高等数学上册课件

合集下载

高等数学(第二版)上册课件:导数概念

高等数学(第二版)上册课件:导数概念

右极限都存在且相等,因此有:
定理2.2 函数 f (x) 在点 x0 处可导
左导数 f(x0 )和右
导数 f(x0 ) 都存在且相等 .
例 2.1.4 讨论函数 f (x) x 在 x 0 处的可导性 .

lim f (0 h) f (0) lim h 1
h0
h
h h0
lim f (0 h) f (0) lim h 1
y x3 的切线方程.

设切点为 x0 , y0 曲线 y x3 在点 x0 , y0
处的切线斜率为 k1, 直线的斜率为 k2 则:
| k1
y
x x0
3x02 ,
k2
1 27
而 k1. k2 1, 得 x0 3 则切点为 3, 27 或 3, 27
切线方程为
27x y 54 0 或 27x y 54 0
从高速到低速,最后速度减为0 . 这个过程每一时刻的汽车
的速度都不相同,如何求某时刻 t0汽车的瞬时速度呢?
设汽车所经过的路程s是时间t的函数:s s t ,
任取接近于 t0 的时刻 t0 t ,则汽车在这段
时间内所经过的路程为
s s(t0 t) s(t0 )
而汽车在这段时间内的平均速度为
当自变量 x 在 x 0 处取得增量 x (点 x0 x 仍在该
邻域内),相应地函数取得增量 y f ( x0 x) f ( x0 )
.
如果 y 与 x 之比当 x 0 时的极限存在,
则称函数 y f ( x) 在点 x 0 处可导,并称这个极限值

f
(x0 )
lim
x0
f
解 当 x 由1变到 1 x 时,函数相应的增量为

第一章《高等数学(上册)》课件

第一章《高等数学(上册)》课件

高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
图 1-1
图 1-2
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
16世纪末期,为适应生产实践的需要,人 们开始对各种变化过程中量与量之间的关系进行 研究,于是产生了函数的概念.函数既是现代数 学中最重要的基本概念之一,也是高等数学的主 要研究对象.极限是微积分学的理论基础,极限 方法是高等数学中研究问题的一种基本方法.本 章将着重介绍有关函数、极限和连续的基础知识 及基本方法.
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
在平面直角坐标系中,偶函数的图形是关于y轴对称 的,如图1-1所示;奇函数的图形是关于原点对称的,如 图1-2所示.

高等数学上期末复习资料大全ppt课件.ppt

高等数学上期末复习资料大全ppt课件.ppt

,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,

(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
如对二元函数 z f (x, y), 即解方程组
f f
x yBiblioteka (x, (x,y) y)
0 0
第二步 利用充分条件 判别驻点是否为极值点 .
2. 函数的条件极值问题
(1) 简单问题用代入法
(2) 一般问题用拉格朗日乘数法
例20 要设计一个容量为 V0 的长方体开口水箱, 试问
水箱长、宽、高等于多少时所用材料最省?
直线
x4 5
y
3 2
z 1
x4
5
y
3
2
y3, 2
z. 1
2x 5y 23
y
2z
3
0.
0,
设通过直线L 的平面方程为:2x 5y 23 ( y 2z 3) 0,
将x=3,y=1,z=-2代入上式,得 11.
再将
11
4 代入上式得所求平面方程:
4
8x 9y 2z 59 0.
z y
Fy Fz
xz y xexz
.
导时,将方程 F(x,y,z)=0中x,y,z 视作独立变量.
解法2 利用隐函数求导
方程两端关于x求偏导,得 方程两端关于y求偏导,得
z
x
y y
ze xz xexz

高等数学上册第六章课件.ppt

高等数学上册第六章课件.ppt
(2 , 2)
4
AdA ( y 4 12 y 2 ) d y
2
18
(8 , 4)
x
第二节 定积分在几何中的应用

求由摆线
的一拱与 x 轴所围平面图形的面积 .


dAA
ydx 0 a (1 cos t ) a (1 cos t ) d t
a
2
4a
X -型绕x轴旋转所围成的立体的体积:
y 2 ( x)
b
b
Vx π ( x)dx π ( x)dx
a
b
2
2
a
2
1
2
2
y 1 ( x)
π [2 ( x) 1 ( x)]dx
a
a
bx
Y-型绕y轴旋转所围成的立体的体积:
d
Vy π [ g g ]dy
2
5 3 1 π
32π a sin u du 32π a 5π 2 a3
0
6 4 2 2
3
2
6
3
第二节 定积分在几何中的应用
y
x x2 ( y )
2a
绕 y 轴旋转而成的体积为
π
π a 2 (t sin t ) 2 a sin t d t

o
πa
πa
4 2 2
2
所围图形的
(利用对称性)
d
o

2a x
第二节 定积分在几何中的应用
心形线(外摆线的一种)
2
2
2
x y ax a x y
2
即 r a(1 cos )

高等数学上册第七章课件.ppt

高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程

解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]

高等数学-第1章课件

高等数学-第1章课件
x x0
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}

高等数学上2_课件1.ppt

高等数学上2_课件1.ppt

FFn1
1, F2 Fn1
1 Fn2
,
n2
写出来为
1,1,2,3,5,8,13,….
例 2.3
bn
Fn Fn1
1, 1 , 2 , 3 , 5 , 8 , 13 , . 2 3 5 8 13 21
bn 是按“大—小—大—小…”依次交错排列的,这
样的数列称振荡数列.显然 bn 是有界的,非单调的.
2
等来代替.
2.1.2 数列极限的概念
●关于数列极限的 N 定义,通过以上几个例子,读 者已有初步认识,再作以下几点注释以便加强.
(2) N 的相应性 一般地, N 随 的变小而变大,
因此有时为强调 N 是依赖 的,也把 N 写作 N ( ) .但这并
不意味 N 是由 唯一确定的.比如对给定的 ,当 N 100 时, n N 便有 xn a 成立,则取 N 101或更大时, n N 时必有 xn a .求 N 的目的在于证实 N 的存在
的项的值随 n 增大而增大,且无限增大. ●若当 n 无限增大时, xn 无限趋向于常数 a ,则说,
当 n 趋于无穷大时,xn 以 a 为极限.
记作
lim
n
xn
a

x
a
, (n
)
2.1.2 数列极限的概念
●做定量分析
1n
对例 2.4 中 xn f (n) 1 n
n N 随 n 无限增
大而无限接近 1 的过程做定量分析:
n
它是一个有界的
xn

3
2 振荡数列,图像如图
2.2.
我们会发现,随着 n 的无限增大, xn 以 1 为平衡位置振
荡,而振幅越来越小,并且可以任意的小,即 xn 无限接

高等数学上2_课件2.ppt

高等数学上2_课件2.ppt

达标后的函数值:
f (x) A
2.2.2 x趋于有限值x0时函数的极限
●至此,我们用 N ”、“ X ”、“ ” 的语言定 义了七种极限, 下面将列表类比对照.
极限形式: 接近程度指标:
lim f (x) A
x
实现时刻:
X
实现时刻后的自变量: x X
达标后的函数值:
f (x) A
定义 2.2
*在定义 2.2 中, 将“ f (x) 在 b, 上有定义”换作 “ f (x) 在 , a上有定义;将“ x X ”换作“ x X ”
lim
x
f
(x)
A或
f
(x)
A(x
)
.
2.2.1 x趋于无穷大时函数的极限
定义 2.3 设 f (x) 在 , a b, (a ≤b) 上有定义,A
推 论 若 在 x0 的 某 去 心 邻 域 内 f (x) ≥ 0 ( 或
f
(
x)

0
)且
lim
xx0
f
(x)
A ,则 A≥0 ( A≤0 ).
2.2.3 函数极限的性质
● 在 2.2.1,2.2.2 中我们共列举了六种类型的极限:
(1)
lim
x
f
(x) ;
(2)
lim
x
f
(x) ;
(3)
lim
2.2.1 x趋于无穷大时函数的极限
自变量 x 趋向于无穷大有下面三种方式: x ,表示 x 沿 x 轴无限向右推进,趋于正无穷大; x ,表示 x 沿 x 轴无限向左推进,趋于负无穷大; x ,表示 x 沿 x 轴无限向任何一方推进,即 x 趋于 .

大一高数上_PPT课件_第一章

大一高数上_PPT课件_第一章

几个数集:
R表示所有实数构成的集合,称为实数集。
Q表示所有有理数构成的集合,称为有理集。 Z表示所有整数构成的集合,称为整数集。 N表示所有自然数构成的集合, 称为自然数集。 子集: 若xA,则必有xB,则称A是B 的子集, 记 为AB(读作A包含于B)。 显然,N Z ,Z Q ,Q R 。
的上方。
y y=f(x) O x
y=K2
如果存在数 M,使对任一 xX,有 | f(x) |M, 则称函数f(x)在X上有界;如果这样的M不存在, 则称函数f(x)在X上是无界函数,就是说对任何M ,总存在 x1X,使|f(x)|>M。 有界函数的图形特点: 函数y = f(x)的图形在直线y = - M和y = M y 的之间。
高等数学研究的主要对象是函数,主要研 究函数的分析性质(连续、可导、可积等)和 分析运算(极限运算、微分法、积分法等)。 那么高等数学用什么方法研究函数呢?这个方 法就是极限方法,也称为无穷小分析法。从方 法论的观点来看,这是高等数学区别于初等数 学的一个显著标志。 由于高等数学的研究对象和研究方法与初 等数学有很大的不同,因此高等数学呈现出 以下显著特点:
周期函数的图形特点:
y
y=f(x)
-2l
-l
O
l
2l
x
四、反函数与复合函数
1. 反函数 设函数y=f(x)的定义域为D,值域为W。 对于任一数值 yW,D上可以确定唯一数值 x 与 y 对应,这个数值 x 适合关系 f(x)=y。
如果把 y看作自变量,x 看作因变量,按 照函数的定义就得到一个新的函数,这个 新函数称为函数y=f(x)的反函数,记作 x=f -1(y)。
什么样的函数存在反函数?

高等数学(第二版)上册课件:定积分的计算

高等数学(第二版)上册课件:定积分的计算

0
2
例 5.4.4 计算下列积分.
(1)
2
sin3
xdx;
2
(2)
2
cos2
xdx.
2
分析 三角函数的平方或立方的积分,利用公式降次或变
形,变为已知积分计算.

(1)
2
sin3
xdx
2
sin 2
x sin
xdx
2
1 cos2 x dcosx
2
2
2
cosx1 Nhomakorabea3c
os3
x
2
e
ln xdx
1
e
e
e
1 2 1 2 2
e
e
例 5.4.7 设 f x 在 0,1 连续, 且
f
0 1,
f
2 3,
f 2 5,

1
0
xf
2
xdx
分析 观察题目,本题是抽象函数的积分,需要用到分部积分法.

1
0
xf
2 xdx
1 2
1
0
xdf
2x
1 2
xf
2x1 0
1
0
f
2xdx
因为
f 0 1, f 2 3, f 2 5
分析 连续函数为可积函数,因此被积函数的原函数存在,
可用N-L公式计算.
证明 假设 F (x) 是 f (x) 的一个原函数,则
b
a f (x)dx F (b) F (a)
又由复合函数的求导法则知 (t) F ((t)) t ( , ) 是
f ((t))(t) 的一个原函数,所以
f ((t))(t)dt F(( )) F(( )) F(b) F(a)

完整高数(一)PPT课件

完整高数(一)PPT课件
y
y f (x)
f (x1)
f (x2 )
o
x
I
.
22
3.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数 ;
y y f (x)
f (x)
f (x)
-x o
x
x
偶函数
.
23
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数 ;
y 1 x2
定义: 设函数 y f (u)的定义域D f , 而函数 u ( x)的值域为Z, 若D f Z , 则称 函数 y f [( x)]为x 的复合函数.
x 自变量, u 中间变量, y 因变量,
.
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
或 x 0, ( x) x 2 1, 或 x 0, ( x) x 2 1 1,
综上所述
ex2,
f
[
(
x)]
x 2, e x2 1 ,
x2 1,
x 1 1 x 0
. 0 x 2
x 2
1 x 0; x 2;
.
50
三、双曲函数与反双曲函数
1.双曲函数
双曲正弦 sinh x e x ex 2
4321
-4 -3 -2 -1
o -1 1 2 3 4 5
x
-2 -3 -4
阶梯曲线
.
13
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时

高等数学上共92页(1).ppt

高等数学上共92页(1).ppt
高等数学 (上) 高职高专 ppt 课件
第二章 导数与微分
学习目标:
1、理解导数与微分概念的意义; 2、能熟练计算初等函数的导数与微分。
高等数学 (上) 高职高专 ppt 课件
主要内容
导数的概念 求导法则和基本求导公式 函数的微分 隐函数和由参数方程所确定函数的导数 高阶导数
高等数学 (上) 高职高专 ppt 课件
第一节 导数的概念
一、两个实例
1.变速直线运动的瞬时速度
自由落体运动: s f (t) 1 gt 2 2
第一步:求 s
s
f
(t0
t)
f
(t0 )
gt0t
1 2
g t 2
第二步: 求
s t
s
1
v t gt0 2 gt
第三步: 求 lim s
t0 t
v(t
lim
t 0
所以,该物体在任意时刻的速度 v(t) cos t
在 t 3 时的瞬时速度为
v( 3
)
s
t
3
cos
3
1 2
例 9 求曲线 y x3 在 M 的切线方程和法线方程:
(1) M (1,1) ; (2) M (0, 0) . 解 y (x3) 3x2 是曲线 上任意点 (x, y) 处的切线斜率
曲线在点 (1, 1)的法线方程是
y (1) 1 (x 1),
即 x y 0
二、复合函数求导法则
引例: 分析
求函数y cos 2x的导数
? (cos x) sin x cos 2x sin 2x
注意: y cos 2x 不是基本初等函数,
而是 x 的复合函数。
复合函数求导法则:

高等数学第一章-课件2.ppt

高等数学第一章-课件2.ppt
一 函数的连续性
1.函数在点x0的连续性
函数连续的概念源于对几何曲线的直观分析,粗略地 说,如果函数是连续的,那么它的图像是一条连绵不断的曲 线,当然我们不能满足于这种直观的认识,我们需要用数学 的语言给出它的精确定义。
第四节
考察如图1-21所示的函数图像。
图1-21
第四节
故函数f(x)在点 x=0处连续,如图 1-22所示。
图1-20
第二节 极
四 无穷小量与无穷大量
1.无穷小量
定义1-9 若函数f(x)在自变量的某一变化过程中 的极限为零,则称该函数为自变量在此变化过程中的无 穷小量,简称无穷小。通常函数极限有x→+∞,x→- ∞, x→∞,x→x0 + ,x→x0 -,x→x0这六种情形。因此,只简 单地说函数是无穷小量是不确切的,还必须指出x的趋近 方式。
fξ=0。 该推论表明方程fx=0在 a,b内有实根。其几何解释如 图1-26所示。
图1-26
Thank You!
第一章 函数、极限与连续
第一节 函数
第二节 极限
第三节
极限的运算
第四节
初等函数的连续性Leabharlann 第五节 闭区间上连续函数的性质
第一节 函数
一 函数
1.函数的概念
定义1-1 给定两个实数集D和E,若有一个对应法则f,使 得对每个x∈D,都有唯一确定的值y∈E与之对应,则称f是定义 在数集D上的函数,记作y=f(x) ,x∈D。其中,x称为自变量,y 称为因变量,D称为函数fx的定义域,全体函数值的集合E称为函 数的值域.如果在D中任取某一个数值x0,与之对应的y的数值y0, 称为函数f(x)在点x0处的函数值,记作y0=f(x)0 。

高等数学(第二版)上册课件:不定积分

高等数学(第二版)上册课件:不定积分

性质3可以推广到有限个函数的情形. 不定积分的性质以及基本积分公式是求不定积分的
基础,记忆常见函数的积分公式,便能熟练计算可化为 几个基本初等函数线性组合的积分.在应用这些公式时, 有时需要对被积函数作适当变形,化成能直接套用基本积 分公式的情况,一般称这种不定积分计算方法为直接积 分法.
现将常见的一些基本积分公式列表如下:
就简,略去设中间变量和换元的步骤,而直接凑成
基本积分公式的形式.
例4.2.5

x
1 ln
dx x
分析 将 1 作为 x ,将其凑成微分部分.
x
解:
x
1 ln
dx x
1 dln
ln x
x
lnlnxC
例4.2.6

1 a2 x2 dx
分析
凑微分,利用积分公式
1
1 x
2
dx
arc
tan
x
C
计算.
sin
udu
1cosu C 3
1 cos3x C 3
例4.2.3

1 dx. 2 x +7

被积函数
1 2x+7
可看成
1 u与
u 2x+7
构成的复合
函数,虽没有 u 2 这个因子,但我们可以凑出这个
因子: 1 1 1 2 1 1 (2x 7) 2x+7 2 2x+7 2 2x 7
xC,
例4.1.3 求
x 1 x 1 dx x
分析 首先把被积函数化为和式,然后再逐项积分.

x 1 x 1 dx x
x
x x 1
1 x
dx

高等数学上册课件

高等数学上册课件

结 F ( x ) A cos(x B ) C 的周期为 T 2 , 果
若 F ( x ) f i ( x ) ,而 Ti 是 f i ( x )的周期 , 则
i 1
n
T1 , T2 ,, Tn 的最小公倍数 是 F ( x ) 的周期, T
但 T 不一定是 F ( x ) 的最小正周期!
常 用
f ( x ) sin x, cos x 的周期为 T 2 , f ( x ) tan x, cot x 的周期为 T , F ( x ) A sin(x B ) C 的周期为 T 2 ,
F ( x ) A tan( x B ) C 的周期为 T , F ( x ) A cot(x B ) C 的周期为 T ,
则 函 称 数 f ( x )在 间 D 上 单 不 ( 增 ) . 区 是 调 减
y
y f (x )
f ( x2 )
y
y f (x)
f ( x1 )
f ( x2 )
f ( x1 )
o
D
x
o
D
x
3.函数的奇偶性 设 f ( x ) 在 D 上定义,且 D 关于原点对称 ,
. (2) 若x D, f ( x ) f ( x ), 则称 f ( x ) 为奇函数
f ( x2 )
f ( x1 )
o
f ( x2 )
x o
D
D
x
则称 f ( x ) 当 f ( x )在 D 上单调递增或单调递减 时, 在 D 上是单调 的; f ( x ) 为D 上的单调函数 .
如果 x1 , x2 D, 当 x1 x2时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档