《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时,方程组无解,即
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
∴
或
点评:本例利用了方程的思想对参数的值进行讨论求解。
例3.已知:椭圆
及点B(0,-2)过左焦点F 与B的
直线交椭圆于 C 、D 两点,椭圆的右焦点为F2 ,
求⊿CDF2
的面积。
D
Fra Baidu bibliotek
y
F2 F1
C o
x
B (0,-2)
解:∵ F1(-1,0)
∴ 直线BF1的方程为 y= -2x-2代入椭圆方程得:9x2 +16x+6=0
16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
直线与圆锥曲线的位置关系
一. 基本方法: 1. 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的 情况的讨论来研究。即方程消元后得到一个一元 二次方程,利用判别式⊿来讨论(注⊿≠0时,未 必只有二个交点)。 2. 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解并决。 3. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2,y2)则弦长公式为:
例1.当k为何值时,直线y=kx+k-2与抛物线 y =4x2有两个公共点? 仅有一个公共点? 无公共点。
解:
得k 2x 2+2(k 2-2k-2)x+(k-2)2 =0 ⊿=-16(k2 -2k-1)
1).当⊿>0时,即 2). 当⊿=0时,即
个公共点。 3).当 或
且k≠0时有两个公共点。
或k=0 时,直线与抛物线有一