仪器分析第4讲 高效液相色谱法

合集下载

高效液相色谱法 PPT课件

高效液相色谱法 PPT课件
①固定相:非极性键合相 如十八烷基硅烷(C18,ODS)、辛烷基(C8)
键合硅胶 ②流动相:水为基础溶剂,加入一定量与水混溶的极 性调整剂
常用甲醇-水、乙腈-水等 应用:最广。非极性至中等极性的组分,(还有 有机酸、碱及盐等极性组分)
1. 保留机制:
疏溶剂理论 (solvophobic theory)
(二)紫外检测器(ultraviolet detector)
1.检测原理: 朗伯-比尔 (Lambert-Beer) 定律,响应信号 (吸光度)与浓度成正比A=εCl
2.特点: 灵敏度较高(10-6—10-9 g/ml),噪音低,线性 范围宽,稳定性好,适于梯度洗脱,不破坏样品, 应用广(分析、制备)。
三.与气相色谱法相比
气相试样
液相试样 气相流动相 液相流动相 气相柱温 液相柱温
气体、 容易转
气体、 常用氢气 液体、 、氮气
可用的
高柱温
溶剂较多
常温
变为气
固体
体的液

第一节 高效液相色谱法的主 要类型和原理
一、主要类型
四类基本类型色谱法 分配色谱法(partition chromatography) 吸附色谱法(adsorption chromatography) 离子交换色谱法(IEC) 空间排阻色谱法(SEC)
(二)流动相的强度和选择性
1.溶剂的极性(强度) 正相色谱:溶剂极性越强,洗脱能力越强 反相色谱:极性弱的溶剂洗脱能力强 2.溶剂的选择性
不同种类的溶剂,分子间的作用力不同,故 选择性不同
混合溶剂(二元或多元流动相)
以反相色谱流动相的选择为例:
反相色谱常用溶剂的强度因子

甲醇
乙腈

《仪器分析》高效液相色谱法

《仪器分析》高效液相色谱法

《仪器分析》高效液相色谱法仪器分析是化学分析中的重要分支,是利用各种仪器设备对样品进行分析、测定和监控的科学方法。

高效液相色谱法(High Performance Liquid Chromatography, HPLC)作为仪器分析中的一种常用方法,具有快速、高效、灵敏度高等特点,在许多领域得到广泛应用。

高效液相色谱法是基于液相色谱原理发展起来的一种方法,其主要原理是利用色谱柱对样品中的化合物进行分离,再通过检测器对各个化合物进行定量测定。

高效液相色谱法相比传统的液相色谱法,具有流动相流速快、柱温控制稳定、色谱柱填充剂的粒径更小等优点,从而使样品得到更高的分离效果和更好的分辨率。

高效液相色谱法可以应用于多种不同类型的样品分析,例如药物分析、环境分析、食品安全监测等。

以药物分析为例,在药物研发和质量控制中,高效液相色谱法可以用于分析药物的纯度、含量和杂质等指标,从而保证药品的质量和安全性。

而在环境分析方面,高效液相色谱法可以用于检测水、土壤和空气中的有机污染物,为环境保护提供科学依据。

此外,高效液相色谱法还可以用于食品安全监测,检测食品中的农药残留和添加剂等有害物质,保障人民群众的身体健康。

高效液相色谱法的操作相对简单,但是在实际应用中也需要注意一些技巧和注意事项。

首先,需要选择合适的色谱柱和填充剂。

不同的分析目标和样品类型需要选择不同的色谱柱和填充剂,以获得最佳的分离效果和分辨率。

其次,需要合理选择流动相的组成和流速。

流动相的组成和流速会直接影响样品的分离效果和检测结果,因此需要经过调试和优化。

最后,还需要进行准确的定量分析。

在高效液相色谱法中,常用的定量方法包括外标法、内标法和标准曲线法等,可以根据实际情况选择合适的方法进行定量分析。

综上所述,高效液相色谱法是一种快速、高效、灵敏度高的仪器分析方法,具有广泛的应用领域和潜力。

在实际应用中,需要根据具体的分析目标和样品类型选择合适的色谱柱和填充剂,合理选择流动相的组成和流速,并进行准确的定量分析。

仪器分析 高效液相色谱法

仪器分析  高效液相色谱法

第17章HPLC法17.1 内容提要17.1.1 基本概念高效液相色谱法──在经典液相色谱法的基础上,引入了气相色谱(GC)的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,使之发展成为高分离速率、高分离效率、高检测灵敏度的高效液相色谱法,易称为现代液相色谱法。

高效液相色谱仪──采用了高压输液泵、高效固定相和高灵敏度检测器等装置的液相色谱仪称为高效液相色谱仪。

梯度洗脱──用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续的改变流动相的浓度、配比和极性,使样品中各组分能在最佳的分配比下出峰的操作技术。

也称为梯度淋洗。

低压梯度──又称外梯度,特点是先混合后加压。

它是采用在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱系统,易称为泵前混合。

高压梯度──又称内梯度,特点是先加压后混合。

它有两台高压输液泵、梯度程序器(或计算机及接口板控制)、混合器等部件组成。

两台泵分别将两种极性不同的溶剂输入混合器,经充分混合后进入色谱柱系统,是一种泵后高压混合形式。

柱外效应──由色谱柱以外的因素引起的色谱峰形扩展的效应。

柱外因素常指从进样口到检测器之间,除色谱柱以外的所有死时间,如进样器、连接管、检测器等的死体积,都会导致色谱峰形加宽、柱效下降。

液固吸附色谱法──以固体吸附剂为固定相,吸附剂表面的活性中心具有吸附能力,样品分子被流动相带入柱内,它将与流动相溶剂分子在吸附剂表面发生竞争吸附性。

K值大的强极性组分易被吸附,K值小的弱极性组分难被吸附,样品组分因此被分离。

液液分配色谱法──根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同,有不同的分配,从而实现分离的方法。

分配系数较大的组分保留值也较大。

正相分配色谱法──流动相极性低而固定相极性高的称为正相分配色谱法。

反相分配色谱法──流动相极性高而固定相极性低的称为反相分配色谱法。

化学键合相──利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而形成的各种性能的固定相。

仪器分析高效液相色谱法

仪器分析高效液相色谱法

仪器分析高效液相色谱法高效液相色谱法(HPLC)是一种常用的仪器分析方法,广泛应用于化学、药学、环境科学、食品科学等领域。

本文将介绍HPLC的原理、仪器组成、操作步骤以及应用领域。

HPLC的原理是利用样品在液态流动条件下在固定相上的分配行为进行分离和定量分析。

相比于传统的色谱法,HPLC具有操作简便、分离效果好、灵敏度高等优点。

HPLC的仪器组成主要包括溶液配制系统、进样系统、柱温控制系统、分离柱、检测器和数据处理系统。

其中,溶液配制系统主要用于调配流动相,进样系统用于将样品注入分离柱,柱温控制系统用于控制柱温度,分离柱用于实现样品的分离,检测器用于检测样品,数据处理系统用于处理和分析检测结果。

HPLC的操作步骤如下:1.首先,需要根据需要选择合适的固定相和流动相,然后将固定相充填到分离柱中。

2.将样品溶解于合适的溶剂中,并按照一定的稀释比例稀释溶液。

3.将稀释后的溶液注入进样器中。

4.打开柱温控制系统,设置合适的柱温。

柱温的选择应考虑到样品的性质以及分离柱的要求。

5.打开溶液配制系统,调配合适的流动相,并将流动相以一定的流速通过分离柱。

6.启动检测器,并设置适当的检测波长和灵敏度,以便对样品进行检测。

7.数据处理系统会自动记录检测结果,并进行相应的数据处理和分析。

HPLC广泛应用于化学、药学、环境科学、食品科学等领域,常见的应用包括药物分析、环境污染物检测、食品成分分析等。

例如,可以利用HPLC对药物中的成分进行分离并进行定量分析,以保证药物的质量和疗效。

在环境科学中,HPLC可以用于检测空气、水体和土壤中的有机污染物。

在食品科学中,HPLC可以用于检测食品中的残留农药、添加剂和重金属等。

总之,HPLC是一种常用的高效仪器分析方法,通过流动相在固定相上的分配行为实现样品的分离和定量分析。

由于其操作简便、分离效果好、灵敏度高等优点,成为化学、药学、环境科学、食品科学等领域中不可或缺的分析工具。

高效液相色谱法—高效液相色谱仪(仪器分析课件)

高效液相色谱法—高效液相色谱仪(仪器分析课件)
• 间断改变流动相的组成,以调节它的极性,使每个流出的组分都有合适的容量 因子,并使样品中的所有组分可在最短的分析时间内,以适用的分离度获得圆 满的选择性分离。
• 内梯度:利用两台高压输液泵,将两种不同极性的溶剂按一定比例送入梯度混 合室,混合后进入色谱柱。
• 外梯度:一台高压泵,通过比例调节阀,将两种或多种不同极性的溶剂按一定 的比例抽入高压泵中混合。
柱子内径一般为1~6 mm。常用的标准柱型是内径为4.6或 3.9 mm ,长度为15~30 cm 的直形不锈钢柱。填料颗粒度5 ~10 μm ,柱效以理论塔板数计大约 7000~10000。
发展趋势是减小填料粒度和柱径以提高柱效。
(三)检测器 1. 紫外吸收检测器 紫外吸收检测器是目前HPLC中应用最广泛的检测器。 2. 光电二极管阵列检测器(PDAD) 3. 示差折光检测器(DRD) 4. 电导检测器 5. 荧光检测器 6. 蒸发激光散射检测器
HPLC
HPLC
高效液相色谱仪 一、高效液相色谱仪工作流程及组成
• 1.高效液相色谱仪的工作流程图
一、高效液相色谱仪工作流程及组成 流 动 相
高压泵
2.高效液相色谱仪组成
脱气装置
进 样 阀
色 谱 柱
检测器
检测器
二、仪器操作 (一)开机前 的准备
• 在开机前应详细阅读 仪器使用说明书,了 解仪器的参数、熟悉 仪器操作规程。
高压输液泵
3.. 梯度洗脱装置
高压梯度: 用于二元梯 度,用两个泵分别按设定 的比例输送A和B两溶液 至混合器
(二)进样装置 常见的 进样装置有: 1.隔膜进样 2.停留进样 3.六通进样 4.自动进样
(三)色谱分离系统
色谱柱是色谱仪最重要的部件(心脏)。通常用后壁玻璃 管或内壁抛光的不锈钢管制作的,对于一些有腐蚀性的样 品且要求耐高压时,可用铜管、铝管或聚四氟乙烯管。

仪器分析第4讲 高效液相色谱法

仪器分析第4讲 高效液相色谱法

经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
4、 离子色谱
ion chromatography
离子色谱法是由离子交换色谱法派生出来的一种 分离方法。由于离子交换色谱法在无机离子的分 析和应用受到限制。例如,对于那些不能采用紫 外检测器的被测离子,如采用电导检测器,由于 被测离子的电导信号被强电解质流动相的高背景 电导信号掩没而无法检测。
2、 液-固吸附色谱
liquid-solid adsorption chromatography
流动相为液体,固定相为固体吸附剂
分离原理:利用溶质分子占据固定相表面吸附 活性中心能力的差异
分离前提:K不等或k不等
液—固吸附色谱
固体吸附剂主要类型: 极性的硅胶(应用最广) 氧化铝 分子筛 非极性的活性炭
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。

高效液相色谱法—认识高效液相色谱法(仪器分析课件)

高效液相色谱法—认识高效液相色谱法(仪器分析课件)

二、高效液相色谱法的基本原理
基本原理:
混合组分的样品在色谱柱中,各组分由于在流动相 和固定相之间溶解、吸附、渗透或离子交换等作用力的 不同,随流动相在两相间进行反复多次分配过程,经过 一定长度的色谱柱,彼此分离开来,最后按一定顺序流 出。
三、高效液相色交换色谱
固定相为离子交换树脂,流动相为无机酸或无机碱的水溶液。各种 离子根据它们与树脂上的交换基团的交换能力的不同而得到分离。
4. 凝胶色谱(空间排阻色谱)
以凝胶为固定相。凝胶是一种经过交联的、具有立体网状结构和不同 孔径的多聚体的通称。如葡聚糖凝胶、琼脂糖等软质凝胶;多孔硅胶、 聚苯乙烯凝胶等硬质凝胶。
以固体吸附剂为固定相,如硅胶、氧化铝等,较常使用的是5~ 10μm的硅胶吸附剂。流动相可以是各种不同极性的一元或多元溶剂。
2.分配色谱(液-液分配色谱)
早期通过在担体上涂渍一薄层固定液制备固定相,现多为化学键合 固定相,即用化学反应的方法通过化学键将固定液结合在担体表面。
三、高效液相色谱法的主要分离类型
一、高效液相色谱法的基本概念
二、高效液相色谱法的基本原理
三、高效液相色谱法的主要分离类型 四、HPLC与GC的比较
一、高效液相色谱法的基本概念
基本概念:在技术上采用了高效固定相、高压输液系统和高灵 敏度的在线检测器,是一种新型分离分析技术。
特点:分离效率高、分析速度快、应用范围广、操作自动化。
四、HPLC与GC的比较
1)应用范围不同 液相色谱非常适合分子量较大、难气化等物质的分离分析。
2)液相色谱能完成难度较高的分离工作 ① 可选用不同比例的两种或两种以上的液体作流动相,增大分离 的选择性。 ② 液相色谱固定相类型多,作为分析时选择余地大。 ③ 液相色谱通常在室温下操作。

仪器分析高效液相色谱法

仪器分析高效液相色谱法
详细描述
离子交换色谱法适用于分离离子化合物,如氨基酸、核酸等。在分离过程中,离子交换剂对不同离子的亲和力不 同,通过改变流动相的离子强度和种类,可以实现对不同离子的分离。
体积排阻色谱法
总结词
利用固定相孔径大小排除不同大小的分子进行分离。
详细描述
体积排阻色谱法适用于分离大分子物质,如蛋白质、多糖等。在分离过程中,固定相的孔径大小不同 ,能够排除不同大小的分子,从而实现分离。该方法具有较高的分辨率和分离效果。
检测
通过检测器对分离后的组分进 行检测,记录数据并进行后续
分析。
03
高效液相色谱法的分离模式
正相色谱法
总结词
利用极性固定相吸附剂,对极性物质的吸附作用进行分离。
详细描述
正相色谱法适用于分离极性物质,如醇、胺、水溶性氨基酸 等。在分离过程中,固定相的极性大于流动相的极性,极性 物质在固定相上的吸附力较强,因此能够得到较好的分离效 果。
金属、霉菌毒素等,保障食品安全。
生物医学研究中的应用
生物分子分离纯化
高效液相色谱法可用于分离和纯化生物分子,如蛋白质、核酸等, 为生物医学研究提供高质量的样品。
药物代谢和药代动力学研究
通过高效液相色谱法检测药物在体内的浓度和代谢产物,有助于了 解药物的作用机制和代谢途径。
临床诊断和生物标志物分析
高效液相色谱法能够检测生物体中的生物标志物,如氨基酸、脂肪 酸、激素等,为临床诊断和疾病研究提供重要信息。
食品分析中的应用
食品添加剂分析
01
高效液相色谱法可用于检测食品中的添加剂,如防腐剂、色素、
甜味剂等,确保食品质量和安全。
营养成分分析
02
通过高效液相色谱法测定食品中的维生素、矿物质和其他营养

仪器分析—高效液相色谱法

仪器分析—高效液相色谱法

仪器分析—高效液相色谱法高效液相色谱(HPLC)是一种分离和定量化学物质的分析技术。

它广泛应用于生物医药、食品安全、环境监测等领域。

HPLC的原理基于样品在流动相中的分配行为,通过调节流动相成分和流速,实现对样品中化合物的分离和定量。

HPLC的特点之一是分离效率高。

其分析柱内有高效填料,通常是细小颗粒的吸附剂,能够提供大的表面积,有效地增加了分析柱与流动相接触的面积,从而提高了分离能力。

此外,在HPLC中还可以根据需要选择适当的流动相,调节柱温和压力等条件,进一步优化分析条件,提高分离效果。

其次,HPLC的灵敏度高。

在HPLC中,使用的检测器通常有紫外-可见光谱法、荧光法、质谱法等。

这些检测器可以实现对特定化合物的高选择性检测,而且还能够对不同化合物进行同时检测。

对于低浓度的化合物,可以通过选择合适的检测器和优化分析条件,提高检测灵敏度,使得即使在样品中含量很低的化合物也能够被准确地检测到。

此外,HPLC在分析速度和样品处理方面也比较快捷。

与传统的柱色谱技术相比,HPLC使用的高压泵可以提高流动相的速度,从而缩短分析时间。

对于样品预处理方面,使用HPLC时只需要进行简单的处理,如溶解样品并过滤,就可以直接进入分析阶段。

这使得HPLC具有高通量分析的优势,能够在短时间内快速分析大量样品。

此外,HPLC还可与其他技术结合应用。

例如,HPLC-质谱联用技术可以实现对样品中化合物的分离和结构的同时鉴定,具有非常高的分析灵敏度和选择性。

HPLC还可以与色谱预处理、液相萃取和样品前处理等技术结合,提高样品的净化效果和检测灵敏度。

综上所述,HPLC是一种高效、灵敏和多功能的分析技术,被广泛应用于各个科学领域。

它的分离效率高,灵敏度高,分析速度快,样品处理简便,可以与其他技术结合使用,提高分析的效果和可靠性。

在今后的科学研究和实际应用中,HPLC将继续发挥重要的作用。

《仪器分析》4-高效液相色谱法

《仪器分析》4-高效液相色谱法
精选课件
(4) 示差折光检测器: 是一种中等灵敏度(10–6 g/mL)的通用型检测器。
是利用纯流动相和含有待测组分的流动相之间折射率的 差别进行检测的。
可分为三类:反射式;折射式(偏振式)和干涉式。常 用前两种。
优点:灵敏度适宜,操作简便是一种通用型的检测器; 缺点:对温度变化敏感,不能用于梯度洗脱。 应用范围:聚合物、糖。还用于分析以紫外检测和荧光
精选课件
药典中的液相色谱检测器
精选课件
常用的检测器:
(1) 紫外光度检测器:是一种选择性浓度检测器,仅 对那些在紫外波长有吸收的物质有响应。
作用原理:基于待测试样对特定波长的紫外光有选择 性的吸收,试样浓度与吸光度的关系服从比尔定律。
结构:
1-低压汞灯 2-透镜 3-遮光板 4-测量池 5-参比池 6-紫外滤光片 7-双紫外光敏电阻
精选课件
⑶ 色谱柱 GC柱很长,特别是毛细管柱可长至几十米至上百米,柱效
很高(理论塔板数N = 104~106)。HPLC柱较短,一般为15~25 cm,柱效(理论塔板数N = 103~104),低于GC柱。 ⑷ 检测器
与GC相比,HPLC检测器种类较多。 ⑸ 制备色谱
GC难以制备样品,因为进样量小,难以收集或被破坏。 HPLC可进行制备,即制备色谱。
精选课件
2. 进样系统
在高效液相色谱中,常用的进样方式: 高压阀进样:优点是能用于高压,适于大体积进样,重现性
好;缺点是进样阀进样时需排掉一部分试样,不同的进样 量需用不同的定量管,同时峰的扩展也比注射进样大。 微量注射器进样:也可由微量注射器注入取样环少量样品, 即采用较大体积取样环而进少量试样,进样量由注射器控 制,试样不充满取样环,只填充一部分体积。

第四章高效液相色谱分析法

第四章高效液相色谱分析法

第四章高效液相色谱分析法高效液相色谱(HPLC)是一种现代化的色谱技术,该技术利用高压将溶液推入柱中,然后在固定相上进行分离。

HPLC技术广泛应用于化学、生化、生物医药、环境等领域的分析与研究。

HPLC的分析原理是利用样品中所含化合物与柱填料固定相之间的体积作用力及化学作用力来进行分离。

在HPLC系统中,样品经过样品进样器注入进样回路中,通过高压泵将样品溶液送入柱中,柱中填充有固定相,样品中的成分在固定相表面上进行吸附与解吸,其中一些化合物会更容易与固定相相互作用,因此分离出来。

分离后的化合物通过检测器进行检测和定量。

HPLC技术具有高效、灵敏、精确、稳定等特点。

相比传统色谱技术,HPLC具有较高的分离效率和灵敏度。

其中,分离效率是指单位时间内分离出的化合物的数量,而灵敏度是指仪器能够检测到的最低浓度。

通过调节柱填料、流动相组成和流速,可以实现对复杂样品的高效分离和定量分析。

HPLC技术有多种模式,包括正相色谱法、反相色谱法、离子交换色谱法、分子筛色谱法等。

其中,反相色谱法是最常用的一种模式。

反相色谱法是指固定相是非极性的,而流动相是极性溶剂的情况下进行的色谱分离。

通过调整流动相的溶剂极性和流速,可以实现对不同极性化合物的分离。

除了分离功能外,HPLC还可以与其他技术联用,如质谱、荧光、紫外-可见光谱等。

这种联用技术结合了不同的分析方法,可以提高分析的特异性和灵敏度。

例如,将质谱与HPLC联用可以对化合物的结构进行确认和鉴定,而将荧光和HPLC联用可以对化合物进行特异性的定量分析。

HPLC技术在各个领域有着广泛的应用。

在化学领域,HPLC可以用来分离和分析复杂化合物,如天然产物的提取和纯化,药物的分析和鉴定等。

在生物医药领域,HPLC可以用来分析药物的含量、纯度和杂质,以及药物代谢产物和血液中的生理活性物质。

在环境领域,HPLC可以用来检测水体、土壤和空气中的有害物质,如重金属、有机污染物和农药残留等。

仪器分析― 高效液相色谱法PPT课件

仪器分析― 高效液相色谱法PPT课件
填充的固定相颗粒直径多在150~200m范围内。即使这样,
流速仍然很低(<1mL/min),分析时间仍然很长! 当加压增加流速(真空或空气泵)时,尽管分析时间减少,
但柱塔板高度Hmin也相应增加了!或者说柱效下降了。
4
• 为了解决分析时间及柱效问题,人们认识 到:最为有效地增加柱效的唯一方法是减 小填充物的粒径(3~10 m )!
HPLC仪器包括: 1. 高压输液装置; 2. 进样系统; 3. 分离系统; 4. 检测系统; 5. 此 外 还 配 有 梯 度淋洗、自动进样 和数据处理装置。
其工作过程如图 8-2所示。
图8-2 HPLC仪器工作过程示意图
9
高效液相色谱法 HPLC High Performance Liquid Chromatography
选择原则。
3
8.1 概 述
高效液相色谱(HPLC)是以溶剂液体为流动相的色谱方法。 按照固定相不同可分为:液液分配色谱;吸附色谱(液固色 谱);离子交换色谱;尺寸排阻色谱(凝胶渗透色谱)。此外, 还有亲和色谱、平板色谱(薄层色谱)等。
早期液相色谱,包括Tswett的工作,都是在直径1~5cm, 长50~500cm的玻璃柱中进行的。为保证有一定的柱流速,
• 操作温度:GC需高温;HPLC通常在室温下进行。
• 结论:从色谱分析的发展来看,HPLC比GC更为有
用、更具发展前途!
7
3. 应用 由于HPLC分离分析的高
灵敏度、定量的准确性、适 于非挥发性和热不稳定组分 的分析,因此,在工业、科 学研究,尤其是在生物学和
不溶于水 非极性
极性增加 非离子极性
16
高效液相色谱法 HPLC High Performance Liquid Chromatography
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
流动相和固定相都是液体
分离原理:利用组分在两相中溶解度的差异 固定相:载体+固定液 早期物理或机械法涂渍固定液,由于易流
失已较少采用; 现在应用最广的是化学键合固定相:将各
种不同基团通过化学反应键合到担体(硅 胶)表面的游离羟基上。
液—液分配色谱
固定液类型:β, β’ —氧二丙腈、聚乙二醇、角 鲨烷等。
1.高效液相色谱法与经典液相色谱法
高效液相色谱法的最大优点在于高速、高效、 高灵敏度、高自动化.
液体的流动相高速通过时,受到的阻力较大, 为了能迅速通过色谱柱,必须对流动相施加 高压15~35 Mpa,因此高压、高速是高效液 相色谱的特点之一。
高效液相色谱法与经典液相色谱法的比较
粒径(μm) 柱前压力(atm) 分析时间 (h) 色谱柱长度(cm) 柱效(块/m) 样品用量(g)
100
80
60
Re
40
20
Rg1
0
10
20
30
Rb1 Rd
40 Rf
Rb1 Rc Rb2
50 Rd
40
50
Rc
40
50
三种药材的HPLC指纹图谱
A
m inBຫໍສະໝຸດ m inCm in
3-2 影响色谱峰扩展及色谱分离的因素
1. 高效液相色谱中的速率方程
H=A+B/μ+Cμ
高效液相色谱中的速率方程
H
2d p
3-1 高效液相色谱法的特点
1. 高效液相色谱法概述
1960年代,由于气相色谱对高沸点有机物分析的局限性, 为了分离蛋白质、核酸等不易汽化的大分子物质,气相 色谱的理论和方法被重新引入经典液相色谱。
1960年代末科克兰、哈伯、荷瓦斯、莆黑斯、里普斯克 等人开发了世界上第一台高效液相色谱仪,开启了高效 液相色谱的时代。
Cd Dm u
(
Cm
d
2 p
Dm
Cs d
2 p
Dm
Cs d
2 f
)u
Ds
涡流扩散项 纵向扩散 流动相传质 滞留区传质 固定相内传质
2. 对速率方程的讨论
选用细颗粒填料可获高柱效(5μm) 流动相流速低,有利于达到高柱效 选用黏度小的流动相有利于提高柱效 温度的影响(适当提高柱温以降低流动相黏度) 液膜厚度的影响
2. 食品分析
①食品本身组成, 特别是营养成分,如糖、有机酸、维生素、蛋白 质、氨基酸、脂肪的分析;
②食品添加剂,如防腐剂、抗氧化剂、合成色素、甜味剂和保鲜 化学物质的分析;
③食品污染物,如农药残余和黄曲霉素等的分析。
3. 制备分离应用
要制备或提取一些高纯化合物,如新合成化合物的结构鉴定,药 物的生物和毒理试验。
(2)高效 GC 1000塔板/m(填充柱) HPLC 3W 塔板/m
(3)气相色谱一般都在较高温度下进行的, 而高效液相色谱法则经常可在室温条件下 工作.
总之,高效液相色谱法是吸取了气相 色谱与经典液相色谱优点,并用现代化手 段加以改进,因此得到迅猛的发展.
高效液相色谱与气相色谱的比较
GC
HPLC
第三章 高效液相色谱分析
High Performance Liquid Chromatography (HPLC)
希腊语chroma(色彩) graphos(图谱) 俄语Хроматография 德语Chromatographie 英语Chromatography
液相色谱法是指流动相为液体的色谱技术
应用范围
热稳定、低沸点的 热不稳定、高沸点、
物质
离子型的物质
热力学理论
较成熟
正在发展中
分析成本


分离能力 与柱的类型有关
较高
液相色谱仪器
high performance liquid chromatograph
3.高效液相色谱法的应用
1. 药物分析
约80%的药物都能用高效液相色谱进行分离和纯化。特别是手性 药物的分离分析。
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。
一、概述
它是在经典液相色谱基础上,引入了气相色 谱的理论,在技术上采用了高压泵、高效固 定相和高灵敏度检测器,因而具备速度快、 效率高、灵敏度高、操作自动化的特点. 为了更好地了解高效液相色谱法优越性, 现从两方面进行比较:
4. 高效液相色谱法的特点
高压 (150×105~350×105 Pa) 高速 (in 1 hr) 高效 (3w/m) 高灵敏度 (UV-ng; FL-10pg; μTAS)
人参、西洋参与三七的鉴别
m AU 200
150
DAD1 C, Sig=203,16 Ref =360,100 (H:\1\DATA\HUPING\GSSIDE14.D) Rg1
100 50
R1
Re
0
m AU 35 30 25 20 15 10 5 0
m AU
10
20
30
DAD1 C, Sig=203,16 Ref =360,100 (H:\1\DATA\HUPING\GSSIDE15.D)
Rg1 Re
10
20
30
DAD1 C, Sig=203,16 Ref =360,100 (H:\1\DATA\HUPING\GSSIDE16.D)
液—液色谱流动相应尽可能不与固定液互溶,两 者的极性差别应很大。
固定液为极性、流动相为非极性的液—液色谱称 为正相色谱,反之,则称为反相色谱。
液液分配色谱法
正相色谱——固定液极性 > 流动相极性(NLLC) ➢ 极性小的组分先出柱,极性大的组分后出柱 ✓ 适于分离极性组分
经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
相关文档
最新文档