第8章 原核生物基因表达调控

合集下载

《生物化学》-第八章

《生物化学》-第八章

➢ 与前述操纵子的基本组成一样,乳糖操纵子也是由结构基因和调控区组成的 ➢ 乳糖操纵子包括Z、Y和A三个结构基因 ➢ Z结构基因编码β-半乳糖苷酶,催化乳糖转变为别乳糖 ➢ Y结构基因编码半乳糖透过酶,促使半乳糖透过酶进入细菌内 ➢ A结构基因编码乙酰转移酶,催化半乳糖形成乙酰半乳糖 ➢ 调控区包括调节基因(I)、启动子(P)、操纵基因(O)及启动子上游的一个CAP结合位点,
第一节 基因表达的调控
二、基因表达调控的概念和意义
(一)基因表达调控的概念
➢ 基因表达调控是指细胞或生物体在接收内外环境信号刺激 或适应环境变化的过程中,在基因表达水平上所做出的应 答,即基因组内的基因如何被表达、表达多少等
➢ 基因表达调控大致可以在5个层次上进行,即转录前、转 录、转录后、翻译和翻译后
➢ 基因表达是指在一定的调节机制的控制下,基因组DNA经 转录、翻译等一系列过程,合成具有特异生物学功能的蛋 白质的过程
➢ 并非所有基因表达过程都产生蛋白质,rRNA、tRNA编码 基因转录生成功能型RNA的过程也属于基因表达
第一节 基因表达的调控
一、基因表达的概念、特点及方式
(二)基因表达的特点--时间特异性
5′-侧上游,主要控制整个结构基因群的转录
第一节 基因表达的调控
三、原核生物基因表达的调控
(一)操纵子的基本组成
➢ 3.操纵基因 ➢ 操纵基因是指能被阻遏蛋白特异性识别并结合
的一段DNA序列,常与启动子邻近或与启动子 序列重叠 ➢ 当阻遏蛋白结合在操纵基因上,阻遏蛋白会阻 碍RNA聚合酶与启动子结合或使RNA聚合酶 不能沿DNA链向前移动,从而阻遏转录的进行
(一)操纵子的基本组成
➢ 1.结构基因 ➢ 操纵子中被调控的编码蛋白质的基因称为结构基因 ➢ 一个操纵子中含有2个以上的结构基因,多的可达20个以上 ➢ 各结构基因头尾衔接、串联排列,组成结构基因群

原核生物基因表达调控分析

原核生物基因表达调控分析

Co-repressor
(共阻遏物)
原核生物基因表达调控方式:
负控诱导调节
负控转录调 控系统
调节基因的产物是 阻遏蛋白 (repressor), 阻止了结构基因的 转录。
阻遏蛋白与效应物(诱 导物)结合,使阻遏蛋 白失活,结构基因转录; 阻遏蛋白与效应物(辅阻 遏物)结合,使阻遏蛋白 产生活性,结构基因不转 录。
operon on operon off operon off operon on
Neg.
i- or 不加入I基因产物 I+ or 加入I基因产物
(激活蛋白)
Pos.

Repressor binding on O site 阻遏蛋白 阻止转录启动
Expressor binding front p site
安慰诱导物:
如果某种物质能够诱导细菌产生某种酶而本身又不
被分解,这种物质被称为安慰诱导物,如IPTG(异
丙基- β –D-硫代半乳糖苷)。 相反,随环境条件变化而基因表达水平降低的现象 称为阻遏(repression),相应的基因被称为可阻遏的基 因(repressible gene)。 如果某种物质能够阻止细菌产生合成这种物质的酶, 这种物质就是辅阻遏物。(合成代谢)
第一讲 原核生物基因表达 调控
主要内容
一、基因表达调控的基本概念: 二、 基因表达调控的理论与模式;
一、基因表达调控的基本概念:
1、基因表达调控的意义: 原核生物对环境的适应、对营养条件改变适应的 相关应答,都是基因表达的结果;
真核生物的细胞分化, 组织特化 , 个体发育以及 环境对个体表型的影响都是通过基因表达实现的。
组成型突变: lacOc
iC mut. (iC O+P+) constitutive mut. (组成型)

原核生物的转录与调控.ppt

原核生物的转录与调控.ppt

例如:lac基因簇(乳糖操纵子中的三个结构基因)
原核生物操纵子中的全部结构基因从同一个启动子开 始-转半录乳成糖一苷个分多解顺酶反子的mRNA分子。
-半乳糖苷透性酶
Plac
硫代半乳糖苷乙酰转移酶
二、转录水平的调控-操纵子
3. 操纵基因:是原核生物的操纵子中调节蛋白的结合 位点,为控制结构基因转录的DNA序列。
和终止的调控。
机体可以在基因表达过程的任何阶段进行调控,一般以 转录水平上的调控为主。
二、转录水平的调控-操纵子
1. 操纵子
操纵子是原核生物基因结构、表达和调控的基本形式。 一个操纵子包括一个上游的调控区和一个以上的结构基 因组成。 调控区包含启动子和操纵基因两部分。该区控制连锁在 一起的多个基因的转录。
4. 调节基因:仅指参与其他基因表达调控的RNA和蛋 白质的编码基因。
调节基因编码的调节蛋白通过与DNA上的操纵基因结 合而控制结构基因的转录,是基因表达调控的关键。
二、转录水平的调控-操纵子
5. 反式作用因子与顺式作用元件
基因表达的产物(蛋白质或RNA)从合成的场所扩散到目 标场所而发挥作用的过程称为反式作用(trans-acting), 此基因表达产物被称为反式作用因子(trans-acting factor) 。
反式作用因子通常为蛋白质或RNA,其特征为可以从合成 地扩散到目标场所发挥作用。
顺式作用元件(cis-acting factor)是指对结构基因表达 有调节活性的DNA序列,其活性只影响与其自身同处在 一个DNA分子上的基因。顺式作用元件通常不编码蛋白 质,多位于基因旁侧或内含子中。
顺式作用(cis-acting)的概念用于任一不转变为任何其 他形式的DNA序列,它只在原位发挥DNA序列的作用, 仅影响与其物理上相连的DNA序列的活性。

《原核生物基因表达调控》练习题及答案

《原核生物基因表达调控》练习题及答案

《原核生物基因表达调控》练习题及答案一、名词解释1.基因表达调控答案:所有生物的信息,都是以基因的形式储存在细胞内的DNA(或RNA)分子中,随着个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统,转变成蛋白质或功能RNA分子,执行各种生理生物化学功能。

这个从DNA到蛋白质或功能RNA的过程被称之为基因表达,对这个过程的调节称之为基因表达调控。

2.组成性基因表达答案:是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。

其基因表达产物通常是对生命过程必须的或必不可少的,一般只受启动序列或启动子与RNA聚合酶相互作用的影响,且较少受环境因素的影响及其他机制调节,也称为基本的基因表达。

3.管家基因答案:某些基因产物对生命全过程都是必须的获必不可少的。

这类基因在一个生物个体的几乎所有细胞中均表达,被称为管家基因。

4.诱导表达答案:是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。

5.阻遏表达答案:是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。

6.反式作用因子答案:又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。

它们由某一基因表达后通过与特异的顺式作用元件相互作用,反式激活另一基因的转录。

7.操纵子答案:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。

8.SD序列答案:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16S rRNA 3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。

根据首次识别其功能意义的科学家命名。

9.阻遏蛋白答案:是一类在转录水平对基因表达产生负控作用的蛋白质,在一定条件下与DNA结合,一般具有诱导和阻遏两种类型。

在诱导类型中,信号分子(诱导物)使阻遏蛋白从DNA释放下来;在阻遏类型中,信号分子使阻遏蛋白结合DNA,不管是哪一种情况,只要阻遏蛋白与DNA结合,基因的转录均将被抑制。

原核生物基因表达调控

原核生物基因表达调控

Repressor
cAMP
CAP
葡萄糖不存在,乳糖存在,阻遏蛋白失活,cAMP+CAP与CAP位点结合结合,促进基因转录
The Lac Operon: III. 葡萄糖和乳糖都存在
Repressor
RNA Pol.
CAP Bindin
g
Promoter
Operator X
LacZ
Repressor负调节与正调节协调合作
• 阻遏蛋白封闭转录时,CAP不发挥作用 • 如没有CAP加强转录,即使阻遏蛋白从操作基因上解聚仍无转录活性
3)正调控和负调控
正调控(positive control)
在没有调节蛋白质存在时基因是关闭的,加入某种调节蛋白后基因活性就被开启,这样的调控为正转录 调控。
调节基因
操纵基因
结构基因
调节蛋白
mRNA 酶蛋白
负调控(negative control)
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调 控负转录调控。
2)结构基因和调节基因
➢ 组成基因/管家基因(constitutive gene, housekeeping gene)是指不大受环境变动而持 续表达的一类基因。如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的基因 。 ➢调节基因(regulated gene)指环境的变化容易使其表达水平变动的一类基因。如:不同生 长发育时期表达的一些基因。
• 别乳糖是lac操纵子转录的活性诱导物 • 异丙基硫代半乳糖苷(isopropyl thiogalactoside:IPTG)结构上类似于别乳糖,是乳糖操纵
子非常有效的诱导物。可诱导lac操纵子表达,但不能被β-半乳糖苷酶水解。 • 这种能诱导酶合成,但不能被酶分解的分子称为安慰诱导物(gratuitous inducer)。安慰诱导

原核生物基因表达的调控

原核生物基因表达的调控

操纵子学说的基本内容
1961年,法国科学家莫诺(J·L·Monod,1910-1976)与雅可布 (F·Jacob)发表“蛋白质合成中的遗传调节机制”一文,提出操纵子学 说,开创了基因调控的研究。四年后的1965年,莫诺与雅可布即荣获诺贝 尔生理学与医学奖。
莫诺与雅可布最初发现的是大肠杆菌的乳糖操纵子。这是一个十分巧妙的 自动控制系统,这个自动控制系统负责调控大肠杆菌的乳糖代谢。 乳糖可作为培养大肠杆菌的能源。大肠杆菌能产生一种酶(叫做“半乳糖 苷酶”),能够催化乳糖分解为半乳糖和葡萄糖,以便作进一步的代谢利 用。编码半乳糖苷酶的基因(简称z)是一个结构基因(structural gene)。这个结构基因与操纵基因共同组成操纵子。操纵基因受一种叫作 阻遏蛋白的蛋白质的调控。当阻遏蛋白结合到操纵基因之上时,乳糖会起 诱导作用,它与阻遏蛋白结合,使之从操纵基因上脱落下来。这时,操纵 基因开启,相邻的结构基因也表现活性,细菌就能分解并利用乳糖了,这 样,乳糖便成了诱导半乳糖苷酶产生的诱导物。
原核生物基因表达的调控
基因调控
生物体内的每个细胞都有全套的基因,但细胞中的基因并不是同 时表达的。因细胞的类型和执行的功能不同,细胞中有的基因开 启,有的基因关闭,如血红蛋白基因只在红细胞中表达,消化酶 只在消化腺细胞中表达。这其中存在着复杂的基因调控。 某些基因不断地进行转录和翻译,产生出各种蛋白质,通常称之 为基因表达。每个细胞都有一套完整的基因调控系统,使各种蛋 白质只有在需要时才被合成,这样就能使生物适应多变的环境, 防止生命活动中的浪费现象和有害后果的发生,保持体内代谢过 程的正常状态。但是,原核细胞和真核细胞的基因调控有着明显 的区别。 原核细胞表达的基因调控,比真核细胞要相对简单,这里以大肠 杆菌乳糖操纵子为例来说明。

生物学原核生物基因表达的调控

生物学原核生物基因表达的调控
目录
第二节
原核生物基因表达的 转录水平调控
Regulation of Prokaryotic Gene Expression at Transcription Level
目录
一、转录调控是以特定的DNA序列和蛋 白质结构为基础
(一)特定的DNA序列是转录起始调控的结构基础
在基因内和基因外都有一些特定的DNA序列,与结 构基因表达调控相关、能够被基因调控蛋白特异性识别 和结合,这些特定的DNA序列称为顺式作用元件(cisacting elements),亦称为顺式调控元件。在原核生物 中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合 位点、增强子等。
transcription
RNA 5'-AGGUCCACG········-3'
启动子及其与转录的关系 ···
目录
(二)阻遏蛋白结合操纵元件对转录起 始进行负调控
阻遏蛋白是一类在转录水平对基因表达产生负 调控作用的蛋白质。阻遏蛋白主要通过抑制开放启 动子复合物的形成而抑制基因的转录。阻遏蛋白与 DNA结合后,RNA聚合酶仍有可能与启动子结合, 但不能形成开放起始复合物,不能启动转录;这种 作用称为阻遏(repression),特定的信号分子与阻 遏蛋白结合,使阻遏蛋白失活,从DNA 上脱落下来, 称为去阻遏,或脱阻遏(derepression)。
usually binds to CAAT box
目录
二、特定蛋白质与DNA结合后控制 转录起始
(一)σ因子和启动子决定转录是否能够起始
-35
-10
+1
5'-TAGTGTATTGACATGATAGAAGCACTCTACTATATTCTCAATAGGTCCACG············-·3·'

第八章-原核生物基因的表达调控-2

第八章-原核生物基因的表达调控-2

调控结构:启动子、操纵子、前导序列、弱化子; 调控结构:启动子、操纵子、前导序列、弱化子; 阻遏物trpR基因:与trp操纵子相距较远; 基因: 操纵子相距较远; 阻遏物 基因 操纵子相距较远
• 2.色氨酸操纵子的负调控: 色氨酸操纵子的负调控: 色氨酸操纵子的负调控
阻遏调控: ⑴. 阻遏调控: trpR基因编码无辅基阻遏物 基因编码无辅基阻遏物 与色氨酸 结合 形成有活性的色氨酸阻遏物 与操作 阻止转录; 子结合 阻止转录; 色氨酸不足: 色氨酸不足:阻遏物三维空间结构发生变 不能与操作子结合,操纵元开始转录; 化 ,不能与操作子结合,操纵元开始转录; 色氨酸浓度升高:色氨酸与阻遏物结合, 色氨酸浓度升高:色氨酸与阻遏物结合, 空间结构发生变化,可与操作子结合, 空间结构发生变化,可与操作子结合,阻止转 录。
另一方面,若外源色氨酸浓度实在太低, 另一方面,若外源色氨酸浓度实在太低,细 菌本身又没有其他的内源性色氨酸合成体系, 菌本身又没有其他的内源性色氨酸合成体系, 以致细菌难以支持自身的生长时, 以致细菌难以支持自身的生长时,就需要有衰 减体系加以调节——通过不终止 通过不终止mRNA的合成 减体系加以调节 通过不终止 的合成 来增加Trp酶的合成从而提高内源色氨酸的浓 酶的合成从而提高内源色氨酸的浓 来增加 度。
就像在色氨酸操纵子中, 就像在色氨酸操纵子中,阻遏作用与衰减机制 一起协同控制其基因表达, 一起协同控制其基因表达,显然比单一的阻遏 负调控系统更为有效。 负调控系统更为有效。 一方面, 一方面,当有活性的阻遏物向无活性阻遏 物的转变速度极低时.衰减系统能更迅速地作 物的转变速度极低时. 出反应, 出反应,使色氨酸从较高浓度快速下降到中 等浓度;色氨酸密码子时 由于 如缺乏色氨酸, 如缺乏色氨酸 没有色氨酰tRNA的供应 停留在该密码子位置, 没有色氨酰 的供应 停留在该密码子位置,位 于区段1 使区段2与区段 与区段3配对 区段4无对应序 于区段 使区段 与区段 配对 区段 无对应序 聚合酶通过弱化子, 列配对呈单链状态 RNA聚合酶通过弱化子,继续向 聚合酶通过弱化子 前移动,转录出完整的多顺反子序列。 前移动,转录出完整的多顺反子序列。

原核生物的基因表达与调控

原核生物的基因表达与调控
汇报人:
非编码RN的作用
参与基因表达调 控:非编码RN 可以调控基因的 表达影响蛋白质 的合成
参与转录后调控: 非编码RN可以 参与转录后的调 控影响mRN的 稳定性和翻译效 率
参与翻译调控: 非编码RN可以 参与翻译调控影 响蛋白质的合成 和翻译后修饰
参与表观遗传调 控:非编码RN 可以参与表观遗 传调控影响基因 的表达和功能

翻译起始调控: 包括正调控和 负调控影响翻
译效率
正调控:包括 启动子、增强 子等促进翻译
起始
负调控:包括 沉默子、终止 子等抑制翻译
起始
翻译延伸的调控
核糖体:蛋白质合成的场 所
起始密码子:蛋白质合成 的起始点
终止密码子:蛋白质合成 的终止点
延伸因子:参与蛋白质合 成的延伸过程
释放因子:参与蛋白质合 成的释放过程
时序调控机制的研究进展
发现基因表达调控的时序性
研究基因表达调控的调控网络
研究基因表达调控的机制 发现基因表达调控的调控因子
研究基因表达调控的调控机制在原核生物 中的作用
研究基因表达调控的调控机制在原核生物 中的调控机制
07
原核生物基因表达调控的应用前景
基因工程与合成生物学中的应用
基因工程:通过基因重组 技术将外源基因导入原核 生物实现基因表达调控
合成生物学:通过设计、 构建和优化基因回路实现 原核生物的基因表达调控
生物制药:利用原核生物 基因表达调控技术生产药 物、疫苗等
生物能源:利用原核生物 基因表达调控技术生产生 物燃料如乙醇、生物柴油 等
环境保护:利用原核生物 基因表达调控技术降解污 染物实现环境修复
农业:利用原核生物基因 表达调控技术改良作物品 种提高作物抗病、抗虫、 抗逆能力

原核生物基因表达调控概述

原核生物基因表达调控概述

原核生物基因表达调控概述基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。

2.原核基因表达调控特点原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。

这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。

调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。

细菌的转录和翻译过程几乎在同一时间内相互偶联。

细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。

这种蛋白质合成及其基因表达的控制称为翻译水平的调控。

二.原核生物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够广泛适应变化的环境条件。

这些条件包括营养、水分、溶液浓度、温度,pH等。

而这些条件须通过细胞内的各种生化反应途径,为细胞生长的繁荣提供能量和构建细胞组分所需的小分子化合物。

(2)顺式作用元件和反式作用元件基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。

反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。

RNA聚合酶是典型的反式作用因子。

基因的表达与调控

基因的表达与调控

No RNA
R-
1 No RNA R-
No RNA
RNA
RNA
RNA
RNA
No RNA
No RNA
1
21
2
2
32
3
3、基因的微细结构
20世纪50年代的生化技术还无法进行DNA的序列 测定,本泽尔利用经典的噬菌体突变和重组技术, 对T4噬菌体rⅡ区基因的微细结构进行了详细分析。
野生型T4噬菌体 可侵染B株和K12株 噬菌斑小而模糊
功能上被互补(顺反)测验所规定的核苷酸 序列。
假定有两个独立起源的隐性突变,如a1与a2,它 们具有类似的表型。
如何判断它们是属于同 一个基因的突变,还是分 别属于两个基因的突变? 即如何测知它们是否是等 位基因?
二、基因的微细结构
1、互补作用与互补测验(顺反测验)
需要建立一个双突变杂合二倍体,测定这两个突 变间有无互补皱粒表现型是由于缺少了淀粉档分享dnagtacatcatgtacttgaaacttgacctggagaacttgaacttaaatttmrna密码子guacaucuuacuccugaagaaaaa氨基酸dnagtacatmrna密码子gua氨基酸dnaaaatttmmrna密码根据红色面包霉的研究提出了一个基因一个酶的假说后来又被修改为一个基因种多肽链
Enzymes
B
CAP
G
R
ZY A
a
b
P
X
在有葡萄糖存在时,不能形成cAmp,也就不能 形成正调控因子cAmp-CAP,因此,基因不表达。
目前,通过遗传分析证明了lac操纵元的存在; 已经分离出阻遏蛋白,并成功地测定了阻遏蛋白 的结晶结构,以及阻遏蛋白与诱导物及操纵子序 列结合的结构。

原核生物基因表达的调控

原核生物基因表达的调控

原核生物基因表达的调控一、名词解释1、Operon操纵子:一个或几个结构基因与一个调节基因和一个操纵基因,加上启动子构成一个操纵单元,这个单元称为操纵子。

在操纵子中,结构基因产生mRNA并作为模板合成蛋白质;而调节基因则产生一种阻遏蛋白与操纵基因相互作用;阻遏蛋白与操纵基因结合从而阻碍了结构基因转录成为mRNA;在诱导过程中,诱导物通过与阻遏蛋白相结合而阻止阻遏蛋白与操纵基因结合。

2. CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein )3.Attenuator弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。

4. 魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。

产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。

PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。

5. 上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TA TA、-35区的TGACA及增强子,弱化子等。

二、填空题1.启动子中的元件通常可以分为两种:()和()。

2. 因表达正调控系统中,加入调节蛋白后,基因表达活性被,这种调节蛋白被称为。

在负调控系统中,加入调节蛋白后,基因表达活性被,这种调节蛋白被称为。

3. 糖对细菌有双重作用;一方面();另一方面()。

所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。

有G时转录从()开始,无G时转录从()开始。

三、选择题1、如果在没有----- -----存在时基因是表达的,加入这种----- ----后,基因的活性被关闭,这种控制系统叫做负调控系统。

原核生物的基因表达调控

原核生物的基因表达调控

经常需要激活蛋白
经常受到阻遏
鼠伤寒沙门氏菌相变的分子机制
在转录水平的调控
转录起始阶段的调控 (1)不同σ因子的选择性使用 (2)操纵子调控模型 (3)几种重要的操纵子
转录终止阶段的调控 (1)抗终止作用 (2)弱化
不同σ因子的选择性使用
原核生物识别启动子序列的是σ因子。不同的σ 因子可识别不同的启动子序列,E. coli主要使 用σ70。在特殊的条件下,其它类型的σ因子被 表达或被激活。这些新的σ因子识别的是其它 类型的启动子,其一致序列不同于σ70所识别的 启动子,从而指导RNA pol启动一些新基因的 表达。这样的调控系统使有机体能够对在特定 条件下需要表达的多个基因进行统一的调控。
大肠杆菌半乳糖操纵子模型
乳糖操纵子三个阻遏蛋白结合位点的结构特征及其作用
乳糖操纵子的正调控
葡萄糖效应——在有葡萄糖存在时,细菌优先利用环 境中的葡萄糖,即使有诱导物乳糖的存在,乳糖操纵 子也处于被抑制的状态,直到葡萄糖被消耗完后才能 解除抑制,这时细菌才开始利用乳糖进行生长。这说 明乳糖的存在仅仅是乳糖操纵子开放的必要条件,但 还不是充要条件。
乳糖苷酶,催化很少一部分乳糖异构化为别乳糖,绝 大多数乳糖水解为半乳糖和葡萄糖;lacY基因编码半 乳糖透过酶,其功能是使环境中的β-半乳糖苷能透过 细胞壁和细胞膜进入细胞内;lacA基因编码转乙酰基 酶右。,转按录lac时Z→,lRacNYA→聚la合cA酶方首向先进与行P转lac录结,合每,次通转过录lac出O来向 的一条mRNA上都带有这3个基因。
乳糖操纵子的负调控 乳糖操纵子的正调控
β-半乳糖苷酶催化的水解和异构化反应
葡萄糖效应和乳糖诱导
乳糖对乳糖代谢酶的诱导
如果供大肠杆菌生长的培养基中没有乳糖,那么细胞 内参与乳糖分解代谢的三种酶,即β-半乳糖苷酶、乳 糖透过酶和巯基半乳糖苷转乙酰酶很少,如每个细胞 的β-半乳糖苷酶的平均含量只有0.5个~5个。可是一旦 在培养基中加入乳糖或某些乳糖的类似物,则在几分 钟内,每个细胞中的β-半乳糖苷酶分子数量骤增,可 高达5 000个,有时甚至可占细菌可溶性蛋白的 5%~ 10%。与此同时,其它两种酶的分子数也迅速提高。 由此可见,新合成的β-半乳糖苷酶、透过酶和乙酰化 酶由底物乳糖或其类似物直接诱导产生,乳糖及其相 关类似物被称为诱导物。

原核生物基因表达调控

原核生物基因表达调控

20
同位素示踪实验
把大肠杆菌细胞放在加有放射性35S标记的氨基酸,但没 有半乳糖诱导物的培养基中繁殖几代然后再将这些带有 放射活性的细菌转移到不含35S、无放射性的培养基中 随着培养基中诱导物的加入, β-半乳糖苷酶便开始合成。 分离β-半乳糖苷酶, 发现这种酶无35S标记说明酶的合 成不是由前体转化而来的, 而是加入诱导物后新合成的。
• Jacob和Monod认为诱导酶(他们当时称为适应酶)
现象是个基因调控问题, 可以用实验方法进行研究, 因此
选为突破口, 终于通过大量实验及分析, 于1961年建立
了该操纵子的控制模型。
-
21
酶的诱导
-
22
• 酶的诱导现象是生物进化过程中出现的一种合理、 经济地利用有限资源的本能。
• 酶诱导已证明是低等生物的普遍现象。
倒位片段
鼠伤寒沙门菌鞭毛素基- 因的调节
H1鞭毛素
10
鼠伤寒沙门氏菌(S.typhimrium)的相转变(phase variation)
-
11
2.σ 因子对原核生物转录起始的调控
σ因子:原核生物RNA聚合酶的一个亚基,是转录起 始所必需的因子,主要影响RNA聚合酶对转录起始 位点的正确识别,这种σ因子称σ70,此外还有分子量 不同,功能不同的其他σ因子 。
PO
操纵子可视为原核生物的转录单位,它可以逐个
地从原核生物基因组中分离出来,对其结构功
能加以研究。
-
15
3.乳糖操纵子
1) 乳糖操纵子的结构
启动子 操纵基因
调节蛋白
(阻遏蛋白)
-
结构基因
16
3个编码的结构基因
• Z编码β-半乳糖苷酶: 将乳糖水解成葡萄糖和半乳糖,还能 将乳糖转变为异构乳糖

原核生物基因表达调控的方式

原核生物基因表达调控的方式

原核生物基因表达调控的方式
1.DNA、染色体水平调控:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。

2.转录水平调控(主要调控方式):转录起始、延伸、终止均有影响。

原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。

3.转录后水平调控:主要指真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。

4.翻译水平调控:对mRNA稳定性的调控、反义RNA对翻译水平的调控等。

5.翻译后水平调控:蛋白质的剪切、化学修饰(磷酸化、乙酰化、糖基化等)、转运等。

6.mRNA降解的调控。

原核生物基因表达调控概述

原核生物基因表达调控概述

原核⽣物基因表达调控概述原核⽣物基因表达调控概述基因表达调控是⽣物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义在⽣命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋⽩质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,⽽与⽣物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭⽽不来表达。

2.原核基因表达调控特点原核⽣物基因表达调控存在于转录和翻译的起始、延伸和终⽌的每⼀步骤中。

这种调控多以操纵⼦为单位进⾏,将功能相关的基因组织在⼀起,同时开启或关闭基因表达即经济⼜有效,保证其⽣命活动的需要。

调控主要发⽣在转录⽔平,有正、负调控两种机制在转录⽔平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋⽩质因⼦及其他⼩分⼦配基的相互作⽤。

细菌的转录和翻译过程⼏乎在同⼀时间内相互偶联。

细胞要控制各种蛋⽩质在不同时期的表达⽔平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是⼀条经济的途径,可减少从mRNA合成蛋⽩质的⼩分⼦物质消耗,这是⽣物长期进化过程中⾃然选择的结果,这种控制称为转录⽔平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括⼀些与翻译有关的酶及其复合体分⼦缔合的装配速度等过程。

这种蛋⽩质合成及其基因表达的控制称为翻译⽔平的调控。

⼆.原核⽣物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够⼴泛适应变化的环境条件。

这些条件包括营养、⽔分、溶液浓度、温度,pH等。

⽽这些条件须通过细胞内的各种⽣化反应途径,为细胞⽣长的繁荣提供能量和构建细胞组分所需的⼩分⼦化合物。

(2)顺式作⽤元件和反式作⽤元件基因活性的调节主要通过反式作⽤因⼦与顺式作⽤元件的相互作⽤⽽实现。

反式作⽤因⼦的编码基因与其识别或结合的靶核苷酸序列在同⼀个DNA分⼦上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构基因
I
P
O
控制基因
Z
Y
A
Z: β-半乳糖苷酶 Y: 透酶
启动子 阻遏基因
A:乙酰基转移酶
Lac操纵子P、O区的重叠
乳糖操纵子模型
• Z、Y、A基因的产物为一条多顺反子mRNA
lacZ:编码β-半乳糖苷酶,它可以将乳糖水解为 半乳糖和葡萄糖; lacY:编码半乳糖苷透性酶,它能将乳糖运送透 过细菌的细胞壁; lacA:编码硫代半乳糖苷乙酰转移酶,进行乳糖 代谢。
I基因:决定细胞对诱导物的反应。
• 1961年, F. Jacob & J.Monod提出乳糖操纵子学 说, 此后不断完善。1965年获诺贝尔生理学和医 学奖。
Jacques Monod
2018/9/18
Francis Jacob
32
一、乳糖操纵子(lac operon)的结构与 组成
调控区 DNA
β -半乳糖苷酶
透性酶
乙酰转移酶
图 16-7 操纵基因发生组成型突变,操纵子组成型表达
Inactive repressor lacI - gene sythesizes defective repressor that does not bind to DNA
lacI-
Operon is transcribed and translated Operantor
16
2018/9/18
17
四、原核生物基因表达调控机制
1 代谢产物对基因活性的调节
一些基因的特殊代谢产物对基因活性的调节具 有诱导或阻遏作用。
一些基因在特殊的代谢物或化合物的作用下,由 原来关闭的状态转变为工作状态,即在某些物质 的诱导下使基因活化. 如乳糖操纵子,调节分解代谢的操纵子,同时受 cAMP-CAP的活性调节
阻抑蛋白
三、原核生物基因表达调控的几个重要概念
• 结构基因:编码细胞结构和基本代谢活动所必要的 RNA和蛋白质的基因。 • 调节基因:编码合成那些参与基因表达调控的RNA和 蛋白质的特异DNA序列。调节基因编码的调节物通过 与DNA上的特定位点结合控制转录是调控的关键。 • 顺式作用元件(cis-acting elements):调节基因表达的 DNA序列。 • 反式作用因子(trans-acting factors):调节基因表达 的蛋白质因子,可直接或间接结合顺式作用元件。
前导mRNA
1
2
3
4
UUUU……
trp 密码子
终止密码子
14aa前导肽编码区 : 包含序列1 UUUU…… 衰减子结构 UUUU…… 第10、11密码子为trp密码子 UUUU…… 形成发夹结构能力强弱: 序列1/2>序列2/3>序列3/4
(a) 正常 5’
1 trpL
2
3
4
trpE
trp mRNA 寡聚U区
Catabolite gene activation protein site
5’ CACTCGATTGAGTGTAATTA T C A T T A RNA polymerase binding region or promoter region G G CACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGAGCGGA T -10 site -35 site Operon region A A 5’ TATAAT 3’ 20bp C Pribnow box A A T T T C A C A C
乳糖操纵子的结构基因及其表达产物
二、酶的诱导-lac体系受调控的证据
1 实验证据
在不含乳糖及β -半乳糖苷的培养基中,lac+基因 型每个大肠杆菌细胞内大约只有1~2个酶分子。 如果在培养基中加入乳糖,酶的浓度很快达到细 胞总蛋白量的6%或7%,每个细胞中可有超过105个 酶分子。
H HO OH H CH2OH HO H CH2OH HO H OH H H OH H H H CH2OH O O OH H H H H OH H H OH OH H O O CH2 H
高半乳糖时
RNA-pol
O
葡萄糖高 cAMP浓度低
O
mRNA
O
O
二、阻遏蛋白的作用机制
阻遏基因
DNA
I
pol P
O
Z
Y
A
mRNA
弱启动子控制的 组成型合成
阻遏蛋白
Helix-turn-helix
1 51
Core domain1 Core domain2 80 360 Inducer binding Oligomerization
OH H H O OH
别乳糖

O OH
H2O CH 2OH H H OH HO H OH H H O OH HO H CH2OH O OH OH H H OH H H

葡萄糖
半乳糖
图 16- 乳糖分解的不同产物
(1)Lac阻遏物的作用---负调控
阻遏基因 DNA
I
pol P
O
Z
Y
A
mRNA
阻遏蛋白
• 降解物对基因活性的调节
• 葡萄糖通过降低cAMP的含量而抑制基因表达
4 细菌的应急反应
• 细菌的应急反应指细菌在恶劣生长环境中关闭 tRNA和核糖体形成的能力。

焦磷酸 细菌的应急反应的机制 转移酶
应急信号:
鸟苷四磷酸(ppGpp)、
鸟苷五磷酸(pppGpp)
诱导物:空载tRNA
第二节 乳糖操纵子
RNA聚合酶 结构基因
前导mRNA
2 3 2 4
5’
核糖体 1
3
UUUU…… UUUU……
4
前导肽
trp 密码 子
序列3、4不能形成衰减子结构 2.当色氨酸浓度低时
3 降解物对基因活性的调节
• 葡萄糖效应(降解物抑制作用) 是指当葡萄糖和其它糖类一起作为细菌 的碳源时葡萄糖总是优先被利用,葡萄糖的 存在阻止了其它糖类的利用的现象。
2 弱化子对基因活性的影响
• 弱化子:在操纵基因与结构基因之间的一段可以终止
转录作用的核苷酸序列。当操纵子被阻遏时,RNA合 成被终止,这段核苷酸序列起终止转录信号作用。
RNA聚合酶 UUUU……
•起调节作用的是某种氨酰-tRNA的浓度

弱化子作用机制
调节区
trpR
结构基因
P
O 前导序列 衰减子区域
2018/9/18 14
2018/9/18
15
• 负调控(negative regulation)
与缺乏调控因子时比较,若调控因子使基因的表 达水平下降,甚至关闭,调控因子称阻遏蛋白 (repressor) • 负调控可分为:
• 可诱导的负调控系统 • 阻遏蛋白与操纵基因结合,可阻止结构基因的转 录,但有诱导物时,它与阻遏蛋白结合从而解除 对结构基因转录的抑制。 • 可阻遏的负调控系统 • 阻遏蛋白不影响结构基因的转录,但它与辅阻遏 物结合后,抑制结构基因的转录。 2018/9/18
有葡萄糖: cAMP ( 不促进转录)
•代谢物阻遏效应
•研究认为葡萄糖的某些降解产物抑制lac mRNA的 合成,这种效应称之为代谢物阻遏效应。
葡 萄 糖 效 应
有葡萄糖, cAMP 浓度低时
CAP
I
RNA P pol
O
Z
Y
A
CAP
I
RNA P pol
O
Z
Y
A
Primary structure of lac operon regulation region
二、原核生物基因表达调控的特点与方式
(1)原核生物基因表达调控包括在DNA水平、转录 水平、转录后水平和翻译水平,但转录水平的调节 是最有效、最经济的方式,也是最主要的调节方式。 (2)原核生物基因的表达调控多以操纵子为单位进 行,即将功能相关的基因组织在一起,同时开启或 关闭基因表达。 (3)基因调控的模式可分成两大类,正调控和负调 控,原核生物以负调控为主。
1 时间特异性 按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。 多细胞生物基因表达的时间特异性又称阶 段特异性(stage specificity)。
2 空间特异性(spatial specificity)
• 在个体生长全过程,某种基因产物在个体 按不同组织空间顺序出现,称之为基因表达的 空间特异性(spatial specificity)。 • 基因表达伴随时间顺序所表现出的这种分 布差异,实际上是由细胞在器官的分布决定的, 所以空间特异性又称细胞或组织特异性 (cell or tissue specificity)。
2018/9/18
没有乳糖存在时
40
有乳糖存在时 DNA
I
P pol
O
Z
Y
A
mRNA
mRNA
启动转录
阻遏蛋白 异乳糖 乳制系统
42
(2)CAP的正性调节
CAP RNA 聚 合 酶 结 合
-35 cAMP
-10
0
[
O
( 促进转录)
无葡萄糖: cAMP
DNA binding Hinge
图 16- 阻遏蛋白单体的结构和功能
• 阻遏蛋白结构具有对称性,是相同亚基构成 的四聚体。
O c mutant operantor
cannot bind to
Active repressor
Operon is transcribed and translated lacI O c operantor
相关文档
最新文档