设计时,内力设计值应该取二者的较大值。

并且在通常情况下“1.35D+0.98L”组合起控制作用,仅当楼面活荷载比值较大,即活载与恒载比值达到大于2.8的情况下,才取“1.2D+1.4L”组合。

4、对于柱下联合基础、条形基础、筏形基础、桩筏基础和箱基等联合基础及整体基础而言,采用最大组合内力做基础设计,其计算结果也不合理。

PKPM地基基础设计中荷载取值的注意事项

PKPM地基基础设计中荷载取值的注意事项

PKPM地基基础设计中荷载取值的注意事项1 引言在地基基础设计中,上部结构荷载是我们设计基础的关键,只有上部结构传至基础的荷载正确,我们的基础设计才能安全可靠,《建筑地基基础设计规范》(GB50007-2002)及《建筑抗震设计规范》(GB50011-2010)有关荷载效应组合有明确的规定。

目前许多设计人员在地基基础时,都习惯于手工计算。

对于繁多的荷载效应组合如何找出最不利的组合,是基础手工计算的难点,也是基础设计安全正确的前提。

在实际工程中,有许多设计人员习惯选定一种组合来进行基础设计,如PKPM系列中的SATWE计算结果D+L(以活荷载起控制作用的荷载组合即1.20恒+1.40活),对于以此为基础设计的荷载效应作为基础设计的成果,必须对其它荷载效应组合加以认真复核,否则有可能危及基础安全,本文现结合规范条文及工程实例,就此问题与大家共同探讨。

2 规范要求A 《建筑地基基础设计规范》(GB50007-2002)第3.0.4条地基基础设计时,所采用的荷载效应最不利组合与相应的抗力限值应按下列规定:1 按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的荷载效应应按正常使用极限状态下荷载效应的标准组合。

相应的抗力应采用地基承载力特征值或单桩承载力特征值。

2 计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用。

相应的限值应为地基变形允许值。

3 计算挡土墙土压力、地基或斜坡稳定及滑坡推力时,荷载效应应按承载能力极限状态下荷载效应的基本组合,但其分项系数均为1.0.4 在确定基础或桩台高度、支挡结构界面、计算基础或支挡结构内力、确定配筋和验算材料强度时,上部结构传来的荷载效应组合和相应的基底反力,应按承载能力极限状态下荷载效应的基本组合,采用相应的分项系数。

当需要验算基础裂缝宽度时,应按正常使用极限状态荷载效应标准组合。

建筑结构(SATWE)的总信息

建筑结构(SATWE)的总信息

建筑结构(SATWE)的总信息总信息 ..............................................结构材料信息: 钢砼结构..........按主体结构材料填写混凝土容重 (kN/m3): Gc = 28.00.....应考虑构件装修重量,建议取28kN/m3钢材容重 (kN/m3): Gs = 78.00.....一般取78kN/m3(没有计入构件装修重量)水平力的夹角 (Rad): ARF = 0.00.....一般取0(地震力.风力作用方向,反时针为正);当结构分析所得的[地震作用最大的方向]>15度时,宜将其角度输入补充验算地下室层数: MBASE= 0.....无地下室时填0竖向荷载计算信息: 按一次性加荷计算方式......多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2]风荷载计算信息: 计算X,Y两个方向的风荷载....选[计算风荷载]地震力计算信息: 计算X,Y两个方向的地震力....选[计算水平地震力],《抗规》5.1.1条(强条)特殊荷载计算信息: 不计算............一般情况下不考虑结构类别: 框架结构..........按结构体系选择裙房层数: MANNEX= 0.....无裙房时填0转换层所在层号: MCHANGE= 0.....无转换层时填0墙元细分最大控制长度(m) DMAX= 2.00.....一般工程取2.0,框支剪力墙取1.5或1.0墙元侧向节点信息: 内部节点........…..剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》是否对全楼强制采用刚性楼板假定是.............计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否]风荷载信息 ..........................................修正后的基本风压 (kN/m2): WO = 0.30 ....取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录D.4附表D.4地面粗糙程度: B 类..............有密集建筑群的城市市区选[C]类,乡村、乡镇、市郊等选[B]类,详《荷规》7.2.1条结构基本周期(秒): T1 = 0.06.....宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08~0.10)n,n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;体形变化分段数: MPART= 1.....体形无变化填1各段最高层号: NSTi = 6.....按各分段内各层的最高层层号填写各段体形系数: USi = 1.30.....《荷规》7.3.1表7.3.1;高宽比不大于4的矩形、方形、十字形平面取1.3,详见《高规》3.2.5条地震信息 ............................................振型组合方法(CQC耦联;SRSS非耦联) CQC....…..《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算计算振型数: NMODE= 9.....《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%地震烈度: NAF = 7.00.....《抗规》1.0.4条,1.0.5条,3.2.4条,附录A场地类别: KD = 2.....《抗规》4.1.6条表4.1.6(强条);见地勘报告设计地震分组: 二组........《抗规》3.2.4条,附录A特征周期 TG = 0.40.....II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1.4条表5.1.4-2(强条)多遇地震影响系数最大值 Rmax1 = 0.08.....7度取0.08,《抗规》5.1.4条表5.1.4-1(强条)罕遇地震影响系数最大值 Rmax2 = 0.50.....7度取0.50,《抗规》5.1.4条表5.1.4-1(强条)框架的抗震等级: NF = 3.....7度H≤30m取3,《抗规》6.1.2条表6.1.2(强条)剪力墙的抗震等级: NW = 2.....7度框剪取2,《抗规》6.1.2条表6.1.2 (强条)活荷质量折减系数: RMC = 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数周期折减系数: TC = 0.70.....框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条结构的阻尼比 (%): DAMP = 5.00.....砼结构一般取5.0;《抗规》5.1.5条1款;《高规》3.3.8条是否考虑偶然偏心: 否........单向地震力计算时选[是],多层规则结构可不考虑,《高规》3.3.3条;参见《手册》;是否考虑双向地震扭转效应: 是........一般工程选[是],此时可不考虑上条[偶然偏心];《抗规》5.1.1条3款(强条);《高规》3.3.2条2款(强条)斜交抗侧力构件方向的附加地震数 = 0.....无斜交构件时取0;《抗规》5.1.1条2款(强条);斜交角度>15应考虑;《高规》3.3.2条1款(强条)活荷载信息..........................................考虑活荷不利布置的层数从第 1 到6层.... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8条柱、墙活荷载是否折减不折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)传到基础的活荷载是否折减折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)---------柱,墙,基础活荷载折减系数---------.....《荷规》4.1.2条表4.1.2(强条)计算截面以上的层号------折减系数1 1.00 《荷规》4.1.2条表4.1.2(强条)2---3 0.85 《荷规》4.1.2条表4.1.2(强条)4---5 0.70 《荷规》4.1.2条表4.1.2(强条)6---8 0.65 《荷规》4.1.2条表4.1.2(强条)9---20 0.60 《荷规》4.1.2条表4.1.2(强条)> 20 0.55 《荷规》4.1.2条表4.1.2(强条)调整信息 ........................................中梁刚度增大系数: BK = 2.00......《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0 ((1+BK)/2)梁端弯矩调幅系数: BT = 0.85......主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8梁设计弯矩增大系数: BM = 1.00......放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0连梁刚度折减系数: BLZ = 0.70......一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》5.2.1条梁扭矩折减系数: TB = 0.40......现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;《高规》5.2.4条全楼地震力放大系数: RSF = 1.00......用于调整抗震安全度,取值0.85-1.50,一般取1.00.2Qo 调整起始层号: KQ1 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条0.2Qo 调整终止层号: KQ2 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条顶塔楼内力放大起算层号: NTL = 0......按突出屋面部分最低层号填写,无顶塔楼填0顶塔楼内力放大: RTL = 1.00......计算振型数为9-15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5九度结构及一级框架梁柱超配筋系数 CPCOEF91 = 1.15.....取1.15,《抗规》6.2.4条是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1.....用于调整剪重比,《抗规》5.2.5条(强条) 是否调整与框支柱相连的梁内力 IREGU_KZZB = 0.....一般不调整,《高规》10.2.7条剪力墙加强区起算层号 LEV_JLQJQ = 1.....《抗规》6.1.10条;《高规》7.1.9条强制指定的薄弱层个数 NWEAK = 0.....强制指定时选用,否则填0,《抗规》5.5.2条,《高规》4.6.4条配筋信息 ........................................梁主筋强度 (N/mm2): IB = 300......设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱主筋强度 (N/mm2): IC = 300......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙主筋强度 (N/mm2): IW = 210 .....《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋强度 (N/mm2): JB = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱箍筋强度 (N/mm2): JC = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙分布筋强度 (N/mm2): JWH = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋最大间距 (mm): SB = 100.00......《砼规》10.2.10条表10.2.10;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.3条3款(强条)柱箍筋最大间距 (mm): SC = 100.00......《砼规》10.3.2条2款;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.8条2款(强条)墙水平分布筋最大间距 (mm): SWH = 200.00......《砼规》10.5.10条;可取100-300,《抗规》6.4.3条1款(强条)墙竖向筋分布最小配筋率 (%): RWV = 0.30......《砼规》10.5.9条;可取0.2-1.2;抗震设计时应≥0.25,《抗规》6.4.3条1款(强条)设计信息........................................结构重要性系数: RWO = 1.00......《砼规》3.2.2条,3.2.1条(强条);安全等级二级,设计使用年限50年,取1.00柱计算长度计算原则: 有侧移............一般按[有侧移],用于钢结构梁柱重叠部分简化: 不作为刚域........一般不简化,《高规》5.3.4条,参见《手册》是否考虑 P-Delt 效应:否................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》5.4.1条,5.4.2条柱配筋计算原则: 按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算钢构件截面净毛面积比: RN = 0.85.....用于钢结构梁保护层厚度 (mm): BCB = 25.00.....室内正常环境,砼强度>C20时取≥25mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1柱保护层厚度 (mm): ACA = 30.00.....室内正常环境取≥30mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]荷载组合信息 ........................................恒载分项系数: CDEAD= 1.20.....一般情况下取1.2,详《荷规》3.2.5条1款(强条)活载分项系数: CLIVE= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)风荷载分项系数: CWIND= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)水平地震力分项系数: CEA_H= 1.30.....取1.3,《抗规》5.1.1条1款(强条),《抗规》5.4.1条表5.4.1(强条)竖向地震力分项系数: CEA_V= 0.50.....取0.5,《抗规》5.1.1条4款(强条),《抗规》5.4.1条表5.4.1(强条)特殊荷载分项系数: CSPY = 0.00.....无则填0,《荷规》3.2.5条注(强条)活荷载的组合系数: CD_L = 0.70.....大多数情况下取0.7,详见《荷规》4.1.1条表4.1.1(强条)风荷载的组合系数: CD_W = 0.60.....取0.6,《荷规》7.1.4条活荷载的重力荷载代表值系数: CEA_L= 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数剪力墙底部加强区信息.................................剪力墙底部加强区层数 IWF= 1 .......取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条剪力墙底部加强区高度(m) Z_STRENGTHEN= 7.00.....取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条。

SATWE荷载组合公式

SATWE荷载组合公式

SATWE荷载组合公式荷载代码Load 荷载组合公式548 SATWE标准组合:1.00*恒+1.00*活549 SATWE标准组合:1.00*恒+1.00*风x553 SATWE标准组合:1.00*恒+1.00*风y557 SATWE标准组合:1.00*恒-1.00*风x561 SATWE标准组合:1.00*恒-1.00*风y573 SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x577 SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x581 SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y585 SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y589 SATWE标准组合:1.00*恒+1.00*风x+0.70*1.00*活593 SATWE标准组合:1.00*恒-1.00*风x+0.70*1.00*活597 SATWE标准组合:1.00*恒+1.00*风y+0.70*1.00*活601 SATWE标准组合:1.00*恒-1.00*风y+0.70*1.00*活1005 SATWE标准组合:1.00*(恒+0.50*活)+1.00*地x+0.38*竖地1006 SATWE标准组合:1.00*(恒+0.50*活)-1.00*地x+0.38*竖地1007 SATWE标准组合:1.00*(恒+0.50*活)+1.00*地y+0.38*竖地1008 SATWE标准组合:1.00*(恒+0.50*活)-1.00*地y+0.38*竖地1009 SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x+1.00*地x+0.38*竖地1013 SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y+1.00*地y+0.38*竖地1017 SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x-1.00*地x+0.38*竖地1021 SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y-1.00*地y+0.38*竖地1185 SATWE准永久组合:1.00*恒+0.50*活1186 SATWE基本组合:1.20*恒+1.40*活1187 SATWE基本组合:1.35*恒+0.70*1.40*活1188 SATWE基本组合:1.20*恒+1.40*风x1192 SATWE基本组合:1.20*恒+1.40*风y1196 SATWE基本组合:1.20*恒-1.40*风x1200 SATWE基本组合:1.20*恒-1.40*风y1212 SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x1216 SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x1220 SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y1224 SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y1228 SATWE基本组合:1.20*恒+1.40*风x+0.70*1.40*活1232 SATWE基本组合:1.20*恒-1.40*风x+0.70*1.40*活1236 SATWE基本组合:1.20*恒+1.40*风y+0.70*1.40*活1240 SATWE基本组合:1.20*恒-1.40*风y+0.70*1.40*活1644 SATWE基本组合:1.20*(恒+0.50*活)+1.30*地x+0.50*竖地1645 SATWE基本组合:1.20*(恒+0.50*活)-1.30*地x+0.50*竖地1646 SATWE基本组合:1.20*(恒+0.50*活)+1.30*地y+0.50*竖地1647 SATWE基本组合:1.20*(恒+0.50*活)-1.30*地y+0.50*竖地1648 SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x+1.30*地x+0.50*竖地1652 SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y+1.30*地y+0.50*竖地1656 SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x-1.30*地x+0.50*竖地1660 SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y-1.30*地y+0.50*竖地。

Satwe里的吊车计算

Satwe里的吊车计算

Satwe里的吊车计算通常而言,带吊车的结构大多是工业厂房的排架结构,近来也多用于多层工业厂房的框架,这种可移动荷载的空间整体分析在结构设计中显的越来越重要。

目前有这种功能的计算软件很少,PKPM软件首先在TAT和SATWE中实现了吊车荷载的空间计算,这为我们结构设计提供了更先进的设计工具。

这里我们来看看在软件中怎样实现这一功能。

一.模型处理首先在PMCAD的建模中,由于吊车荷载作用在吊车柱的牛腿上,因此在牛腿处应该增设一个标准楼层,并且在沿吊车轨迹方向应定义布置框架梁,如吊车柱在吊车运行轨迹方向没有框架梁,也应把吊车梁作为两端铰接梁输入(如图一),吊车荷载的移动顺序是通过轨迹上的梁所确定的,这是吊车运行轨迹方向必须布置梁的原因。

当吊车柱之间设有交叉支撑时,必须考虑支撑的作用,这样在吊车柱的设计中,可适当减少吊车柱在支撑布置方向的长度系数。

此外,在吊车荷载作用的有牛腿的楼层一般没有楼板,所以应考虑该层的节点为"弹性节点",即不受刚性楼板假定的制约。

即使是多层工业厂房,在吊车柱的外边有楼板,也要按"弹性楼板"考虑,或者不考虑楼板的存在和作用,这样可以比较安全地求出水平刹车力对上下梁的影响。

同时由于设置了多个"弹性节点"后,结构的固有自由度增加,需要增加"计算振型个数"且振型分析也应该采用"总刚模型"分析方法。

……这样我们就可以在高层版SATWE"特殊构件补充定义"或高层版TAT"特殊荷载查看和定义"中选择"吊车荷载"定义并布置(如图三.四)。

软件要求根据吊车的形式,给出最大轮压对柱的作用及最小轮压对柱的作用,这是一个综合的作用反力,它是需要通过对吊车梁、柱的影响线分析才能得到的(如果觉得手工计算烦琐,可利用STS软件中"吊车定义"菜单功能由程序计算),不论该吊车运行轨道上有几部吊车,均按此方式给出。

罕遇地震学习随记(网上收集)

罕遇地震学习随记(网上收集)

1.选择satwe计算中的“中震或大震不屈服设计”发现默认情况下,罕遇地震影响系数为0.00计算结果是比多遇地震情况还好。

疑问中。

2.选择satwe计算中的“中震或大震不屈服设计”按照七度罕遇地震影响系数为0.5计算结果发现还是比多遇地震要好。

且数据变化不大。

3.在选择九度地震作用下看薄弱层位移角结果为1250/3=416》120可否近似考虑结构满足塑性位移角要求??4.寻找到徐培福《复杂高层》一书,找到相关资料,可以参考取罕遇地震(大震)地震影响系数为0.23导入计算看看数据结果!4-1.感谢hmx朋友,对我帮助太大!5.现在解决的办法是将罕遇地震(大震)地震影响系数为0.23填写到多遇地震地震影响系数中,初步是罕遇地震影响系数这一项是一个摆设,没有起到具体作用。

6.遗留问题,1)罕遇地震荷载组合是什么?是都是1.0组合系数吗?2)软件计算是否用材料标准值?3)是否需要修改阻尼比?4)是否计算风荷载,比较小震和大震时候需要不计算风荷载吗?中震截面抗剪验算:在中震反应作用下,不考虑内力调整的地震作用效应的内力标准组合和按照材料强度标准值计算抗震承载力。

(作用分项系数,材料分项系数和抗震承载力调整系数均为1.0)满足设计要求。

根据《安评报告》中震(50年基准周期内超越概率10%)Ⅲ类场地,Tg=0.45 αmax=0.11取个别构件补充计算:荷载组合效应:S=1.0DL+0.5LL+1.0E+0.2W注意考虑双向地震组合=Ex+0.85EyR=α*fck*b*h。

完成地震剪力验算!中震截面承载力验算:6.遗留问题,1)罕遇地震荷载组合是什么?是都是1.0组合系数吗?2)软件计算是否用材料标准值?3)是否需要修改阻尼比?4)是否计算风荷载,比较小震和大震时候需要不计算风荷载吗?解决:1)中震下地震组合,S=1.0DL+0.5LL+1.0E+0.2W(罕遇地震是否如此?)2)待定,,建议用手算复核。

3)还是0.05(初步),4)计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荷载代码Load 荷载组合公式
548 SATWE标准组合:1.00*恒+1.00*活
549 SATWE标准组合:1.00*恒+1.00*风x
553 SATWE标准组合:1.00*恒+1.00*风y
557 SATWE标准组合:1.00*恒-1.00*风x
561 SATWE标准组合:1.00*恒-1.00*风y
573 SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x
577 SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x
581 SATWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y
585 SATWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y
589 SATWE标准组合:1.00*恒+1.00*风x+0.70*1.00*活
593 SATWE标准组合:1.00*恒-1.00*风x+0.70*1.00*活
597 SATWE标准组合:1.00*恒+1.00*风y+0.70*1.00*活
601 SATWE标准组合:1.00*恒-1.00*风y+0.70*1.00*活
1005 SATWE标准组合:1.00*(恒+0.50*活)+1.00*地x+0.38*竖地
1006 SATWE标准组合:1.00*(恒+0.50*活)-1.00*地x+0.38*竖地
1007 SATWE标准组合:1.00*(恒+0.50*活)+1.00*地y+0.38*竖地
1008 SATWE标准组合:1.00*(恒+0.50*活)-1.00*地y+0.38*竖地
1009 SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x+1.00*地x+0.38*竖地1013 SATWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y+1.00*地y+0.38*竖地1017 SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x-1.00*地x+0.38*竖地1021 SATWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y-1.00*地y+0.38*竖地
1185 SATWE准永久组合:1.00*恒+0.50*活
1186 SATWE基本组合:1.20*恒+1.40*活
1187 SATWE基本组合:1.35*恒+0.70*1.40*活
1188 SATWE基本组合:1.20*恒+1.40*风x
1192 SATWE基本组合:1.20*恒+1.40*风y
1196 SATWE基本组合:1.20*恒-1.40*风x
1200 SATWE基本组合:1.20*恒-1.40*风y
1212 SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x
1216 SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x
1220 SATWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y
1224 SATWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y
1228 SATWE基本组合:1.20*恒+1.40*风x+0.70*1.40*活
1232 SATWE基本组合:1.20*恒-1.40*风x+0.70*1.40*活
1236 SATWE基本组合:1.20*恒+1.40*风y+0.70*1.40*活
1240 SATWE基本组合:1.20*恒-1.40*风y+0.70*1.40*活
1644 SATWE基本组合:1.20*(恒+0.50*活)+1.30*地x+0.50*竖地
1645 SATWE基本组合:1.20*(恒+0.50*活)-1.30*地x+0.50*竖地
1646 SATWE基本组合:1.20*(恒+0.50*活)+1.30*地y+0.50*竖地
1647 SATWE基本组合:1.20*(恒+0.50*活)-1.30*地y+0.50*竖地
1648 SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x+1.30*地x+0.50*竖地1652 SATWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y+1.30*地y+0.50*竖地1656 SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x-1.30*地x+0.50*竖地1660 SATWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y-1.30*地y+0.50*竖地。

相关文档
最新文档