高中数学52种快速做题方法

合集下载

高考数学127个快速解题公式

高考数学127个快速解题公式

高中数学127个快速解题公式第1章 集合1、有限集合子集个数:子集个数:2n 个,真子集个数:12n -个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔= 3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+-第2章 函数52.236,3.142, 2.718e π≈≈≈≈≈ 6、分数指数幂公式:nma = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '-=-11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期T b a =-; 14、函数对称性:()()f a x f b x +=-的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =;16、抽象函数指数型:若()()()f x y f x f y +=,则()xf x a =;17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+;19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤-==⎨≤-⎩当且仅当时“”成立 21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =-⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)第3章 数列24、等差数列通项公式:1(1)n a a n d =+- 25、等差数列通项公式:11()(1)22n n n a a n n S na d +-==+ 26、等比数列通项公式:11n n a a q -=27、等比数列通项公式:11(1)11n n n a a qa q S q q+-==--28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn -++=,则有1111n nT n n =-=++ 33、裂项相消法2:若1111(2)22n n n n -++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+--++ 34、裂项相消法3:若111111n nnn a a d a a ++=-⎛⎫⎪⎝⎭,则有11111()n n T d a a +=- 35、裂项相消法4:若1111(21)(21)22121n n n n -+--+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =-+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b qa b T q q q -=+----第4章 三角函数37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:r =38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学52种快速做题方法

高中数学52种快速做题方法

1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。

所以不赘述。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。

以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。

2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。

3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。

4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。

5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。

6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。

7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。

8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。

9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。

10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。

以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。

这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。

高中数学轻松搞定排列组合难题二十二种方法

高中数学轻松搞定排列组合难题二十二种方法

高考数学轻松搞定排列组合难题二十二种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学解题技巧(实用)

高中数学解题技巧(实用)

高中数学解题技巧(实用)高中数学解题技巧(实用)一般高考试卷中总会出现题干很长,语句环绕的试题。

乍一看很难理解,摸不清意图。

但往往多读几遍,把其中关系弄清,做起来就比较简单。

以下是小编整理的高中数学解题技巧,希望可以提供给大家进行参考和借鉴。

高中数学解题技巧1、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

2、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

3、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

提高数学成绩的窍门一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

66个高中数学秒杀技巧

66个高中数学秒杀技巧

66个高中数学秒杀技巧高中数学一直以来都是学生们的心病,很多人都认为数学难以掌握,难以拿高分。

但实际上,只要我们掌握了一些高中数学的秒杀技巧,就可以事半功倍地学好数学,拿到更高的分数。

下面就为大家介绍66个高中数学秒杀技巧。

一、代数1. 对于同类项的加减问题,先把同类项合并,再求和或差。

2. 带分数运算时,先通分,再运算。

3. 当分母为二次式时,通常要配方化简。

4. 拆分因式时,先将公因式提出,再进行拆分。

5. 求解方程时,可以通过变形、配方、加减、乘除等方式进行。

6. 解三元一次方程组时,可以通过消元、代入、加减等方式进行。

7. 解二元二次方程组时,可以通过公式法、代入法、加减法等方式进行。

8. 利用导数求函数的极值和拐点时,先求一、二阶导数,然后令导数为0求解。

9. 利用等比数列的性质求解问题时,需要掌握公比、首项、通项公式等基本概念。

10. 利用等差数列的性质求解问题时,需要掌握公差、首项、通项公式等基本概念。

二、几何11. 判断两个角是否相等,可以通过其对应的弧长、扇形面积、弦长等方式进行。

12. 判断两个三角形是否全等,可以通过边边边、边角边、角边角等方式进行。

13. 判断两个三角形是否相似,可以通过对应角相等、对应边成比例等方式进行。

14. 当三角形两边和夹角已知时,可以通过余弦定理求第三边。

15. 当三角形两角和一边已知时,可以通过正弦定理求另外两边的比例。

16. 当三角形一边和两角已知时,可以通过正弦定理求第三角。

17. 计算圆的面积时,可以通过半径、直径、弧长等方式进行。

18. 计算圆的周长时,可以通过直径或半径进行计算。

19. 计算球体的表面积时,可以通过半径进行计算。

20. 计算球体的体积时,可以通过半径进行计算。

三、数列21. 求等差数列的通项公式时,可以通过首项、公差、项数等方式进行。

22. 求等比数列的通项公式时,可以通过首项、公比、项数等方式进行。

23. 求等差数列的和时,可以通过项数、首项、末项等方式进行。

高中数学这52种快速解题方法

高中数学这52种快速解题方法

高中数学这52种快速解题方法1. 引言高中数学是许多学生认为十分棘手的学科之一。

对于许多人来说,数学题目的解答方式似乎总是死记硬背和机械套用公式。

然而,实际上,数学是一门赋予我们逻辑思维和解决问题能力的学科,更应该是灵活和多样的。

在这篇文章中,我们将探讨一下高中数学中的52种快速解题方法,希望能够为大家打开数学解题的新视角。

2. 快速解题方法的意义在高中数学的学习过程中,快速解题方法可以帮助我们更好地掌握知识点,提高解题效率,减少出错的可能性。

常见的数学题目类型包括代数、几何、概率统计等,在解答这些题目时,掌握不同的快速解题方法就能更加游刃有余地应对。

3. 代数代数是高中数学中的重要部分,包括方程、不等式、函数等内容。

在解答代数题目时,我们可以利用以下快速解题方法:- 同除法则:对于等式两边同时乘以或除以同一个式子,以简化问题并减少计算量。

- 奇偶性判定法则:利用奇偶性的特点来解决一些代数问题。

- 异常值法则:排除一些值来帮助我们更快地解题。

4. 几何几何是高中数学中的另一个重要分支,包括线、面、体等概念。

在解答几何题目时,我们可以利用以下快速解题方法:- 图形相似法则:利用图形相似的特点来简化计算和判断。

- 几何变换法则:利用平移、旋转、对称等几何变换来简化问题。

- 折线法则:对于折线图形,可以利用折线的性质来推断出一些结论。

5. 概率统计概率统计是高中数学中的新内容,包括概率、统计等内容。

在解答概率统计题目时,我们可以利用以下快速解题方法:- 可能性法则:利用可能性的概念来解决概率问题。

- 统计特征法则:利用统计特征来对数据进行分析和判断。

- 抽样调查法则:在统计问题中,可以利用抽样调查的方法来得到一些结论。

6. 总结与回顾在本篇文章中,我们通过探讨代数、几何、概率统计等内容,归纳了一些高中数学中的快速解题方法。

这些方法能够帮助我们更快地解答数学问题,提高解题效率。

相信通过不断练习和应用这些方法,我们能够在数学学习中取得更好的成绩。

高中数学149个解题方法

高中数学149个解题方法

高中数学149个解题方法【引言】高中数学是学生学业生涯中至关重要的一环,它不仅为后续学习打下基础,也对培养逻辑思维和解决问题的能力具有重要意义。

在高中数学学习中,掌握解题方法是提高成绩的关键。

本文将介绍149个高中数学解题方法,帮助同学们更好地应对各类数学题目。

【高中数学解题方法分类】【代数解题方法】代数是高中数学的重要组成部分,包括数式、方程、不等式、函数等。

以下是一些常见的代数解题方法:1.消元法2.代入法3.因式分解法4.配方法5.韦达定理【几何解题方法】几何涉及平面几何、立体几何等方面的知识。

以下是一些常见的几何解题方法:1.几何直观法2.相似三角形法3.面积法5.角平分线定理【三角函数解题方法】三角函数是数学中的一个重要分支,以下是一些常见的三角函数解题方法:1.和差化积法2.倍角公式法3.半角公式法4.三角函数图像法5.三角恒等式法【概率与统计解题方法】概率与统计在高中数学中占有重要地位,以下是一些常见的概率与统计解题方法:1.概率计算法2.条件概率法3.独立事件法4.频数与频率法5.统计图表法【数学归纳法解题方法】数学归纳法是一种常用的证明方法,以下是一些数学归纳法解题方法:1.第一数学归纳法2.第二数学归纳法4.数学归纳法证明不等式5.数学归纳法证明恒等式【每种解题方法的详细阐述与实例】在本部分,我们将详细阐述每种解题方法,并通过实例进行说明。

例如,对于代数中的消元法,我们可以通过以下实例进行解释:消元法解一元二次方程组:ax + bx + c = 0ay + by + c = 0【结论与建议】掌握149个高中数学解题方法对提高学习成绩具有重要意义。

同学们要在学习中不断总结经验,熟练掌握各种解题方法,并学会灵活运用。

同时,多做练习题和模拟试题,提高解题速度和准确性。

在学习过程中,遇到难题时要勇于挑战,培养自己的解决问题的能力。

高中数学常考题型答题技巧与方法超全整合版

高中数学常考题型答题技巧与方法超全整合版

高中数学常考题型答题技巧与方法超全整合版高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧1. 利用整除定理判断数字能否被2、3、4、5、6等整除。

若一个数能同时被2和3整除,则也能被6整除。

2. 奇数的任意两个相邻自然数之和必为偶数。

3. 计算乘法口诀表时,对称性可以简化计算。

例如,$3 \times 7$ 和$7 \times 3$ 的结果是相同的。

4. 对于一个除数和一个商,被除数等于除数乘以商加上余数。

这是除法的基本原理。

5. 学会使用倍数关系来计算百分数。

例如,100%的1/3等于33.33%的3。

6. 对于一个等差数列,求和的公式为$S = \frac{n(a_1 + a_n)}{2}$,其中 $n$ 是项数,$a_1$ 是首项,$a_n$ 是末项,$S$ 是总和。

7. 切割一个正方形可以得到两个相似的正方形。

这可以用于比例和相似形状的题目。

8. 当解决直角三角形题目时,可以使用勾股定理:$c = \sqrt{a^2 +b^2}$,其中 $c$ 为斜边长,$a$ 和 $b$ 分别为两个直角边的长度。

9. 计算圆的周长和面积时,可以使用公式:周长 $C = 2\pi r$,面积$A = \pi r^2$,其中 $r$ 是半径,$\pi$ 是一个无限不循环小数,取近似值 3.14。

10. 求解一元一次方程时,可以通过移项、合并同类项等代数运算简化方程。

确保每一步都在两边同时操作。

11. 了解序列和数列的概念,可以应用到等差数列和等比数列的题目中。

12. 可以使用配方法来解决二元一次方程组,将其中一个方程整体乘以一个适当的系数,然后相加或相减消去一个未知数。

13. 学会使用二次方程求根公式解决二次方程题目。

公式为:$x =\frac{-b \pm \sqrt{b^2-4ac}}{2a}$。

14. 复习平面几何的性质和定理,熟悉各种图形的面积和周长公式。

15. 对于概率题目,可以使用概率公式:$P(A) = \frac{{\text{有利事件的个数}}}{{\text{总事件的个数}}}$。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧(原创版)目录1.引言:高中数学的重要性2.高中数学 52 个秒杀技巧概述3.分类介绍 52 个秒杀技巧3.1 几何秒杀技巧3.2 代数秒杀技巧3.3 函数秒杀技巧3.4 数列秒杀技巧3.5 概率与统计秒杀技巧4.如何运用这些秒杀技巧5.结论:提高数学成绩的关键在于掌握方法和技巧正文数学作为高中阶段的一门重要学科,对于学生的综合素质和未来发展起着举足轻重的作用。

许多学生在学习数学时,常常感到力不从心,其实只要掌握了一定的方法和技巧,数学学习便可以变得轻松有趣。

下面,我们将为您介绍高中数学 52 个秒杀技巧,助您轻松应对数学考试。

首先,我们来了解一下这 52 个秒杀技巧的分类。

它们主要分为几何秒杀技巧、代数秒杀技巧、函数秒杀技巧、数列秒杀技巧以及概率与统计秒杀技巧五大类。

在几何秒杀技巧中,我们主要介绍了如何快速解决相似三角形、圆与直线、空间几何等问题。

这些技巧可以帮助学生在解决几何题目时,迅速找到解题思路,节省时间。

代数秒杀技巧则主要针对一元二次方程、因式分解、分式方程等常见问题。

掌握这些技巧,可以让学生在面对复杂的代数题目时,迅速找到解题关键。

函数秒杀技巧则包括了函数的性质、函数图像、函数的极值等。

通过这些技巧,学生可以熟练地解决函数相关问题,提高解题速度。

数列秒杀技巧主要针对等差数列、等比数列、斐波那契数列等常见数列问题。

熟练掌握这些技巧,可以帮助学生在解决数列题目时,迅速找到解题思路。

概率与统计秒杀技巧则主要针对概率计算、统计分析等问题。

学生在掌握这些技巧后,可以迅速解决相关题目,提高解题速度。

那么,如何运用这些秒杀技巧呢?首先,学生需要对这些技巧进行系统的学习和理解。

在理解每个技巧的原理后,通过大量的练习,将这些技巧内化为自己的解题能力。

此外,学生在解题时,要善于观察题目的特点,迅速找到适用的技巧,从而提高解题速度。

总之,提高数学成绩的关键在于掌握方法和技巧。

高中数学 52 个秒杀技巧为广大学生提供了一个有效的学习途径。

高中数学这52种快速解题方法

高中数学这52种快速解题方法

高中数学这52种快速解题方法高中数学是学生学习中的一门重要课程,在高中数学学习过程中,有许多方法可以帮助我们快速解题。

本文将介绍52种高中数学的快速解题方法,希望对学生们在数学学习时有所帮助。

一、方程的快速解题方法:1.牛顿-莱布尼茨公式:对于高次方程,可以使用牛顿-莱布尼茨公式快速求导以及求解,以便解决方程。

2.易得关系:在解二元一次方程时,可以通过观察系数之间的关系,直接得到方程的解。

3.倍数法:有时,我们可以通过将方程两边同乘一个常数,以便简化方程求解的过程。

4.等比数列求和公式:在解等差数列求和问题时,我们可以使用等比数列求和公式,快速求解。

5.同底数幂等于同指数的求解法:当两个数的底数相等,指数相等时,我们可以将两个底数合并在一起,然后得到一个新的指数,进行计算。

二、几何图形的快速解题方法:1.同余三角形的性质:在几何图形中,应用同余三角形的性质,可以简化计算过程,快速解题。

2.双曲线的对称性:对于双曲线,我们可以利用其对称性质,快速求解问题。

3.相似三角形的定理:应用相似三角形的定理,可以快速解决三角形相似问题。

4.平行四边形的性质:利用平行四边形的性质,可以快速求解平行四边形的各种问题。

5.三角恒等式:在解三角形相关问题时,利用三角恒等式可以快速求解。

三、概率问题的快速解题方法:1.排列组合公式:在解决排列组合问题时,可以利用排列组合公式,快速计算结果。

2.互斥事件的概率:如果两个事件是互斥的,即它们不可能同时发生,我们可以直接将它们的概率相加来计算合并事件的概率。

3.独立事件的概率:对于独立事件,即它们的发生不受其他事件的影响,我们可以将它们的概率相乘来计算复合事件的概率。

4.条件概率:在解条件概率问题时,可以根据已知条件,利用条件概率公式,快速计算结果。

5.事件的补集:对于事件的补集,我们可以通过计算事件的补集的概率,再用1减去它的概率,来计算事件的概率。

四、数列的快速解题方法:1.利用等差数列的前n项和公式:在解等差数列问题时,我们可以利用等差数列的前n项和公式,快速求解。

高中数学52种快速破题方法

高中数学52种快速破题方法

高中数学52种快速破题方法在高中数学学习中,有时我们会遇到一些难题需要快速破解。

这篇文章将介绍52种快速破题方法,帮助你提高数学解题的效率和准确性。

1. 简化分式:利用分子分母的公因式进行约分,简化计算过程。

2. 因式分解:将多项式进行因式分解,以简化复杂的运算。

3. 公式代入:当遇到已知条件和需要求解的变量可以通过一个已知公式联系时,直接代入计算。

4. 利用图形:如果问题涉及到几何形状,将其绘制成图形有助于解题。

5. 引入辅助线:在几何题中,通过引入辅助线能够推导出更多关系,简化解题过程。

6. 使用二次函数图像:对于最值问题,可以利用二次函数图像的开口方向来确定最值的位置。

7. 数列求和:对于数列的求和问题,可以利用数列求和公式或巧妙的变形来简化计算。

8. 分类讨论法:对于某些问题,可以将不同情况进行分类讨论来解决。

9. 倒推法:从已知结果倒推出有关条件,以确定解题的方法和步骤。

10. 利用对称性:在一些几何问题中,利用对称性可以简化证明或者找出另一方面的答案。

11. 分情况讨论:对于某些复杂问题,将其分解成几个简单情况分别讨论,最后合并结果。

12. 利用相似三角形:在几何问题中,利用相似三角形的性质可以快速求解各种长度和角度。

13. 数字根法:对于整数运算,可以利用数字根法来判断整除性质和进行简单计算。

14. 观察法:对于一些规律性问题,可以通过观察规律和找出特殊性质来解决。

15. 合并同类项:在多项式计算中,将具有相同变量幂次的项进行合并,简化运算过程。

16. 借位法:在计算过程中,若存在进位或借位,可以通过借位法进行加减运算。

17. 利用轴对称性:通过利用轴对称性,可以简化一些图形问题的证明或计算。

18. 利用余角关系:对于三角函数中的角度关系,可以利用余角关系进行简化运算。

19. 勾股定理:在解决直角三角形问题中,可以利用勾股定理确定未知边长。

20. 合理估算:对于某些题目,可以通过合理估算来获得近似的结果,以缩小解题范围。

高中数学52个秒杀技巧

高中数学52个秒杀技巧

高中数学52个秒杀技巧摘要:一、前言- 数学在高中阶段的重要性- 高中数学秒杀技巧的实用性二、秒杀技巧概述- 集合与基本初等函数- 数学公式与运算- 数列与数学归纳法- 函数与导数- 三角函数- 解析几何- 立体几何- 概率与统计三、技巧详解- 集合与基本初等函数1.集合运算的快速判断2.基本初等函数的性质与应用- 数学公式与运算1.常用数学公式的记忆方法2.快速计算技巧- 数列与数学归纳法1.等差、等比数列的性质及应用2.数学归纳法的证明方法- 函数与导数1.函数性质的判断2.导数与函数关系的快速求解- 三角函数1.三角函数值的快速计算2.三角函数性质及其应用- 解析几何1.解析几何问题的快速解决方法2.解析几何中的定理与应用- 立体几何1.立体几何图形的性质与应用2.立体几何问题的秒杀技巧- 概率与统计1.概率计算的快速方法2.统计问题的解决技巧四、技巧应用与实践- 典型例题解析- 实际应用案例五、总结- 高中数学秒杀技巧的归纳与总结- 提高数学成绩的方法与建议正文:数学是高中阶段的重要学科,掌握一定的数学技巧对于提高成绩和解决实际问题具有重要意义。

本文将为大家介绍52 个高中数学秒杀技巧,帮助大家轻松应对数学问题。

一、秒杀技巧概述本文将围绕集合与基本初等函数、数学公式与运算、数列与数学归纳法、函数与导数、三角函数、解析几何、立体几何、概率与统计等方面,详细介绍高中数学秒杀技巧。

二、技巧详解1.集合与基本初等函数集合运算的快速判断:根据集合的运算律,快速判断集合的运算结果。

基本初等函数的性质与应用:熟练掌握常见基本初等函数的性质和应用,如幂函数、指数函数、对数函数等。

2.数学公式与运算常用数学公式的记忆方法:通过总结规律,记住常见的数学公式。

快速计算技巧:利用数学定理、性质和技巧,简化计算过程。

3.数列与数学归纳法等差、等比数列的性质及应用:熟练掌握等差、等比数列的性质,并能应用于实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学52种快速做题方法1.适用条件[直线过焦点],必有e c o s A=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=s i n 派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律(1)等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q6.数列的终极利器,特征根方程首先介绍公式:对于a n+1=p a n+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为a n=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。

所以不赘述。

希望同学们牢记上述公式。

当然这种类型的数列可以构造(两边同时加数)7.函数详解补充1、复合函数奇偶性:内偶则偶,内奇同外2、复合函数单调性:同增异减3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。

另外,必有唯一一条过该中心的直线与两旁相切。

8.常用数列b n=n×(2²n)求和S n=(n-1)×(2²(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个29.适用于标准方程(焦点在x轴)爆强公式k椭=-{(b²)x o}/{(a²)y o}k双={(b²)x o}/{(a²)y o}k抛=p/y o注:(x o,y o)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!11.经典中的经典相信邻项相消大家都知道。

下面看隔项相消:对于S n=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。

自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!12.爆强△面积公式S=1/2∣m q-n p∣其中向量A B=(m,n),向量B C=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题13.你知道吗?空间立体几何中:以下命题均错(1)空间中不同三点确定一个平面(2)垂直同一直线的两直线平行(3)两组对边分别相等的四边形是平行四边形(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。

14.一个小知识点所有棱长均相等的棱锥可以是三、四、五棱锥。

15.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。

16.√〔(a²+b²)〕/2≥(a+b)/2≥√a b≥2a b/(a+b)(a、b为正数,是统一定义域)17.椭圆中焦点三角形面积公式S=b²t a n(A/2)在双曲线中:S=b²/t a n(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。

A为两焦半径夹角。

18.爆强定理空间向量三公式解决所有题目:c o s A=|{向量 a.向量b}/[向量a的模×向量b的模](1)A为线线夹角(2)A为线面夹角(但是公式中c o s换成s i n)(3)A为面面夹角注:以上角范围均为[0,派/2]。

19.爆强公式1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+ 1)²20.爆强切线方程记忆方法写成对称形式,换一个x,换一个y举例说明:对于y²=2p x可以写成y×y=p x+p x再把(x o,y o)带入其中一个得:y×y o=p x o+p x21.爆强定理(a+b+c)²n的展开式[合并之后]的项数为:C n+22,n+2在下,2在上22.转化思想切线长l=√(d²-r²)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

23.对于y²=2p x过焦点的互相垂直的两弦A B、C D,它们的和最小为8p。

爆强定理的证明:对于y²=2p x,设过焦点的弦倾斜角为 A那么弦长可表示为2p/〔(s i n A)²〕,所以与之垂直的弦长为2p/[(c o s A)²]所以求和再据三角知识可知。

(题目的意思就是弦A B过焦点,C D过焦点,且A B垂直于C D)24.关于一个重要绝对值不等式的介绍爆强∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣25.关于解决证明含l n的不等式的一种思路举例说明:证明1+1/2+1/3+…+1/n>l n(n+1)把左边看成是1/n求和,右边看成是S n。

解:令a n=1/n,令S n=l n(n+1),则b n=l n(n+1)-l n n,那么只需证a n>b n即可,根据定积分知识画出y=1/x的图。

a n=1×1/n=矩形面积>曲线下面积=b n。

当然前面要证明1>l n2。

注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。

说明:前提是含l n。

26.爆强简洁公式向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。

记忆方法:在哪投影除以哪个的模27.说明一个易错点若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记28.离心率爆强公式e=s i n A/(s i n M+s i n N)注:P为椭圆上一点,其中A为角F1P F2,两腰角为M,N29.椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。

比如x²/4+y²=1求z=x+y的最值。

解:令x=2c o s a y=s i n a再利用三角有界即可。

比你去=0不知道快多少倍!30.仅供有能力的童鞋参考的爆强公式和差化积s i nθ+s i nφ=2s i n[(θ+φ)/2]c o s[(θ-φ)/2]s i nθ-s i nφ=2c o s[(θ+φ)/2]s i n[(θ-φ)/2]c o sθ+c o sφ=2c o s[(θ+φ)/2]c o s[(θ-φ)/2]c o sθ-c o sφ=-2s i n[(θ+φ)/2]s i n[(θ-φ)/2]积化和差s i nαs i nβ=[c o s(α-β)-c o s(α+β)]/2c o sαc o sβ=[c o s(α+β)+c o s (α-β)]/2s i nαc o sβ=[s i n(α+β)+s i n(α-β)]/2c o sαs i nβ=[s i n(α+β)-s i n(α-β)]/231.爆强定理直观图的面积是原图的√2/4倍。

32.三角形垂心爆强定理(1)向量O H=向量O A+向量O B+向量O C(O为三角形外心,H为垂心)(2)若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

33.维维安尼定理正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。

34.爆强思路如果出现两根之积x1x2=m,两根之和x1+x2=n我们应当形成一种思路,那就是返回去构造一个二次函数再利用△大于等于0,可以得到m、n范围。

35.常用结论过(2p,0)的直线交抛物线y²=2p x于A、B两点。

O为原点,连接A O.B O。

必有角A O B=90度36.爆强公式l n(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。

举例说明:l n(1/(2²)+1)+l n(1/(3²)+1)+…+l n(1/(n²)+1)<1(n≥2)证明如下:令x=1/(n²),根据l n(x+1)≤x有左右累和右边再放缩得:左和<1-1/n<1证毕!37.函数y=(s i n x)/x是偶函数在(0,派)上它单调递减,(-派,0)上单调递增。

利用上述性质可以比较大小。

38.函数y=(l n x)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。

另外y=x²(1/x)与该函数的单调性一致。

39.几个数学易错点(1)f`(x)<0是函数在定义域内单调递减的充分不必要条件(2)研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称(3)不等式的运用过程中,千万要考虑"="号是否取到(4)研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!40.提高计算能力五步曲(1)扔掉计算器(2)仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用(3)熟记常用数据,掌握一些速算技(4)加强心算、估算能力(5)检验41.一个美妙的公式已知三角形中A B=a,A C=b,O为三角形的外心,则向量A O×向量B C(即数量积)=(1/2)[b²-a²]证明:过O作B C垂线,转化到已知边上42.函数①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了为什么不能说y=t a n x在定义域内单调递增,因为它的图像被无穷多条渐近线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y与x一一对应.这个可以用来解一些方程.至于例子不举了②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R上的函数,对任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)设T≠0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)≠x则函数的周期为 243.奇偶函数概念的推广(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1)<f(x2)等价于绝对值x1-(a+b p=""<=""2)<绝对值x2-(a+b)="">44.函数对称性(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称柯西函数方程:若f(x)连续或单调(1)若f(x y)=f(x)+f(y)(x>0,y>0),则f(x)=㏒a x(2)若f(x y)=f(x)f(y)(x>0,y>0),则f(x)=x²u(u由初值给出)(3)f(x+y)=f(x)f(y)则f(x)=a²x(4)若f(x+y)=f(x)+f(y)+k x y,则f(x)=a x2+b x(5)若f(x+y)+f(x-y)=2f(x),则f(x)=a x+b特别的若f(x)+f(y)=f(x+y),则f(x)=k x45.与三角形有关的定理或结论中学数学平面几何最基本的图形就是三角形①正切定理(我自己取的,因为不知道名字):在非R t△中,有t a n A+t a n B+t a n C=t a n A t a n B t a n C②任意三角形射影定理(又称第一余弦定理):在△A B C中,a=b c o s C+c c o s B;b=c c o s A+a c o s C;c=a c o s B+b c o s A③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道了吧④梅涅劳斯定理:设A1,B1,C1分别是△A B C三边B C,C A,A B所在直线的上的点,则A1,B1,C1共线的充要条件是C B1/B1A·B A1/A1C·A C1/C1B=146.易错点(1)函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决抽象函数不等式问题;(2)三角函数恒等变换不清楚,诱导公式不迅捷。

相关文档
最新文档