704.八年级新人教版数学上册15.3 第1课时 分式方程及其解法1-教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.3 分式方程 第1课时 分式方程及其解法
1.了解分式方程的概念.(重点)
2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用.(重点)
3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)
一、情境导入
1.什么是方程?
2.什么是一元一次方程?
3.解一元一次方程的一般步骤是什么?
我们今天将学习另外一种方程——分式方程.二、合作探究
探究点一:分式方程的概念
下列关于x 的方程中,是分式方程的是( )
A.
3+x 2=2+x 5 B.2x -17=x 2 C.x
π+1=2-x 3 D.12+x =1-2x 解析:A 中方程分母不含未知数,故不是分式方程;B 中方程分母不含未知数,故不是分式方程;C 中方程分母不含表示未知数的字母,π是常数;D 中方程分母含未知数x ,故是分式方程.故选D.
方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).
探究点二:分式方程的解法
【类型一】 解分式方程
解方程:
(1)5x =7x -2;(2)1x -2=1-x 2-x
-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;
(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.
方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.
【类型二】 由分式方程的解确定字母的取值范围
关于x 的方程2x +a x -1
=1的解是正数,则a 的取值范围是____________. 解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1
=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.
探究点三:分式方程的增根
【类型一】 求分式方程的增根
若方程3x -2=a x +4x (x -2)
有增根,则增根可能为( ) A .0 B .2 C .0或2 D .1
解析:∵最简公分母是x (x -2),方程有增根,则x (x -2)=0,∴x =0或x =2.去分母得3x =a (x -2)+4,当x =0时,2a =4,a =2;当x =2时,6=4不成立,∴增根只能为x =0,故选A.
方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.
【类型二】 分式方程有增根,求字母的值
如果关于x 的分式方程2x -3=1-m x -3
有增根,则m 的值为( ) A .-3 B .-2
C .-1
D .3
解析:方程两边同乘以x -3,得2=x -3-m ①.∵原方程有增根,∴x -3=0,即x =
3.把x =3代入①,得m =-2.故选B.
方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
【类型三】 分式方程无解,求字母的值
若关于x 的分式方程2x -2+mx x 2-4=3x +2
无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.
解:方程两边都乘以(x +2)(x -2)得2(x +2)+mx =3(x -2),即(m -1)x =-10.①当m -1=0时,此方程无解,此时m =1;②方程有增根,则x =2或x =-2,当x =2时,代入(m -1)x =-10得(m -1)×2=-10,m =-4;当x =-2时,代入(m -1)x =-10得(m -
1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.
方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.
三、板书设计
分式方程及其解法
1.分式方程的概念;
2.分式方程的解法;
3.产生增根的条件.
这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.
初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180 °
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
24 矩形性质定理 1 矩形的四个角都是直角
25 矩形性质定理 2 矩形的对角线相等
26 矩形判定定理 1 有三个角是直角的四边形是矩形
27 矩形判定定理 2 对角线相等的平行四边形是矩形
28 菱形性质定理 1 菱形的四条边都相等
29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31 菱形判定定理1 四边都相等的四边形是菱形
32 菱形判定定理2 对角线互相垂直的平行四边形是菱形
33 正方形性质定理1 正方形的四个角都是直角,四条边都相等
34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35 定理1 关于中心对称的两个图形是全等的
36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

相关文档
最新文档