数学思想方法介绍ppt课件
合集下载
初中数学专题ppt课件

(3 2+3 6)
解:解析:如图所示:△BCD 是等腰直角三角形,
△ACD 是等边三角形,在 Rt△BCD 中,
CD= BC2+BD2=6 2 cm,∴BE=12CD=3 2 cm,在 Rt△ACE 中,AE
= AC2-CE2=3 6 cm,∴从顶点 A 爬行到顶点 B 的最短距离为(3 2+3 6)
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所 在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思 想和方法,培养用数学思想方法解决问题的意识.
2
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培 养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转 化思想、方程与函数思想、数形结合思想、分类讨论思想等.
初中数学专题
数学思想方法
1
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问 题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与 能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次 上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.
求代数式的值.
10
[对应训练]
.(·龙岩)若-=π,则-+π=.
π
11
转化思想
【例 2】 (2015·深圳)解方程:2xx-3+3x5-2=4. 解:去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得: 3x2-2x+10x-15=24x2-52x+24,即 7x2-20x+13=0,分解因式
直线与△的边相交于,两点.设线段的长度为,平移时间为,则下图中能较好反
映与的函数关系的图象是(
解:解析:如图所示:△BCD 是等腰直角三角形,
△ACD 是等边三角形,在 Rt△BCD 中,
CD= BC2+BD2=6 2 cm,∴BE=12CD=3 2 cm,在 Rt△ACE 中,AE
= AC2-CE2=3 6 cm,∴从顶点 A 爬行到顶点 B 的最短距离为(3 2+3 6)
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所 在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思 想和方法,培养用数学思想方法解决问题的意识.
2
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培 养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转 化思想、方程与函数思想、数形结合思想、分类讨论思想等.
初中数学专题
数学思想方法
1
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问 题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与 能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次 上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.
求代数式的值.
10
[对应训练]
.(·龙岩)若-=π,则-+π=.
π
11
转化思想
【例 2】 (2015·深圳)解方程:2xx-3+3x5-2=4. 解:去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得: 3x2-2x+10x-15=24x2-52x+24,即 7x2-20x+13=0,分解因式
直线与△的边相交于,两点.设线段的长度为,平移时间为,则下图中能较好反
映与的函数关系的图象是(
[复习]小学数学思想方法教学案例分析PPT课件
![[复习]小学数学思想方法教学案例分析PPT课件](https://img.taocdn.com/s3/m/909a50d925c52cc58ad6be9d.png)
、分而治之的目的。
新课程的第一册就安排一个单元—分类。
27
5、化归思想
感性体验
“正面突破”,使 学生明白其含义,
掌握程序
创造应用 的机会
14
二、谈几种数学思想和方 法
小学数学教材中蕴含的数学思想和方法有:集合思想 、符号化思想、对应思想、化归思想、统计思想、函 数思想、分类思想、模型思想、分析法、综合法、归 纳法、类比法、数形结合法、假设法、转化法等。
15
自始至终要渗透的有: 集合思想、符号化思想、统计思想、化归思
小学数学思想方法教学案 例分析
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
什么因素影响着观察的结果呢?
3
用“瓜”组词三个 :
• 瓜的种类:南瓜、冬瓜、西瓜…… • 把瓜剖开看到:瓜皮、瓜瓤、瓜子 • 瓜的生长过程:瓜苗、瓜叶、瓜藤 • 种瓜的地方:瓜田、瓜地、瓜棚 • 与瓜有关的人:瓜农、瓜贩 • 与瓜有关的动作:摘瓜、运瓜、切瓜 • 瓜的副产品:瓜饼、瓜灯、瓜雕 • 骂人的词语:傻瓜、笨瓜
加快了数学思维的速度。
有数字符号、运算符号、关系符号、单位符号 、约定符号等。
22
单位符号:
一年级下册:厘米(cm)、米(m) 二年级下册:分米(dm)、毫米(mm)、千米(km)
三年级上册:千克(kg)、克(g)、吨(t) 三年级下册:平方米(㎡ ) 、平方分米 (d㎡ )、
平方厘米(c㎡ ) 五年级下册:立方厘米(cm3)、立方分米(dm3)、
4
• ……
•
“哈佛小子”林书豪最近在全世界刮
起一股“林来疯”。
新课程的第一册就安排一个单元—分类。
27
5、化归思想
感性体验
“正面突破”,使 学生明白其含义,
掌握程序
创造应用 的机会
14
二、谈几种数学思想和方 法
小学数学教材中蕴含的数学思想和方法有:集合思想 、符号化思想、对应思想、化归思想、统计思想、函 数思想、分类思想、模型思想、分析法、综合法、归 纳法、类比法、数形结合法、假设法、转化法等。
15
自始至终要渗透的有: 集合思想、符号化思想、统计思想、化归思
小学数学思想方法教学案 例分析
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
什么因素影响着观察的结果呢?
3
用“瓜”组词三个 :
• 瓜的种类:南瓜、冬瓜、西瓜…… • 把瓜剖开看到:瓜皮、瓜瓤、瓜子 • 瓜的生长过程:瓜苗、瓜叶、瓜藤 • 种瓜的地方:瓜田、瓜地、瓜棚 • 与瓜有关的人:瓜农、瓜贩 • 与瓜有关的动作:摘瓜、运瓜、切瓜 • 瓜的副产品:瓜饼、瓜灯、瓜雕 • 骂人的词语:傻瓜、笨瓜
加快了数学思维的速度。
有数字符号、运算符号、关系符号、单位符号 、约定符号等。
22
单位符号:
一年级下册:厘米(cm)、米(m) 二年级下册:分米(dm)、毫米(mm)、千米(km)
三年级上册:千克(kg)、克(g)、吨(t) 三年级下册:平方米(㎡ ) 、平方分米 (d㎡ )、
平方厘米(c㎡ ) 五年级下册:立方厘米(cm3)、立方分米(dm3)、
4
• ……
•
“哈佛小子”林书豪最近在全世界刮
起一股“林来疯”。
高中数学思想方法及案例分析ppt课件

32
(5)函数与映射思想
对应是人的思维对两个集合间问题联系的 把握,是现代数学的一个最基本的概念。 函数思想是指用运动、变化、联系、对应 的观点,分析数学与实际生活中的数量关 系,通过函数这种数量关系表示出来并加 以研究,从而使问题获得解决的思想。
【案例】
33
高中数学思想方法教学
存在问题 1.重数学方法的教学,忽略数学思想的提升,从
——【英】怀特海《教育的目的》
7
引言
数学思想方法的作用,主要体现在它为 学生提供了有关如何学习、如何思考的 策略性知识。
中小学数学的功能是多重的,即作为知 识的数学和作为教育功能性的数学。
8
内容提要
如何认识数学思想方法 中学数学中的数学思想方法 数学解决问题的基本方法——化归方法 高中数学思想方法教学案例分析
模型思想 、化归思想、类比思想、统 计思、用字母代表数的思想、函数与映 射思想、分类思想、极限思想等。
24
中学数学中的数学思想方法
(1)模型思想 “建立和求解模型的过程包括:从现实生 活或具体情境中抽象出数学问题,用数学 符号建立方程、不等式、函数等表示数学 问题中的数量关系和变化规律,求出结果 并讨论结果的意义。这些内容的学习有助 于学生初步形成模型思想,提高学习数学 的兴趣和应用意识。”
【案例】 等比数列求和公式
【案例】平面几何问题的类比 30
教师教学要重视引导回忆或重现可供 类比的问题,从中寻找“经验性”的 解题方法
31
(4)统计思想
统计思想就是在统计初步知识中提炼 并掌握一些处理数据的方法,并用来 解决一些实际问题,统计思想可使学 生认识到条件的可变性结论的不唯一、 不确定、不可靠性,事物的多样性等 等都是普遍存在的。
(5)函数与映射思想
对应是人的思维对两个集合间问题联系的 把握,是现代数学的一个最基本的概念。 函数思想是指用运动、变化、联系、对应 的观点,分析数学与实际生活中的数量关 系,通过函数这种数量关系表示出来并加 以研究,从而使问题获得解决的思想。
【案例】
33
高中数学思想方法教学
存在问题 1.重数学方法的教学,忽略数学思想的提升,从
——【英】怀特海《教育的目的》
7
引言
数学思想方法的作用,主要体现在它为 学生提供了有关如何学习、如何思考的 策略性知识。
中小学数学的功能是多重的,即作为知 识的数学和作为教育功能性的数学。
8
内容提要
如何认识数学思想方法 中学数学中的数学思想方法 数学解决问题的基本方法——化归方法 高中数学思想方法教学案例分析
模型思想 、化归思想、类比思想、统 计思、用字母代表数的思想、函数与映 射思想、分类思想、极限思想等。
24
中学数学中的数学思想方法
(1)模型思想 “建立和求解模型的过程包括:从现实生 活或具体情境中抽象出数学问题,用数学 符号建立方程、不等式、函数等表示数学 问题中的数量关系和变化规律,求出结果 并讨论结果的意义。这些内容的学习有助 于学生初步形成模型思想,提高学习数学 的兴趣和应用意识。”
【案例】 等比数列求和公式
【案例】平面几何问题的类比 30
教师教学要重视引导回忆或重现可供 类比的问题,从中寻找“经验性”的 解题方法
31
(4)统计思想
统计思想就是在统计初步知识中提炼 并掌握一些处理数据的方法,并用来 解决一些实际问题,统计思想可使学 生认识到条件的可变性结论的不唯一、 不确定、不可靠性,事物的多样性等 等都是普遍存在的。
数学说课课件ppt

统计数据的类型
介绍定量数据和定性数据 ,以及它们在描述和解释 现象时的不同用途。
统计图表
介绍各种常见的统计图表 ,如柱状图、折线图和饼 图,以及它们的优点和适 用场景。
概率的定义与计算
概率的定义
解释概率是指某一事件发 生的可能性,通常用0到1 之间的数值来表示。
概率的计算
介绍如何计算事件的概率 ,包括直接计算和通过条 件概率进行计算。
数的认识
02
数的定义与分类
整数的定义
整数是正整数、0和负整数的统 称,它是数学中一种最基础的 数。
整数的分类
按照正负性,整数可以分为正 整数、0和负整数;按照能否被 2整除,整数可以分为奇数和偶 数。
自然数的定义
自然数是指0和正整数的统称, 它是数学中表示物体个数的数 。
自然数的分类
自然数可以分为0和正整数。
几何证明方法
总结词:掌握几何证明的基本方法,提 高逻辑思维能力
反证法:假设结论不成立,通过逻辑推 理证明结论的正确性。
公理法:利用公理进行逻辑推理,证明 结论的正确性。
详细描述
定义法:根据图形的定义,通过逻辑推 理证明结论。
统计与概率
04
统计的基础知识
01
02
03
统计的意义
阐述统计在了解、解释和 预测现象中的重要性,例 如通过数据分析来预测未 来趋势。
算方法为相除。
数的性质与规律
数的性质
数的性质包括正负性、有序性、 传递性等。
数的规律
数的规律包括等差规律、等比规 律、分配律、结合律等。
图形与几何
03
图形的定义与分类
01 02 03 04
总结词:了解图形的定义,掌握图形的分类方法
数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
2015年广西中考数学总复习课件第36课时 数学思想方法(共61张PPT)

过程中往往会把函数问题转化为方程(不等式)来解决.
第36课时
数学思想方法
(5) 分类讨论思想:数学中许多问题题设交代笼统,或题意
复杂,包含多种情况,往往需要分类讨论,在解决这种问题时,
要认真审题,全面考虑,根据其数量差异与位置逐一讨论,做到 不重不漏、条理清晰.
第36课时
数学思想方法
┃考向互动探究┃
►图Z-36-1,在直角坐标系中,O是原
点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成
的三角形为等腰三角形,则满足条件的点P共有________ 个,写 8 出其中一个点P的坐标是________ (5,0) .
图Z-36-1 第36课时 数学思想方法
从而使复杂问题简单化、抽象问题具体化.如利用数轴研究实数 和不等式(组)的解集;利用图形的剪拼验证整式的一些性质,利 用函数的图象研究函数的性质等.
第36课时
数学思想方法
(2) 整体思想:把研究对象的某一部分 (或全部 )看成一个整
体,通过观察与分析,找出整体与局部的联系,从而在客观上寻
求解决问题的新途径.整体是与局部对应的,按常规不容易求某 一个(或多个)未知量时,可打破常规,根据题目的结构特征,把 一组数或一个代数式看作一个整体,从而使问题得到解决. (3) 方程思想:从分析问题的数量关系入手,适当设定未知
第36课时
数学思想方法
变式题 1
[2014·钦州] 如图 Z-36-2,正比例函数 y=x
4 与反比例函数 y= 的图象交于 A(2,2),B(-2,-2)两点,当 y x 4 =x 的函数值大于 y= 的函数值时,x 的取值范围是( D ) x
图 Z-36-2
第36课时
2015年辽宁省地区中考数学总复习专题课件 专题六 数学思想方法(共22张PPT)

专题六 数学思想方法
数学思想方法是指对数学知识和方法形成的规律性的理性认识 , 是 解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质 ,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思 想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发 生、发展和应用的过程中. 抓住数学思想方法 , 善于迅速调用数学思想方法 , 更是提高解题能 力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试 题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 数学思想方法是数学的精髓 , 是读书由厚到薄的升华 , 在复习中一 定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方 法有:整体思想、转化思想、方程与函数思想、数形结合思想、分类讨 论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思 想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可 以举一反三.
解:(2)设 y1=k1x+120,代入(2,0)解得 y1=-60x+120,y2=k2x+90, 代入(3,0)解得 y2=-30x+90,由-60x+120=-30x+90 解得 x=1,则 y1= y2=60,所以 P(1,60)表示经过 1 小时甲与乙相遇且距 C 村 60 km. 2 (3)当 y1-y2=10,即-60x+120-(-30x+90)=10,解得 x=3,当 y2-y1 4 =10,即-30x+90-(-60x+120)=10,解得 x=3,当甲走到 C 地,而乙距离 8 2 4 C 地 10 km 时,-30x+90=10,解得 x=3;综上所知当 x=3 h,或 x=3 h, 8 或 x=3 h 时,乙距甲 10 km
1 (3)由(1)得△BGF 为等腰三角形,由(2)得∠BAC=2∠BGF,∴当△BGF 为 AB 锐角三角形时,∠BGF<90°,∴∠BAC<45°,∴AB>BC,∴k= BC>1; 当△BGF 为直角三角形时,∠BGF=90°,∴∠BAC=45°∴AB=BC,∴k AB =BC=1;当△BGF 为钝角三角形时,∠BGF>90°,∴∠BAC>45°,∴AB AB <BC,∴k=BC<1;∴0<k<1 【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的运用、等 腰三角形的判定定理的运用、外角与内角的关系的运用、分类讨论思想在实际 问题中的运用, 解答时灵活运用直角三角形的性质及外角与内角的关系是关键.
数学思想方法是指对数学知识和方法形成的规律性的理性认识 , 是 解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质 ,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思 想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发 生、发展和应用的过程中. 抓住数学思想方法 , 善于迅速调用数学思想方法 , 更是提高解题能 力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试 题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 数学思想方法是数学的精髓 , 是读书由厚到薄的升华 , 在复习中一 定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方 法有:整体思想、转化思想、方程与函数思想、数形结合思想、分类讨 论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思 想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可 以举一反三.
解:(2)设 y1=k1x+120,代入(2,0)解得 y1=-60x+120,y2=k2x+90, 代入(3,0)解得 y2=-30x+90,由-60x+120=-30x+90 解得 x=1,则 y1= y2=60,所以 P(1,60)表示经过 1 小时甲与乙相遇且距 C 村 60 km. 2 (3)当 y1-y2=10,即-60x+120-(-30x+90)=10,解得 x=3,当 y2-y1 4 =10,即-30x+90-(-60x+120)=10,解得 x=3,当甲走到 C 地,而乙距离 8 2 4 C 地 10 km 时,-30x+90=10,解得 x=3;综上所知当 x=3 h,或 x=3 h, 8 或 x=3 h 时,乙距甲 10 km
1 (3)由(1)得△BGF 为等腰三角形,由(2)得∠BAC=2∠BGF,∴当△BGF 为 AB 锐角三角形时,∠BGF<90°,∴∠BAC<45°,∴AB>BC,∴k= BC>1; 当△BGF 为直角三角形时,∠BGF=90°,∴∠BAC=45°∴AB=BC,∴k AB =BC=1;当△BGF 为钝角三角形时,∠BGF>90°,∴∠BAC>45°,∴AB AB <BC,∴k=BC<1;∴0<k<1 【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的运用、等 腰三角形的判定定理的运用、外角与内角的关系的运用、分类讨论思想在实际 问题中的运用, 解答时灵活运用直角三角形的性质及外角与内角的关系是关键.
王永春小学数学核心素养与数学思想方法(一) PPT课件 图文

有研究表明:对数学概念的表征水平与数学成绩呈正相关。 表征(representation)是信息在头脑中的呈现方式。 也可以用“表示”,更容易理解。
多元表征是加强学生理解知识的有效方式。 有研究表明,高中生对数学概念的表征(理解)水平,多数
通过具体例子、画图(像)和描述性语言表征,如单调增函数 的概念,有52.63%的学生通过画函数图像、28.42%的学生通过 描述性语言表征;只有3.16%的学生能够用定义表征。
小学23 昆明 王永春
课程性质与基本理念
(一)课程性质 数学教育承载着落实立德树人根本任务、发展素质教育的
功能,数学教育帮助学生掌握现代生活和进一步学习所必需的 数学知识、技能、思想和方法;提升学生的数学素养,引导学 生会用数学眼光观察世界,会用数学思维思考世界,会用数学 语言表达世界;促进学生思维能力、实践能力和创新意识的发 展,探寻事物变化规律,增强社会责任感;在学生形成正确人 生观、价值观、世界观等方面发挥独特作用。
殊性的个性化的存在,有很强的主观性。是学生的数学思想方法 及数学核心素养的基础。
学习除法认识了一棵杨树
学习分数认识了一棵柳树
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年 ,工作 却已
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学研究的基本方法 ◆ 数学抽象方法 ◆ 数学模型方法 ◆ 数学研究活动的一般方法
数学中的逻辑方法 ◆ 数学定义方法 ◆ 逻辑划分方法 ◆ 数学公理化方法
数学解题的思维方法 ◆ 数学推理方法(演绎法、 归纳法、类比法) ◆ 分析法与综合法 ◆ 数学实验方法 ◆ 数形结合方法 ◆ 关系影射反演原则(换元 法、初等变换方法)
.数学归纳法用于证明。 例 Nhomakorabea:证明数列
2 ,2 2 ,2 2 2 , ,2 2 2 2 2 .
,
单调增加有上界。
,
。
.
《数学思想与数学文化》之第三讲——
数学思想方法介绍(续)
.
4.数学构造法(基本数学方法)
☆数学构造法---数学中的概念或方法按固定的方式 经有限步骤能够定义或实现的方法。 ☆应用---构造概念、图形、公式、算法、方程、函 数、反例、命题等。 ☆构造法在数学中的地位不仅古老,而且重要。 ☆ 例子
都可以表示成一个奇函数和一个偶函数的和。
.
5. 化归法(基本数学方法)
( 1)特殊化与一般化,2)关系映射反演方法 )
☆化归原则是指把待解决的问题,通过某种转化过 程,归结到一类已经解决或者比较容易解决的问题 中去,最终求得原问题的解答的一种手段和方法。 ☆其过程就是将一个问题由繁化简,由难化易,由 复杂化简单,由未知化已知。 ☆化归有三个要素:化归的对象,化归的目标,化 归的手段。
.
2.类比法(数学创造发现的方法)
☆类比是一种相似,即类比的对象在某些部分或关系上相 似。 ☆三个层次:描述、说理、数学上的类比。 ☆数学上的类比:两个系统,如果它们各自的部分之间, 可以清楚地定义一些关系,在这些关系上,它们具有共 性,那么,这两个系统就可以类比。 ★ 例子: 1)线段、三角形、四面体 2)Newton-Leibniz公式、Green公式、Gauss公式
.
3)同态与同构 4)数的概念的扩充 5)多项式理论与整数理论的类比 整数
+、- 、× 带余除法 算术基本定理
多项式
+、- 、× 带余除法 代数基本定理
.
3. 归纳法(逻辑学中的方法)
与数学归纳法(数学中的一般方法)
☆归纳就是从特殊的、具体的认识推进到一般的认识的 一种思维方法。归纳法是实验科学最基本的方法。 归纳法的特点:1)立足于观察和实验;2)结论具有猜 测的性质;3)结论超越了前提所包含的内容。 归纳法用于猜测和推断。 例子:1) Fermat数(1640年,Fn=22n+1, Fermat素数:3,5, 17,257,65537);
.
◆数学方法具有三个基本特征: (1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用: (1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
.
二. 中学数学中常用的数学方法
.
数学证明的重要方法 ◆ 反证法与同一法 ◆ 数学归纳法
中学数学中几种常用的具体方法 ◆ 待定系数法 ◆ 配方法 ◆ 基本量法 ◆ 递推法
.
三. 几类常用的数学思想方法介绍
有人这样给数学思想方法分类: 1. 操作性思想方法
例如:换元法、配方法、待定系数法、割补法、构造 法等; 2. 逻辑性思想方法
《数学思想与数学文化》
数学思想方法介绍
.
内容
一.前言 二.中学数学中常用的数学方法 三.几类常用的数学思想方法介绍
1.演绎法或公理化方法 2.类比法 3.归纳法与数学归纳法 4.数学构造法 5.化归法 6.数学模型方法
附:参考文献
.
一. 前 言
☆ 数学思想---对数学的知识内容和所使用的方法的本质 认识,它是从某些具体数学认识过程中提炼和概括,而在 后继的认识活动中被反复证实其正确性,带有一般意义和 相对稳定的特征,是对数学规律的理性认识。 ☆ 数学方法---以数学为工具进行科学研究的方法,即用 数学的语言表达事物的状态、关系和过程,经过推导、运 算与分析,以形成解释、判断和预言的方法。 ☆ 二者关系--- 数学思想直接支配着数学的实践活动。数 学方法是数学思想具体化的反映。简言之,数学思想是数 学的灵魂,数学方法是数学行为,数学思想对数学方法起 指导作用。
1)求一元二次方程 ax2+bx+c=0 (a0)的根。 2)求两个正整数最大公因数的欧几里德辗转相除法。
3)勾股定理(毕氏定理)。
.
宋刻本《周髀算经》, (上海图书馆藏)
.
第24届“国际数学家大 会”会标
.
例子: 4)导数的概念。 5)定积分的概念。 练习: 1. 求证在任何两个有理数a和b之间一定还有有理数。 2. 有没有2000个连续自然数,它们都是合数? 3. 证明:素数的个数是无穷的。 4. 求证:对于定义域包含于实数集且关于原点对称的任何函数f(x)
2)Goldbach猜想(1742年)。
.
☆数学归纳法:P(n)是一个含有自然数n的命题, 如果(1)P(n) 当n=1时成立; (2)若P(k)成立的假定下,则P(k+1)也成立。 那么P(n)对任意自然数n都成立。 这两个步骤,(1)称为归纳起点,(2)称为归纳推断。 数学归纳法是一种完全归纳法,其应用范围及其广泛。
例如:抽象、概括、分析、综合、演绎等; 3 .策略性思想方法
例如:方程与函数、化归、猜想、数形结合、整体与 系统等。
事实上,数学思想方法是有层次的。
操作性思想方法、逻辑性思想方法、策略性思想方法,从思维的
角度上看,层次是逐渐上升的。
.
1. 演绎法或公理化方法(逻辑思维方法)
☆演绎法是由一般到特殊的推理,它在逻辑上的依据 是三段论。 ☆演绎法的重要性:1)数学理论都是用演绎推理组织 起来的;2)它能超越技术与仪器的限制。 ☆演绎法的基本构件:定义(概念)、公理和定理。 ☆公理化方法的例子: 欧几里德《几何原本》,希尔伯特《几何学基础》 柯尔莫哥洛夫《概率论基础》 ZFC《公理化集合论》
.
☆使用各种化归方法时一般应遵循下面几个原则: a)熟悉化原则 b)简单化原则 c)和谐化原则 ☆实行化归的常用方法有:特殊化与一般,关系映射反 演(RMI),分解与组合…